Patents by Inventor Shyam Surthi

Shyam Surthi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150206886
    Abstract: Some embodiments include methods of forming semiconductor constructions. A heavily-doped region is formed within a first semiconductor material, and a second semiconductor material is epitaxially grown over the first semiconductor material. The second semiconductor material is patterned to form circuit components, and the heavily-doped region is patterned to form spaced-apart buried lines electrically coupling pluralities of the circuit components to one another. At least some of the patterning of the heavily-doped region occurs simultaneously with at least some of the patterning of the second semiconductor material.
    Type: Application
    Filed: December 12, 2014
    Publication date: July 23, 2015
    Inventors: Jaydip Guha, Shyam Surthi
  • Patent number: 9070584
    Abstract: A memory array includes a plurality of digitline (DL) trenches extending along a first direction; a buried digitline between the DL trenches; a trench fill material layer sealing an air gap in each of the DL trenches; a plurality of wordline (WL) trenches extending along a second direction; an active chop (AC) trench disposed at one end of the buried digitline; a shield layer in the air gap; and a sidewall conductor around the sidewall of the AC trench.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: June 30, 2015
    Assignee: NANYA TECHNOLOGY CORP.
    Inventors: Shyam Surthi, Lars Heineck
  • Patent number: 9070767
    Abstract: Vertical memory devices comprise vertical transistors, buried digit lines extending in a first direction in an array region, and word lines extending in a second direction different from the first direction. Portions of the word lines in a word line end region have a first vertical length greater than a second vertical length of portions of the word lines in the array region. Apparatuses including vertical transistors in an array region, buried digit lines extending in a first direction, and word lines are also disclosed. Each of the word lines extends in a second direction perpendicular to the first direction, is formed over at least a portion of a sidewall of at least some of the vertical transistors, and vertically has a depth in a word line end region about equal to or greater than a depth thereof in the array region.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: June 30, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Shyam Surthi
  • Patent number: 9054216
    Abstract: Trenches are formed into semiconductive material. Masking material is formed laterally over at least elevationally inner sidewall portions of the trenches. Conductivity modifying impurity is implanted through bases of the trenches into semiconductive material there-below. Such impurity is diffused into the masking material received laterally over the elevationally inner sidewall portions of the trenches and into semiconductive material received between the trenches below a mid-channel portion. An elevationally inner source/drain is formed in the semiconductive material below the mid-channel portion. The inner source/drain portion includes said semiconductive material between the trenches which has the impurity therein. A conductive line is formed laterally over and electrically coupled to at least one of opposing sides of the inner source/drain. A gate is formed elevationally outward of and spaced from the conductive line and laterally adjacent the mid-channel portion. Other embodiments are disclosed.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: June 9, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Jaydip Guha, Shyam Surthi, Suraj J. Mathew, Kamal M. Karda, Hung-Ming Tsai
  • Patent number: 9041099
    Abstract: The present invention provides a single-sided access device including an active fin structure comprising a source region and a drain region; an insulating layer interposed between the source region and the drain region; a trench isolation structure disposed at one side of the active fin structure; a single-sided sidewall gate electrode disposed on the other side of the active fin structure opposite to the trench isolation structure so that the active fin structure is sandwiched by trench isolation structure and the single-sided sidewall gate electrode; and a gate protrusion laterally and electrically extended from the single-sided sidewall gate electrode and embedded between the source region and the drain region under the insulating layer.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: May 26, 2015
    Assignee: NANYA TECHNOLOGY CORP.
    Inventors: Shyam Surthi, Sheng-Wei Yang
  • Publication number: 20150123280
    Abstract: An access device includes a plurality of first digit lines (DL) trenches extending along a first direction, buried digit lines between each DL trench, second and third trenches separating the digit lines, a filling material filling the digit line trenches comprising airgaps in each second trench, a plurality of word line (WL) trenches extending along a second direction, metal word lines deposited on the walls of the word line trenches, a filling material filling the word line trenches.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Applicant: NANYA TECHNOLOGY CORP.
    Inventors: Shyam Surthi, Lars Heineck
  • Patent number: 9012303
    Abstract: Provided is a method for fabricating a semiconductor device, including the following steps. A substrate having a plurality of pillars is provided, wherein a plurality of trenches are formed around each pillar. A doped region is formed in the substrate and below each pillar. The doped region below each trench is removed to form an opening such that the doped regions below the adjacent pillars are separated from each other. A shielding layer is formed in each opening.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: April 21, 2015
    Assignee: Nanya Technology Corporation
    Inventors: Sheng-Wei Yang, Ying-Cheng Chuang, Shyam Surthi
  • Publication number: 20150037961
    Abstract: Provided is a method for fabricating a semiconductor device, including the following steps. A substrate having a plurality of pillars is provided, wherein a plurality of trenches are formed around each pillar. A doped region is formed in the substrate and below each pillar. The doped region below each trench is removed to form an opening such that the doped regions below the adjacent pillars are separated from each other. A shielding layer is formed in each opening.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: Sheng-Wei Yang, Ying-Cheng Chuang, Shyam Surthi
  • Patent number: 8946018
    Abstract: Some embodiments include methods of forming semiconductor constructions. A heavily-doped region is formed within a first semiconductor material, and a second semiconductor material is epitaxially grown over the first semiconductor material. The second semiconductor material is patterned to form circuit components, and the heavily-doped region is patterned to form spaced-apart buried lines electrically coupling pluralities of the circuit components to one another. At least some of the patterning of the heavily-doped region occurs simultaneously with at least some of the patterning of the second semiconductor material.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: February 3, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Jaydip Guha, Shyam Surthi
  • Publication number: 20150014766
    Abstract: Some embodiments include memory arrays. The memory arrays may have digit lines under vertically-oriented transistors, with the digit lines interconnecting transistors along columns of the array. Each individual transistor may be directly over only a single digit line, with the single digit line being entirely composed of one or more metal-containing materials. The digit lines can be over a deck, and electrically insulative regions can be directly between the digit lines and the deck. Some embodiments include methods of forming memory arrays. A plurality of linear segments of silicon-containing material may be formed to extend upwardly from a base of the silicon-containing material. The base may be etched to form silicon-containing footings under the linear segments, and the footings may be converted into metal silicide. The linear segments may be patterned into a plurality of vertically-oriented transistor pedestals that extend upwardly from the metal silicide footings.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 15, 2015
    Inventors: Lars P. Heineck, Shyam Surthi, Jaydip Guha
  • Patent number: 8901631
    Abstract: Provided is a method for fabricating a semiconductor device, including the following steps. A substrate having a plurality of pillars is provided, wherein a plurality of trenches are formed around each pillar. A doped region is formed in the substrate and below each pillar. The doped region below each trench is removed to form an opening such that the doped regions below the adjacent pillars are separated from each other. A shielding layer is formed in each opening.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 2, 2014
    Assignee: Nanya Technology Corporation
    Inventors: Sheng-Wei Yang, Ying-Cheng Chuang, Shyam Surthi
  • Publication number: 20140346652
    Abstract: A memory array includes a plurality of digitline (DL) trenches extending along a first direction; a buried digitline between the DL trenches; a trench fill material layer sealing an air gap in each of the DL trenches; a plurality of wordline (WL) trenches extending along a second direction; an active chop (AC) trench disposed at one end of the buried digitline; a shield layer in the air gap; and a sidewall conductor around the sidewall of the AC trench.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 27, 2014
    Applicant: NANYA TECHNOLOGY CORP.
    Inventors: Shyam Surthi, Lars Heineck
  • Patent number: 8871589
    Abstract: Some embodiments include memory arrays. The memory arrays may have digit lines under vertically-oriented transistors, with the digit lines interconnecting transistors along columns of the array. Each individual transistor may be directly over only a single digit line, with the single digit line being entirely composed of one or more metal-containing materials. The digit lines can be over a deck, and electrically insulative regions can be directly between the digit lines and the deck. Some embodiments include methods of forming memory arrays. A plurality of linear segments of silicon-containing material may be formed to extend upwardly from a base of the silicon-containing material. The base may be etched to form silicon-containing footings under the linear segments, and the footings may be converted into metal silicide. The linear segments may be patterned into a plurality of vertically-oriented transistor pedestals that extend upwardly from the metal silicide footings.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: October 28, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Lars P Heineck, Shyam Surthi, Jaydip Guha
  • Publication number: 20140315364
    Abstract: Trenches are formed into semiconductive material. Masking material is formed laterally over at least elevationally inner sidewall portions of the trenches. Conductivity modifying impurity is implanted through bases of the trenches into semiconductive material there-below. Such impurity is diffused into the masking material received laterally over the elevationally inner sidewall portions of the trenches and into semiconductive material received between the trenches below a mid-channel portion. An elevationally inner source/drain is formed in the semiconductive material below the mid-channel portion. The inner source/drain portion includes said semiconductive material between the trenches which has the impurity therein. A conductive line is formed laterally over and electrically coupled to at least one of opposing sides of the inner source/drain. A gate is formed elevationally outward of and spaced from the conductive line and laterally adjacent the mid-channel portion. Other embodiments are disclosed.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Jaydip Guha, Shyam Surthi, Suraj J. Mathew, Kamal M. Karda, Hung-Ming Tsai
  • Publication number: 20140264754
    Abstract: Methods of forming doped elements of semiconductor device structures include forming trenches having undercut portions separating stem portions of a substrate. The stem portions extend between a base portion of the substrate and overlying broader portions of the substrate material. A carrier material including a dopant is formed at least on the sides of the stems in the undercut portions of the trenches. The dopant is diffused from the carrier material into the stems. As such, the narrow stem portions of the substrate become doped with a targeted dopant-delivery method. The doped stems may form or be incorporated within buried, doped, conductive elements of semiconductor device structures, such as digit lines of memory arrays. Also disclosed are related semiconductor device structures.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Shyam Surthi
  • Publication number: 20140252532
    Abstract: Provided is a method for fabricating a semiconductor device, including the following steps. A substrate having a plurality of pillars is provided, wherein a plurality of trenches are formed around each pillar. A doped region is formed in the substrate and below each pillar. The doped region below each trench is removed to form an opening such that the doped regions below the adjacent pillars are separated from each other. A shielding layer is formed in each opening.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Sheng-Wei Yang, Ying-Cheng Chuang, Shyam Surthi
  • Patent number: 8790977
    Abstract: Trenches are formed into semiconductive material. Masking material is formed laterally over at least elevationally inner sidewall portions of the trenches. Conductivity modifying impurity is implanted through bases of the trenches into semiconductive material there-below. Such impurity is diffused into the masking material received laterally over the elevationally inner sidewall portions of the trenches and into semiconductive material received between the trenches below a mid-channel portion. An elevationally inner source/drain is formed in the semiconductive material below the mid-channel portion. The inner source/drain portion includes said semiconductive material between the trenches which has the impurity therein. A conductive line is formed laterally over and electrically coupled to at least one of opposing sides of the inner source/drain. A gate is formed elevationally outward of and spaced from the conductive line and laterally adjacent the mid-channel portion. Other embodiments are disclosed.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: July 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Jaydip Guha, Shyam Surthi, Suraj J. Mathew, Kamal M. Karda, Hung-Ming Tsai
  • Publication number: 20140070306
    Abstract: Methods of forming vertical memory devices include forming first trenches, at least partially filling the first trenches with a polysilicon material, and forming second trenches generally perpendicular to the first trenches. The second trenches may be formed by removing one of silicon and oxide with a first material removal act and by removing the other of silicon and oxide in a different second material removal act. Methods of forming an apparatus include forming isolation trenches, at least partially filling the isolation trenches with a polysilicon material, and forming word line trenches generally perpendicular to the isolation trenches, the word line trenches having a depth in a word line end region about equal to or greater than a depth thereof in an array region. Word lines may be formed in the word line trenches. Semiconductor devices, vertical memory devices, and apparatuses are formed by such methods.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Applicant: Micron Technology, Inc.
    Inventor: Shyam Surthi
  • Publication number: 20140073100
    Abstract: Trenches are formed into semiconductive material. Masking material is formed laterally over at least elevationally inner sidewall portions of the trenches. Conductivity modifying impurity is implanted through bases of the trenches into semiconductive material there-below. Such impurity is diffused into the masking material received laterally over the elevationally inner sidewall portions of the trenches and into semiconductive material received between the trenches below a mid-channel portion. An elevationally inner source/drain is formed in the semiconductive material below the mid-channel portion. The inner source/drain portion includes said semiconductive material between the trenches which has the impurity therein. A conductive line is formed laterally over and electrically coupled to at least one of opposing sides of the inner source/drain. A gate is formed elevationally outward of and spaced from the conductive line and laterally adjacent the mid-channel portion. Other embodiments are disclosed.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Jaydip Guha, Shyam Surthi, Suraj J. Mathew, Kamal M. Karda, Hung-Ming Tsai
  • Patent number: 8667928
    Abstract: Embodiments of the present disclosure include semiconductor processing methods and systems. One method includes forming a material layer on a semiconductor substrate by exposing a deposition surface of the substrate to at least a first and a second reactant sequentially introduced into a reaction chamber having an associated process temperature. The method includes removing residual first reactant from the chamber after introduction of the first reactant, removing residual second reactant from the chamber after introduction of the second reactant, and establishing a temperature differential substantially between an edge of the substrate and a center of the substrate via a purge process.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: March 11, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Shyam Surthi