Patents by Inventor Stefan Uhlenbrock

Stefan Uhlenbrock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230391805
    Abstract: A germanium precursor comprising a chemical formula of Ge(R1NC(R3)NR2)(R4) where each of R1, R2, R3, and R4 is independently selected from the group consisting of hydrogen, an alkyl, a substituted alkyl, an alkoxide, a substituted amide, an amine, a substituted amine, and a halogen. Methods of forming the germanium precursor and a precursor composition including the germanium precursor are also disclosed.
    Type: Application
    Filed: June 1, 2023
    Publication date: December 7, 2023
    Inventors: Gurtej S. Sandhu, Sumeet C. Pandey, Stefan Uhlenbrock, John A. Smythe
  • Patent number: 11651955
    Abstract: Methods of forming silicon nitride. Silicon nitride is formed on a substrate by atomic layer deposition at a temperature of less than or equal to about 275° C. The as-formed silicon nitride is exposed to a plasma. The silicon nitride may be formed as a portion of silicon nitride and at least one other portion of silicon nitride. The portion of silicon nitride and the at least one other portion of silicon nitride may be exposed to a plasma treatment. Methods of forming a semiconductor structure are also disclosed, as are semiconductor structures and silicon precursors.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: May 16, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Sumeet C. Pandey, Brenda D. Kraus, Stefan Uhlenbrock, John A. Smythe, Timothy A. Quick
  • Patent number: 11538991
    Abstract: A method of forming a metal chalcogenide material. The method comprises introducing a metal precursor and a chalcogenide precursor into a chamber, and reacting the metal precursor and the chalcogenide precursor to form a metal chalcogenide material on a substrate. The metal precursor is a carboxylate of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid. The chalcogenide precursor is a hydride, alkyl, or aryl precursor of sulfur, selenium, or tellurium or a silylhydride, silylalkyl, or silylaryl precursor of sulfur, selenium, or tellurium. Methods of forming a memory cell including the metal chalcogenide material are also disclosed, as are memory cells including the metal chalcogenide material.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 27, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, Stefan Uhlenbrock
  • Patent number: 11152205
    Abstract: A silicon chalcogenate precursor comprising the chemical formula of Si(XR1)nR24-n, where X is sulfur, selenium, or tellurium, R1 is hydrogen, an alkyl group, a substituted alkyl group, an alkoxide group, a substituted alkoxide group, an amide group, a substituted amide group, an amine group, a substituted amine group, or a halogen group, each R2 is independently hydrogen, an alkyl group, a substituted alkyl group, an alkoxide group, a substituted alkoxide group, an amide group, a substituted amide group, an amine group, a substituted amine group, or a halogen group, and n is 1, 2, 3, or 4. Methods of forming the silicon chalcogenate precursor, methods of forming silicon nitride, and methods of forming a semiconductor structure are also disclosed.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: October 19, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Timothy A. Quick, Sumeet C. Pandey, Stefan Uhlenbrock
  • Publication number: 20210217611
    Abstract: Methods of forming silicon nitride. Silicon nitride is formed on a substrate by atomic layer deposition at a temperature of less than or equal to about 275° C. The as-formed silicon nitride is exposed to a plasma. The silicon nitride may be formed as a portion of silicon nitride and at least one other portion of silicon nitride. The portion of silicon nitride and the at least one other portion of silicon nitride may be exposed to a plasma treatment. Methods of forming a semiconductor structure are also disclosed, as are semiconductor structures and silicon precursors.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Inventors: Sumeet C. Pandey, Brenda D. Kraus, Stefan Uhlenbrock, John A. Smythe, Timothy A. Quick
  • Patent number: 10964532
    Abstract: Methods of forming silicon nitride. Silicon nitride is formed on a substrate by atomic layer deposition at a temperature of less than or equal to about 275° C. The as-formed silicon nitride is exposed to a plasma. The silicon nitride may be formed as a portion of silicon nitride and at least one other portion of silicon nitride. The portion of silicon nitride and the at least one other portion of silicon nitride may be exposed to a plasma treatment. Methods of forming a semiconductor structure are also disclosed, as are semiconductor structures and silicon precursors.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: March 30, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Sumeet C. Pandey, Brenda D. Kraus, Stefan Uhlenbrock, John A. Smythe, Timothy A. Quick
  • Patent number: 10651375
    Abstract: Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 12, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Timothy A. Quick, Eugene P. Marsh, Stefan Uhlenbrock, Chet E. Carter, Scott E. Sills
  • Publication number: 20190319187
    Abstract: A method of forming a metal chalcogenide material. The method comprises introducing a metal precursor and a chalcogenide precursor into a chamber, and reacting the metal precursor and the chalcogenide precursor to form a metal chalcogenide material on a substrate. The metal precursor is a carboxylate of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid. The chalcogenide precursor is a hydride, alkyl, or aryl precursor of sulfur, selenium, or tellurium or a silylhydride, silylalkyl, or silylaryl precursor of sulfur, selenium, or tellurium. Methods of forming a memory cell including the metal chalcogenide material are also disclosed, as are memory cells including the metal chalcogenide material.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 17, 2019
    Inventors: Eugene P. Marsh, Stefan Uhlenbrock
  • Patent number: 10374156
    Abstract: A method of forming a metal chalcogenide material. The method comprises introducing a metal precursor and a chalcogenide precursor into a chamber, and reacting the metal precursor and the chalcogenide precursor to form a metal chalcogenide material on a substrate. The metal precursor is a carboxylate of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid. The chalcogenide precursor is a hydride, alkyl, or aryl precursor of sulfur, selenium, or tellurium or a silylhydride, silylalkyl, or silylaryl precursor of sulfur, selenium, or tellurium. Methods of forming a memory cell including the metal chalcogenide material are also disclosed, as are memory cells including the metal chalcogenide material.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: August 6, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, Stefan Uhlenbrock
  • Publication number: 20190206674
    Abstract: An example method comprises an ALD sequence including contacting an outer substrate surface at a temperature T1 with a first precursor to form a monolayer onto the outer substrate surface. Temperature of the outer substrate surface and the monolayer thereon is increased to a temperature T2 that is at least 200° C. greater than a maximum of the temperature T1. The temperature-increasing is at a temperature-increasing rate that takes no more than 10 seconds to get the outer substrate surface and the monolayer thereon at least 200° C. above the maximum temperature T1. At the temperature T2, the monolayer is contacted with a second precursor that reacts with the monolayer to form a reaction product and a new outer substrate surface that each comprise a component from the monolayer and a component from the second precursor. With the monolayer not having been allowed to be at least 200° C.
    Type: Application
    Filed: January 2, 2018
    Publication date: July 4, 2019
    Inventors: John A. Smythe, Woohee Kim, Stefan Uhlenbrock
  • Patent number: 10319586
    Abstract: An example method comprises an ALD sequence including contacting an outer substrate surface at a temperature T1 with a first precursor to form a monolayer onto the outer substrate surface. Temperature of the outer substrate surface and the monolayer thereon is increased to a temperature T2 that is at least 200° C. greater than a maximum of the temperature T1. The temperature-increasing is at a temperature-increasing rate that takes no more than 10 seconds to get the outer substrate surface and the monolayer thereon at least 200° C. above the maximum temperature T1. At the temperature T2, the monolayer is contacted with a second precursor that reacts with the monolayer to form a reaction product and a new outer substrate surface that each comprise a component from the monolayer and a component from the second precursor. With the monolayer not having been allowed to be at least 200° C.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: June 11, 2019
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, Woohee Kim, Stefan Uhlenbrock
  • Patent number: 10283705
    Abstract: Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: May 7, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Timothy A. Quick, Eugene P. Marsh, Stefan Uhlenbrock, Chet E. Carter, Scott E. Sills
  • Publication number: 20190051823
    Abstract: Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Timothy A. Quick, Eugene P. Marsh, Stefan Uhlenbrock, Chet E. Carter, Scott E. Sills
  • Publication number: 20180198063
    Abstract: Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.
    Type: Application
    Filed: March 8, 2018
    Publication date: July 12, 2018
    Inventors: Timothy A. Quick, Eugene P. Marsh, Stefan Uhlenbrock, Chet E. Carter, Scott E. Sills
  • Publication number: 20180197735
    Abstract: A silicon chalcogenate precursor comprising the chemical formula of Si(XR1)nR24-n, where X is sulfur, selenium, or tellurium, R1 is hydrogen, an alkyl group, a substituted alkyl group, an alkoxide group, a substituted alkoxide group, an amide group, a substituted amide group, an amine group, a substituted amine group, or a halogen group, each R2 is independently hydrogen, an alkyl group, a substituted alkyl group, an alkoxide group, a substituted alkoxide group, an amide group, a substituted amide group, an amine group, a substituted amine group, or a halogen group, and n is 1, 2, 3, or 4. Methods of forming the silicon chalcogenate precursor, methods of forming silicon nitride, and methods of forming a semiconductor structure are also disclosed.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Inventors: Timothy A. Quick, Sumeet C. Pandey, Stefan Uhlenbrock
  • Publication number: 20180144927
    Abstract: Methods of forming silicon nitride. Silicon nitride is formed on a substrate by atomic layer deposition at a temperature of less than or equal to about 275° C. The as-formed silicon nitride is exposed to a plasma. The silicon nitride may be formed as a portion of silicon nitride and at least one other portion of silicon nitride. The portion of silicon nitride and the at least one other portion of silicon nitride may be exposed to a plasma treatment. Methods of forming a semiconductor structure are also disclosed, as are semiconductor structures and silicon precursors.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 24, 2018
    Inventors: Sumeet C. Pandey, Brenda D. Kraus, Stefan Uhlenbrock, John A. Smythe, Timothy A. Quick
  • Patent number: 9935264
    Abstract: Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: April 3, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Timothy A. Quick, Eugene P. Marsh, Stefan Uhlenbrock, Chet E. Carter, Scott E. Sills
  • Patent number: 9929006
    Abstract: A silicon chalcogenate precursor comprising the chemical formula of Si(XR1)nR24-n, where X is sulfur, selenium, or tellurium, R1 is hydrogen, an alkyl group, a substituted alkyl group, an alkoxide group, a substituted alkoxide group, an amide group, a substituted amide group, an amine group, a substituted amine group, or a halogen group, each R2 is independently hydrogen, an alkyl group, a substituted alkyl group, an alkoxide group, a substituted alkoxide group, an amide group, a substituted amide group, an amine group, a substituted amine group, or a halogen group, and n is 1, 2, 3, or 4. Methods of forming the silicon chalcogenate precursor, methods of forming silicon nitride, and methods of forming a semiconductor structure are also disclosed.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: March 27, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Timothy A. Quick, Sumeet C. Pandey, Stefan Uhlenbrock
  • Publication number: 20180025906
    Abstract: A silicon chalcogenate precursor comprising the chemical formula of Si(XR1)nR24-n, where X is sulfur, selenium, or tellurium, R1 is hydrogen, an alkyl group, a substituted alkyl group, an alkoxide group, a substituted alkoxide group, an amide group, a substituted amide group, an amine group, a substituted amine group, or a halogen group, each R2 is independently hydrogen, an alkyl group, a substituted alkyl group, an alkoxide group, a substituted alkoxide group, an amide group, a substituted amide group, an amine group, a substituted amine group, or a halogen group, and n is 1, 2, 3, or 4. Methods of forming the silicon chalcogenate precursor, methods of forming silicon nitride, and methods of forming a semiconductor structure are also disclosed.
    Type: Application
    Filed: July 20, 2016
    Publication date: January 25, 2018
    Inventors: Timothy A. Quick, Sumeet C. Pandey, Stefan Uhlenbrock
  • Patent number: 9865456
    Abstract: Methods of forming silicon nitride. Silicon nitride is formed on a substrate by atomic layer deposition at a temperature of less than or equal to about 275° C. The as-formed silicon nitride is exposed to a plasma. The silicon nitride may be formed as a portion of silicon nitride and at least one other portion of silicon nitride. The portion of silicon nitride and the at least one other portion of silicon nitride may be exposed to a plasma treatment. Methods of forming a semiconductor structure are also disclosed, as are semiconductor structures and silicon precursors.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: January 9, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Sumeet C. Pandey, Brenda D. Kraus, Stefan Uhlenbrock, John A. Smythe, Timothy A. Quick