Patents by Inventor Stephen J. Kramer

Stephen J. Kramer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7625495
    Abstract: Methods and devices for mechanical and/or chemical-mechanical planarization of semiconductor wafers, field emission displays and other microelectronic substrate assemblies. One method of planarizing a microelectronic substrate assembly in accordance with the invention includes pressing a substrate assembly against a planarizing surface of a polishing pad at a pad/substrate interface defined by a surface area of the substrate assembly contacting the planarizing surface. The method continues by moving the substrate assembly and/or the polishing pad with respect to the other to rub at least one of the substrate assembly and the planarizing surface against the other at a relative velocity. As the substrate assembly and polishing pad rub against each other, a parameter indicative of drag force between the substrate assembly and the polishing pad is measured or sensed at periodic intervals.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Jim Hofmann, Gundu M. Sabde, Stephen J. Kramer, Scott E. Moore
  • Publication number: 20090291545
    Abstract: Processes for enhancing solubility and the reaction rates in supercritical fluids are provided. In preferred embodiments, such processes provide for the uniform and precise deposition of metal-containing films on semiconductor substrates as well as the uniform and precise removal of materials from such substrates. In one embodiment, the process includes, providing a supercritical fluid containing at least one reactant, the supercritical fluid being maintained at above its critical point, exposing at least a portion of the surface of the semiconductor substrate to the supercritical fluid, applying acoustic energy, and reacting the at least one reactant to cause a change in at least a portion of the surface of the semiconductor substrate.
    Type: Application
    Filed: August 6, 2009
    Publication date: November 26, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Theodore M. Taylor, Stephen J. Kramer
  • Publication number: 20090281112
    Abstract: The present invention relates to a method for alleviation, prevention, and treatment of attention deficit disorder, anxiety, depression, sexual dysfunction, aggressive behavior, alcohol dependency, psychoses, and related conditions by administering adatanserin and/or metabolites of adatanserin. The present invention also relates to a method of weight loss by administering adatanserin and/or metabolites of adatanserin.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 12, 2009
    Applicant: Fabre-Kramer Pharmaceuticals, Inc.
    Inventors: Stephen J. KRAMER, Louis F. FABRE
  • Publication number: 20090281114
    Abstract: The present invention relates to a method for alleviation, prevention, and treatment of anxiety, depression, and sexual dysfunction by administering certain indolylalkyl derivatives of pyrimidinylpiperazine or metabolites thereof.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 12, 2009
    Applicant: Fabre-Kramer Pharmaceuticals, Inc.
    Inventors: Stephen J. KRAMER, Louis F. FABRE
  • Publication number: 20090281111
    Abstract: The present invention relates to a method for alleviation, prevention, and treatment of attention deficit disorder, sexual dysfunction, and related conditions by administering certain bioactive metabolites of the known anti-depressant compound gepirone. In a preferred embodiment, the compound is 4,4,-dimethyl-3-hydroxy-1-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-2,6-piperidinedione (3-OH gepirone).
    Type: Application
    Filed: May 7, 2009
    Publication date: November 12, 2009
    Applicant: Fabre-Kramer Pharmaceuticals, Inc.
    Inventors: Stephen J. KRAMER, Louis F. Fabre
  • Patent number: 7598181
    Abstract: Processes for enhancing solubility and the reaction rates in supercritical fluids are provided. In preferred embodiments, such processes provide for the uniform and precise deposition of metal-containing films on semiconductor substrates as well as the uniform and precise removal of materials from such substrates. In one embodiment, the process includes, providing a supercritical fluid containing at least one reactant, the supercritical fluid being maintained at above its critical point, exposing at least a portion of the surface of the semiconductor substrate to the supercritical fluid, applying acoustic energy, and reacting the at least one reactant to cause a change in at least a portion of the surface of the semiconductor substrate.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: October 6, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Theodore M. Taylor, Stephen J. Kramer
  • Patent number: 7563157
    Abstract: An apparatus for conditioning a polishing pad, or conditioner, includes a supporting substrate and abrasive elements. The abrasive elements of the conditioner are used to condition a polishing pad to be used in abrasive, or at least partially mechanical, semiconductor substrate treatment processes, such as chemical-mechanical polishing or chemical-mechanical planarization processes. The abrasive elements are formed from a material that may be degraded or dissolved by at least one chemical that will not substantially degrade or dissolve a material of the polishing pad. Any residue or particles of, or from, the abrasive elements that stick to or become embedded in the polishing pad are removed therefrom by exposing the polishing pad to the at least one chemical so as to degrade or dissolve the residue or particles without substantially degrading or dissolving a material of the polishing pad.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: July 21, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Stephen J. Kramer
  • Publication number: 20090015160
    Abstract: Some embodiments include methods of forming plasma-generating microstructures. Aluminum may be anodized to form an aluminum oxide body having a plurality of openings extending therethrough. Conductive liners may be formed within the openings, and circuitry may be formed to control current flow through the conductive liners. The conductive liners form a plurality of hollow cathodes, and the current flow is configured to generate and maintain plasmas within the hollow cathodes. The plasmas within various hollow cathodes, or sets of hollow cathodes, may be independently controlled. Such independently controlled plasmas may be utilized to create a pattern in a display, or on a substrate. In some embodiments, the plasmas may be utilized for plasma-assisted etching and/or plasma-assisted deposition. Some embodiments include constructions and assemblies containing multiple plasma-generating structures.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 15, 2009
    Inventors: Neal Rueger, Stephen J. Kramer
  • Publication number: 20080247961
    Abstract: The present invention provides a method for inducing sleep, by nasally administrating to a subject in need thereof a pharmaceutical composition containing zolpidem, a pharmaceutically acceptable salt thereof, or a combination thereof, and a pharmaceutically acceptable nasal carrier in liquid form.
    Type: Application
    Filed: June 16, 2008
    Publication date: October 9, 2008
    Applicant: Fabre Kramer Pharmaceutical, Inc.
    Inventors: Stephen J. KRAMER, Louis F. Fabre
  • Patent number: 7393741
    Abstract: The invention comprises methods of forming pluralities of capacitors. In one implementation, metal is formed over individual capacitor storage node locations on a substrate. A patterned masking layer is formed over the metal. The patterned masking layer comprises openings therethrough to an outer surface of the metal. Individual of the openings are received over individual of the capacitor storage node locations. A pit is formed in the metal outer surface within individual of the openings. After forming the pits, the metal is anodically oxidized through the openings effective to form a single metal oxide-lined channel in individual of the openings over the individual capacitor storage nodes. Individual capacitor electrodes are formed within the channels in electrical connection with the individual capacitor storage node locations. At least some of the metal oxide is removed from the substrate, and the individual capacitor electrodes are incorporated into a plurality of capacitors.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: July 1, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, H. Montgomery Manning, Stephen J. Kramer
  • Patent number: 7267608
    Abstract: A conditioner including abrasive elements for conditioning a polishing pad to be used in abrasive semiconductor substrate treatment processes, such as chemical-mechanical polishing or chemical-mechanical planarization processes. The abrasive elements are formed from a material that may be degraded or dissolved by at least one chemical that will not substantially degrade or dissolve a material of the polishing pad. The abrasive elements of the conditioner may be degraded or dissolved in at least one chemical that will not substantially degrade or dissolve a material of the polishing pad. Any residue or particles of, or from, the abrasive elements that stick to or become embedded in the polishing pad are removed therefrom by exposing the polishing pad to the at least one chemical so as to degrade or dissolve the residue or particles without substantially degrading or dissolving a material of the polishing pad.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: September 11, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Stephen J. Kramer
  • Patent number: 7261832
    Abstract: Methods and devices for mechanical and/or chemical-mechanical planarization of semiconductor wafers, field emission displays and other microelectronic substrate assemblies. One method of planarizing a microelectronic substrate assembly in accordance with the invention includes pressing a substrate assembly against a planarizing surface of a polishing pad at a pad/substrate interface defined by a surface area of the substrate assembly contacting the planarizing surface. The method continues by moving the substrate assembly and/or the polishing pad with respect to the other to rub at least one of the substrate assembly and the planarizing surface against the other at a relative velocity. As the substrate assembly and polishing pad rub against each other, a parameter indicative of drag force between the substrate assembly and the polishing pad is measured or sensed at periodic intervals.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: August 28, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Jim Hofmann, Gundu M. Sabde, Stephen J. Kramer, Scott E. Moore
  • Patent number: 7223154
    Abstract: Methods and apparatuses for planarizing a microelectronic substrate. In one aspect of the invention, a first portion of an energy-sensitive, non-sacrificial planarizing pad material is exposed to a selected energy without exposing a second portion of the material to the selected energy source. The planarizing pad material is exposed to a solvent to remove material from one of the first or second portions of the planarizing pad material at a faster rate than removing material from the other of the first and second portions. The process forms a plurality of recesses directly in the surface of the planarizing pad which are configured to support a planarizing liquid proximate to the surface of the planarizing pad material during planarization of the microelectronic substrate. Alternatively, the process can form a mold having protrusions that are pressed into the planarizing pad to define the recesses in the pad.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: May 29, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Stephen J. Kramer, Michael J. Joslyn
  • Patent number: 7199005
    Abstract: The invention comprises methods of forming pluralities of capacitors. In one implementation, metal is formed over individual capacitor storage node locations on a substrate. A patterned masking layer is formed over the metal. The patterned masking layer comprises openings therethrough to an outer surface of the metal. Individual of the openings are received over individual of the capacitor storage node locations. A pit is formed in the metal outer surface within individual of the openings. After forming the pits, the metal is anodically oxidized through the openings effective to form a single metal oxide-lined channel in individual of the openings over the individual capacitor storage nodes. Individual capacitor electrodes are formed within the channels in electrical connection with the individual capacitor storage node locations. At least some of the metal oxide is removed from the substrate, and the individual capacitor electrodes are incorporated into a plurality of capacitors.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: April 3, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, H. Montgomery Manning, Stephen J. Kramer
  • Patent number: 7192336
    Abstract: Methods and apparatuses for planarizing a microelectronic substrate. In one aspect of the invention, a first portion of an energy-sensitive, non-sacrificial planarizing pad material is exposed to a selected energy without exposing a second portion of the material to the selected energy source. The planarizing pad material is exposed to a solvent to remove material from one of the first or second portions of the planarizing pad material at a faster rate than removing material from the other of the first and second portions. The process forms a plurality of recesses directly in the surface of the planarizing pad which are configured to support a planarizing liquid proximate to the surface of the planarizing pad material during planarization of the microelectronic substrate. Alternatively, the process can form a mold having protrusions that are pressed into the planarizing pad to define the recesses in the pad.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: March 20, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Stephen J. Kramer, Michael J. Joslyn
  • Patent number: 7166247
    Abstract: Foamed thermoplastic polymeric mechanical planarization polishing pads (“MP pads”) made with supercritical fluids are presented. A supercritical fluid foaming agent is dissolved in a thermoplastic polymer. A rapid change in the solubility and volume of the supercritical fluid foaming agent in the thermoplastic polymer results in foaming of the thermoplastic polymer. Foamed thermoplastic polymeric MP pads are advantageously both significantly and uniformly porous.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: January 23, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Stephen J Kramer
  • Patent number: 7063599
    Abstract: A conditioner includes abrasive elements for conditioning a polishing pad to be used in abrasive semiconductor substrate treatment processes, such as chemical-mechanical polishing or chemical-mechanical planarization processes. The abrasive elements are formed from a material that may be degraded or dissolved by at least one chemical that will not substantially degrade or dissolve a material of the polishing pad. The abrasive elements of the conditioner may be degraded or dissolved in at least one chemical that will not substantially degrade or dissolve a material of the polishing pad. Any residue or particles of, or from, the abrasive elements that stick to or become embedded in the polishing pad are removed therefrom by exposing the polishing pad to the at least one chemical so as to degrade or dissolve the residue or particles without substantially degrading or dissolving a material of the polishing pad.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: June 20, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Stephen J. Kramer
  • Patent number: 7040965
    Abstract: Methods for removing material from microfeature workpieces are disclosed. A method in accordance with one embodiment of the invention includes disposing a surfactant-bearing polishing liquid between a doped silicon material of the microfeature workpiece and a polishing pad material. At least one of the workpiece and the polishing pad material is moved relative to the other to simultaneously and uniformly remove at least some of the doped silicon material from portions of the workpiece having different crystalinities and/or different doping characteristics. The surfactant can include a generally non-ionic surfactant having a relatively low concentration in the polishing liquid, for example, from about 0.001% to about 1.0% by weight.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: May 9, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Theodore M. Taylor, Stephen J. Kramer
  • Patent number: 7037177
    Abstract: A conditioner including abrasive elements for conditioning a polishing pad to be used in abrasive semiconductor substrate treatment processes, such as chemical-mechanical polishing or chemical-mechanical planarization processes. The abrasive elements are formed from a material that may be degraded or dissolved by at least one chemical that will not substantially degrade or dissolve a material of the polishing pad. The abrasive elements of the conditioner may be degraded or dissolved in at least one chemical that will not substantially degrade or dissolve a material of the polishing pad. Any residue or particles of, or from, the abrasive elements that stick to or become embedded in the polishing pad are removed therefrom by exposing the polishing pad to the at least one chemical so as to degrade or dissolve the residue or particles without substantially degrading or dissolving a material of the polishing pad.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: May 2, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Stephen J. Kramer
  • Patent number: 6858538
    Abstract: Methods and devices for mechanical and/or chemical-mechanical polarization of semiconductor wafers, field emission displays and other microelectronic substrate assemblies. One method of plagiarizing a micro electronic substrate assembly in accordance with the invention includes pressing a substrate assembly against a plagiarizing surface of a polishing pad at a pad/substrate interface defined by a surface area of the substrate assembly contacting the plagiarizing surface. The method continues by moving the substrate assembly and/or the polishing pad with respect to the other to rub at least one of the substrate assembly and the plagiarizing surface against the other at a relative velocity. As the substrate assembly and polishing pad rub against each other, a parameter indicative of drag force between the substrate assembly and the polishing pad is measured or sensed at periodic intervals.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: February 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Jim Hofmann, Gundu M. Sabde, Stephen J. Kramer, Scott E. Moore