Patents by Inventor Shu Qin

Shu Qin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10153190
    Abstract: Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for enhancing wafer bonding includes positioning a substrate assembly on a unipolar electrostatic chuck in direct contact with an electrode, electrically coupling a conductor to a second substrate positioned on top of the first substrate, and applying a voltage to the electrode, thereby creating a potential differential between the first substrate and the second substrate that generates an electrostatic force between the first and second substrates.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: December 11, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Shu Qin, Ming Zhang
  • Patent number: 10079340
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: September 18, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Publication number: 20180166629
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 14, 2018
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Publication number: 20170358629
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 14, 2017
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin
  • Patent number: 9786475
    Abstract: Systems and methods for plasma processing of microfeature workpieces are disclosed herein. In one embodiment, a method includes generating a plasma in a chamber while a microfeature workpiece is positioned in the chamber, measuring optical emissions from the plasma, and determining a parameter of the plasma based on the measured optical emissions. The parameter can be an ion density or another parameter of the plasma.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: October 10, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Shu Qin, Allen McTeer
  • Patent number: 9673256
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: June 6, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin
  • Publication number: 20170125426
    Abstract: Some embodiments include an integrated assembly having a first semiconductor structure containing heavily-doped silicon, a germanium-containing interface material over the first semiconductor structure, and a second semiconductor structure over the germanium-containing interface material. The second semiconductor structure has a heavily-doped lower region adjacent the germanium-containing interface material and has a lightly-doped upper region above the heavily-doped lower region. The lightly-doped upper region and heavily-doped lower region are majority doped to a same dopant type, and join to one another along a boundary region. Some embodiments include an integrated assembly having germanium oxide between a first silicon-containing structure and a second silicon-containing structure. Some embodiments include methods of forming assemblies.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 4, 2017
    Inventors: Yushi Hu, Shu Qin
  • Patent number: 9530842
    Abstract: Some embodiments include a device having an n-type diffusion region, and having a boron-doped region within the n-type diffusion region. The boron-doped region extends no deeper than about 10 nanometers from an upper surface of the n-type diffusion region. Some embodiments include a method in which first boron-enhanced regions are formed within upper portions of n-type source/drain regions of an NMOS (n-type metal-oxide-semiconductor) device and second boron-enhanced regions are simultaneously formed within upper portions of p-type source/drain regions of a PMOS (p-type metal-oxide-semiconductor) device. The first and second boron-enhanced regions extend to depths of less than or equal to about 10 nanometers.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: December 27, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Shu Qin, Yongjun Jeff Hu, Allen McTeer
  • Patent number: 9496495
    Abstract: Some embodiments include a memory cell having a first electrode, and an intermediate material over and directly against the first electrode. The intermediate material includes stabilizing species corresponding to one or both of carbon and boron. The memory cell also has a switching material over and directly against the intermediate material, an ion reservoir material over the switching material, and a second electrode over the ion reservoir material. Some embodiments include methods of forming memory cells.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: November 15, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Martin Schubert, Shu Qin, Scott E. Sills, Durai Vishak Nirmal Ramaswamy, Allen McTeer, Yongjun Jeff Hu
  • Publication number: 20160284996
    Abstract: Some embodiments include a memory cell having a first electrode, and an intermediate material over and directly against the first electrode. The intermediate material includes stabilizing species corresponding to one or both of carbon and boron. The memory cell also has a switching material over and directly against the intermediate material, an ion reservoir material over the switching material, and a second electrode over the ion reservoir material. Some embodiments include methods of forming memory cells.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Inventors: Martin Schubert, Shu Qin, Scott E. Sills, Dural Vishak Nirmal Ramaswamy, Allen McTeer, Yongjun Jeff Hu
  • Publication number: 20160218282
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Application
    Filed: April 4, 2016
    Publication date: July 28, 2016
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Publication number: 20160211324
    Abstract: Some embodiments include a device having an n-type diffusion region, and having a boron-doped region within the n-type diffusion region. The boron-doped region extends no deeper than about 10 nanometers from an upper surface of the n-type diffusion region. Some embodiments include a method in which first boron-enhanced regions are formed within upper portions of n-type source/drain regions of an NMOS (n-type metal-oxide-semiconductor) device and second boron-enhanced regions are simultaneously formed within upper portions of p-type source/drain regions of a PMOS (p-type metal-oxide-semiconductor) device. The first and second boron-enhanced regions extend to depths of less than or equal to about 10 nanometers.
    Type: Application
    Filed: January 15, 2015
    Publication date: July 21, 2016
    Inventors: Shu Qin, Yongjun Jeff Hu, Allen McTeer
  • Patent number: 9385317
    Abstract: Some embodiments include a memory cell having a first electrode, and an intermediate material over and directly against the first electrode. The intermediate material includes stabilizing species corresponding to one or both of carbon and boron. The memory cell also has a switching material over and directly against the intermediate material, an ion reservoir material over the switching material, and a second electrode over the ion reservoir material. Some embodiments include methods of forming memory cells.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: July 5, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Martin Schubert, Shu Qin, Scott E. Sills, Durai Vishak Nirmal Ramaswamy, Allen McTeer, Yongjun Jeff Hu
  • Publication number: 20160190209
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Application
    Filed: March 7, 2016
    Publication date: June 30, 2016
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin
  • Patent number: 9306159
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: April 5, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Patent number: 9281471
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: March 8, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin
  • Patent number: 9257646
    Abstract: Some embodiments include a memory cell having a first electrode, and an intermediate material over and directly against the first electrode. The intermediate material includes stabilizing species corresponding to one or both of carbon and boron. The memory cell also has a switching material over and directly against the intermediate material, an ion reservoir material over the switching material, and a second electrode over the ion reservoir material. Some embodiments include methods of forming memory cells.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: February 9, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Martin Schubert, Shu Qin, Scott E. Sills, Durai Vishak Nirmal Ramaswamy, Allen McTeer, Yongjun Jeff Hu
  • Publication number: 20160035974
    Abstract: Some embodiments include a memory cell having a first electrode, and an intermediate material over and directly against the first electrode. The intermediate material includes stabilizing species corresponding to one or both of carbon and boron. The memory cell also has a switching material over and directly against the intermediate material, an ion reservoir material over the switching material, and a second electrode over the ion reservoir material. Some embodiments include methods of forming memory cells.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Martin Schubert, Shu Qin, Scott E. Sills, Durai Vishak Nirmal Ramaswamy, Allen McTeer, Yongjun Jeff Hu
  • Publication number: 20150318467
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin
  • Publication number: 20150318468
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer