Patents by Inventor Stanislav Polonsky

Stanislav Polonsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8110410
    Abstract: A field effect transistor device includes: a reservoir bifurcated by a membrane of three layers: two electrically insulating layers; and an electrically conductive gate between the two insulating layers. The gate has a surface charge polarity different from at least one of the insulating layers. A nanochannel runs through the membrane, connecting both parts of the reservoir. The device further includes: an ionic solution filling the reservoir and the nanochannel; a drain electrode; a source electrode; and voltages applied to the electrodes (a voltage between the source and drain electrodes and a voltage on the gate) for turning on an ionic current through the ionic channel wherein the voltage on the gate gates the transportation of ions through the ionic channel.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: February 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hongbo Peng, Stanislav Polonsky, Stephen M. Rossnagel, Gustavo Alejandro Stolovitzky
  • Publication number: 20110308969
    Abstract: The present invention provides a method of reducing corrosion and water decomposition on a surface of an electrode having a titanium nitride conductive layer disposed on a substrate and estimating extent of reduction thereof. The electrode is immersed into a solution containing a hydroxyl-functional compound. Thereafter, a voltage is applied to the titanium nitride conductive layer of the electrode. The extent of oxidation of the titanium nitride conductive layer is correlated with the extent of formation of oxide of titanium nitride and/or the extent of oxidation of the titanium nitride conductive layer is correlated with the increase of surface roughness. The extent of water decomposition is correlated with formation of hydrogen and oxygen bubbles.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Azdakani, Shafaat Ahmed, Hariklia Deligianni, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Publication number: 20110308949
    Abstract: The present invention provides a nano-fluidic field effective device. The device includes a channel having a first side and a second side, a first set of electrodes adjacent to the first side, a second set of electrodes adjacent to the second side, a control unit for applying electric potentials to the electrodes and a fluid within the channel containing a charge molecule. The first set of electrodes is disposed such that application of electric potentials produces a spatially varying electric field that confines a charged molecule within a predetermined area of said channel. The second set of electrodes is disposed such that application of electric potentials relative to the electric potentials applied to the first set of electrodes creates an electric field that confines the charged molecule to an area away from the second side of the channel.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Azdakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Dennis M. Newns, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Gustavo Stolovitzky
  • Publication number: 20110312164
    Abstract: The present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A conductive layer is deposited on a substrate. The conductive layer is partially oxidized by an oxygen plasma process to convert a portion thereof to an oxide layer thereby forming the electrode. The oxide layer is free of surface defects and the thickness of the oxide layer is from about 0.09 nm to about 10 nm and ranges therebetween, controllable with 0.2 nm precision.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Azdakani, Shafaat Ahmed, Hariklia Deligianni, Dario L. Goldfarb, Stefan Harrer, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Publication number: 20110312176
    Abstract: Accordingly, the present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A substrate which has a conductive layer disposed thereon is provided and the conductive layer has an oxide layer with an exposed surface. The exposed surface of the oxide layer contacts a solution of an organic surface active compound in an organic solvent to form a protective layer of the organic surface active compound over the oxide layer. The protective layer has a thickness of from about 0.5 nm to about 5 nm and ranges therebetween depending on a chemical structure of the surface active compound.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Shafaat Ahmed, Hariklia Deligianni, Dario L. Goldfarb, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Patent number: 8039250
    Abstract: Apparatus, system, and methods are provided for utilizing piezoelectric material for controlling a polymer through a nanopore. A reservoir is formed filled with conductive fluid. A membrane is formed that separates the reservoir. A nanopore is formed through the membrane. The membrane comprises electrical conductive layers, piezoelectric layers, and insulating layers. The piezoelectric layers are operative to control a size of the nanopore for clamping/releasing a polymer as well as to control the thickness of part of the membrane when a voltage is applied to the piezoelectric layers. Combinations of clamping/releasing the polymer and changing the thickness of part of the membrane can move a polymer through the nanopore at any electrically controlled speed and also stretch or break a polymer in the nanopore.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hongbo Peng, Gustavo A. Stolovitzky, Stephen M. Rossnagel, Stanislav Polonsky, Binquan Luan, Glenn J. Martyna
  • Publication number: 20110250705
    Abstract: A nanopore capture system may include a material configured to pass through a nanopore device in a controlled manner based upon its interaction with the nanopore device. The system may also include a capture mechanism connected to one end of the material. The capture mechanism may be configured to catch a particular type of molecule while ignoring other types of molecules. The system may also include a controller to manipulate and/or detect the particular type of molecule.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Applicant: International Business Machines Corporation
    Inventors: Stanislav Polonsky, Ali Afzali-Ardakani, Hongbo Peng, Gustavo A. Stolovitzky, Ajay A. Royyuru, Mark N. Wegman
  • Publication number: 20110223652
    Abstract: Apparatus, system, and methods are provided for utilizing piezoelectric material for controlling a polymer through a nanopore. A reservoir is formed filled with conductive fluid. A membrane is formed that separates the reservoir. A nanopore is formed through the membrane. The membrane comprises electrical conductive layers, piezoelectric layers, and insulating layers. The piezoelectric layers are operative to control a size of the nanopore for clamping/releasing a polymer as well as to control the thickness of part of the membrane when a voltage is applied to the piezoelectric layers. Combinations of clamping/releasing the polymer and changing the thickness of part of the membrane can move a polymer through the nanopore at any electrically controlled speed and also stretch or break a polymer in the nanopore.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 15, 2011
    Applicant: International Business Machines Corporation
    Inventors: Hongbo Peng, Gustavo A. Stolovitsky, Stephen M. Rossnagel, Stanislav Polonsky, Binquan Luan, Glenn J. Martyna
  • Patent number: 8003319
    Abstract: Techniques for controlling the position of a charged polymer inside a nanopore are provided. For example, one technique includes using electrostatic control to position a linear charged polymer inside a nanopore, and creating an electrostatic potential well inside the nanopore, wherein the electrostatic potential well controls a position of the linear charged polymer inside the nanopore.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Stanislav Polonsky, Stephen M. Rossnagel, Gustavo A. Stolovitzky
  • Publication number: 20110179852
    Abstract: Semiconductor devices, chromatography devices and integrated circuits for detecting one or more molecules and methods for forming a semiconductor device for detecting one or more molecules are presented. For example, a semiconductor device for detecting one or more molecules includes a channel formed within a semiconductor structure, and at least one detector formed within the semiconductor structure. The at least one detector detects the one or more molecules in the channel The semiconductor device may optionally comprise one or more additional channels formed within the semiconductor structure. The semiconductor device may, for example, be operative to detect a single molecule.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 28, 2011
    Applicant: International Business Machines Corporation
    Inventors: Stanislav Polonsky, Frank Suits
  • Publication number: 20100327255
    Abstract: A field effect transistor device includes: a reservoir bifurcated by a membrane of three layers: two electrically insulating layers; and an electrically conductive gate between the two insulating layers. The gate has a surface charge polarity different from at least one of the insulating layers. A nanochannel runs through the membrane, connecting both parts of the reservoir. The device further includes: an ionic solution filling the reservoir and the nanochannel; a drain electrode; a source electrode; and voltages applied to the electrodes (a voltage between the source and drain electrodes and a voltage on the gate) for turning on an ionic current through the ionic channel wherein the voltage on the gate gates the transportation of ions through the ionic channel.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Gustavo Alejandro Stolovitzky
  • Publication number: 20100080445
    Abstract: Improved techniques are disclosed for monitoring or sensing process variations in integrated circuit designs. Such techniques provide such improvements by constructing variability maps correlating leakage emission images to layout information. By way of example, a method for monitoring one or more manufacturing process variations associated with a device under test (e.g., integrated circuit) comprises the following steps. An emission image representing an energy emission associated with a leakage current of the device under test is obtained. The emission image is correlated with a layout of the device under test to form a cross emission image. Common structures on the cross emission image are selected and identified as regions of interest. One or more variability measures (e.g., figures of merit) are calculated based on the energy emissions associated with the regions of interest.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Stanislav Polonsky, Peilin Song, Franco Stellari, Alan J. Weger
  • Publication number: 20100025249
    Abstract: Techniques for controlling the position of a charged polymer inside a nanopore are provided. For example, one technique includes using electrostatic control to position a linear charged polymer inside a nanopore, and creating an electrostatic potential well inside the nanopore, wherein the electrostatic potential well controls a position of the linear charged polymer inside the nanopore.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 4, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stanislav Polonsky, Stephen M. Rossnagel, Gustavo A. Stolovitzky
  • Publication number: 20090175520
    Abstract: Disclose are a method of and system for matching input character sequences in a set of input patterns. The method comprises the steps of analyzing the set of input patterns, creating a pattern cluster look-up table (PCLT) based on said input patterns, and defining an offset value k. The PCLT is used to find, for each sequence s and offset k, a set of candidate patterns that can possibly match s, the set of candidate patterns is searched for patterns that match s, and all found matching patterns and sequences are reported.
    Type: Application
    Filed: January 4, 2008
    Publication date: July 9, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tien Huynh, Stanislav Polonsky, Isidore Rigoutsos
  • Patent number: 7473633
    Abstract: Conductive paths in an integrated circuit are formed using multiple undifferentiated carbon nanotubes embedded in a conductive metal, which is preferably copper. Preferably, conductive paths include vias running between conductive layers. Preferably, composite vias are formed by forming a metal catalyst pad on a conductor at the via site, depositing and etching a dielectric layer to form a cavity, growing substantially parallel carbon nanotubes on the catalyst in the cavity, and filling the remaining voids in the cavity with copper. The next conductive layer is then formed over the via hole.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Mark Eliot Masters, Peter H Mitchell, Stanislav Polonsky
  • Publication number: 20080299201
    Abstract: The present invention relates to devices, methods, and systems for accessing native neurons in the nervous system of an animal. Specifically, one or more artificial neural mediators (ANMs) each comprising a neural cell are first formed, and neural connection is then established between the ANMs and one or more native neurons or collections of native neurons located in the nervous system. In this manner, the native neurons or collections of native neurons can be assessed through the ANMs. The neural connection between the ANMs and the native neurons is preferably established by guided axonal growth in the present invention, i.e., either an axon from one of the ANMs is grown into contact with one of the native neurons or collections of native neurons, or an axon from one of the native neurons or collections of native neurons is grown into contact with one of the ANMs.
    Type: Application
    Filed: July 22, 2008
    Publication date: December 4, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James R. Kozloski, Stanislav Polonsky
  • Patent number: 7446550
    Abstract: Methods and arrangements to enhance photon emissions responsive to a signal within an integrated circuit (IC) for observability of signal states utilizing, e.g., picosecond imaging circuit analysis (PICA), are disclosed. Embodiments attach a beacon to the signal of interest and apply a voltage across the beacon to enhance photon emissions responsive to the signal of interest. The voltage is greater than the operable circuit voltage, Vdd, to enhance photon emissions with respect to intensity and energy. Thus, the photon emissions are more distinguishable from noise. In many embodiments, the beacon includes a transistor and, in several embodiments, the beacon includes an enablement device to enable and disable photon emissions from the beacon. Further, a PICA detector may capture photon emissions from the beacon and process the photons to generate time traces.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: November 4, 2008
    Assignee: International Business Machines Corporation
    Inventors: Chandler Todd McDowell, Stanislav Polonsky, Peilin Song, Franco Stellari, Alan J. Weger
  • Publication number: 20080187915
    Abstract: Techniques for controlling the position of a charged polymer inside a nanopore are provided. For example, one technique includes using electrostatic control to position a linear charged polymer inside a nanopore, and creating an electrostatic potential well inside the nanopore, wherein the electrostatic potential well controls a position of the linear charged polymer inside the nanopore.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 7, 2008
    Inventors: Stanislav Polonsky, Stephen M. Rossnagel, Gustavo A. Stolovitzky
  • Patent number: 7355419
    Abstract: Methods and arrangements to enhance photon emissions responsive to a signal within an integrated circuit (IC) for observability of signal states utilizing, e.g., picosecond imaging circuit analysis (PICA), are disclosed. Embodiments attach a beacon to the signal of interest and apply a voltage across the beacon to enhance photon emissions responsive to the signal of interest. The voltage is greater than the operable circuit voltage, Vdd, to enhance photon emissions with respect to intensity and energy. Thus, the photon emissions are more distinguishable from noise. In many embodiments, the beacon includes a transistor and, in several embodiments, the beacon includes an enablement device to enable and disable photon emissions from the beacon. Further, a PICA detector may capture photon emissions from the beacon and process the photons to generate time traces.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: April 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Chandler Todd McDowell, Stanislav Polonsky, Peilin Song, Franco Stellari, Alan J. Weger
  • Publication number: 20080079448
    Abstract: Methods and arrangements to enhance photon emissions responsive to a signal within an integrated circuit (IC) for observability of signal states utilizing, e.g., picosecond imaging circuit analysis (PICA), are disclosed. Embodiments attach a beacon to the signal of interest and apply a voltage across the beacon to enhance photon emissions responsive to the signal of interest. The voltage is greater than the operable circuit voltage, Vd, the enhance photon emissions with respect to intensity and energy. Thus, the photon emissions are more distinguishable from noise. In many embodiments, the beacon includes a transistor and, in several embodiments, the beacon includes an enablement device to enable and disable photon emissions from the beacon. Further, a PICA detector may capture photon emissions from the beacon and process the photons to generate time traces.
    Type: Application
    Filed: December 3, 2007
    Publication date: April 3, 2008
    Inventors: Chandler McDowell, Stanislav Polonsky, Peilin Song, Franco Stellari, Alan Weger