Patents by Inventor Sung Hyun Jo

Sung Hyun Jo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210280246
    Abstract: Solid-state memory having a non-linear current-voltage (I-V) response is provided. By way of example, the solid-state memory can be a selector device. The selector device can be formed in series with a non-volatile memory device via a monolithic fabrication process. Further, the selector device can provide a substantially non-linear I-V response suitable to mitigate leakage current for the non-volatile memory device. In various disclosed embodiments, the series combination of the selector device and the non-volatile memory device can serve as one of a set of memory cells in a 1-transistor, many-resistor resistive memory cell array.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 9, 2021
    Inventor: Sung Hyun JO
  • Patent number: 10998064
    Abstract: A method for erasing a memory cell includes applying a first erase to memory cells to erase the memory cells, wherein first memory cells are in a weakly erased state in response to the first erase, and wherein second memory cells are in a normally erased state in response to the first erase, thereafter applying a first weak program to the memory cells, wherein the second memory cells enter a programmed state and the third memory cells remain in the erased state in response to the first weak program, and thereafter applying a read to the memory cells to identify the second memory cells, and applying a second erase to the second memory cells to thereby erase the second memory cells.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: May 4, 2021
    Assignee: Crossbar, Inc.
    Inventors: Jeremy Guy, Sung Hyun Jo, Hagop Nazarian, Ruchirkumar Shah, Liang Zhao
  • Patent number: 10964388
    Abstract: Solid-state memory having a non-linear current-voltage (I-V) response is provided. By way of example, the solid-state memory can be a selector device. The selector device can be formed in series with a non-volatile memory device via a monolithic fabrication process. Further, the selector device can provide a substantially non-linear I-V response suitable to mitigate leakage current for the non-volatile memory device. In various disclosed embodiments, the series combination of the selector device and the non-volatile memory device can serve as one of a set of memory cells in a 1-transistor, many-resistor resistive memory cell array.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: March 30, 2021
    Assignee: CROSSBAR, INC.
    Inventor: Sung Hyun Jo
  • Publication number: 20210066584
    Abstract: Providing for a resistive switching memory device is described herein. By way of example, the resistive switching memory device can comprise a bottom electrode, a conductive layer, a resistive switching layer, and a top electrode. Further, two or more layers can be selected to mitigate mechanical stress on the device. In various embodiments, the resistive switching layer and conductive layer can be formed of compatible metal nitride or metal oxide materials having different nitride/oxide concentrations and different electrical resistances. Further, similar materials can mitigate mechanical stress on the resistive switching layer and a conductive filament of the resistive switching memory device.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Inventor: Sung Hyun Jo
  • Patent number: 10910561
    Abstract: Providing for two-terminal memory that mitigates diffusion of external material therein is described herein. In some embodiments, a two-terminal memory cell can comprise an electrode layer. The electrode layer can be at least in part permeable to ionically or chemically reactive material, such as oxygen or the like. The two-terminal memory can further comprise a diffusion mitigation material disposed between the electrode layer and external material. This diffusion mitigation material can be selected to mitigate or prevent diffusion of the undesired element(s) or compound(s), to mitigate or avoid exposure of such element(s) or compound(s) to the electrode layer. Accordingly, degradation of the two-terminal memory as a result of contact with the undesired element(s) or compound(s) can be mitigated by various disclosed embodiments.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: February 2, 2021
    Assignee: CROSSBAR, INC.
    Inventors: Steven Patrick Maxwell, Sung Hyun Jo
  • Patent number: 10840442
    Abstract: Providing for a resistive switching memory device is described herein. By way of example, the resistive switching memory device can comprise a bottom electrode, a conductive layer, a resistive switching layer, and a top electrode. Further, two or more layers can be selected to mitigate mechanical stress on the device. In various embodiments, the resistive switching layer and conductive layer can be formed of compatible metal nitride or metal oxide materials having different nitride/oxide concentrations and different electrical resistances. Further, similar materials can mitigate mechanical stress on the resistive switching layer and a conductive filament of the resistive switching memory device.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: November 17, 2020
    Assignee: Crossbar, Inc.
    Inventor: Sung Hyun Jo
  • Publication number: 20200259081
    Abstract: A self-aligned memory device includes a conductive bottom plug disposed within an insulating layer and having a coplanar top surface, a self-aligned planar bottom electrode disposed upon the coplanar top surface and having a thickness within a range of 50 Angstroms to 200 Angstroms, a planar switching material layer disposed upon the self-aligned planar bottom electrode, a planar active metal material layer disposed upon the planar switching material layer and a planar top electrode disposed above the planar active metal material layer, wherein the self-aligned planar bottom electrode, the planar switching material layer, the planar active metal material layer, and the planar top electrode form a pillar-like structure above the insulating layer.
    Type: Application
    Filed: October 1, 2018
    Publication date: August 13, 2020
    Inventors: Sung-Hyun JO, Sundar Narayanan, Zhen GU
  • Patent number: 10693062
    Abstract: Provision of fabrication, construction, and/or assembly of a two-terminal memory device is described herein. The two-terminal memory device can include an active region with a silicon bearing layer, an interface layer, and an active metal layer. The interface layer can be grown on the silicon bearing layer, and the growth of the interface layer can be regulated with N2O plasma.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: June 23, 2020
    Assignee: Crossbar, Inc.
    Inventors: Sundar Narayanan, Sung Hyun Jo, Liang Zhao
  • Patent number: 10658033
    Abstract: A non-volatile memory device is provided that uses one or more volatile elements. In some embodiments, the non-volatile memory device can include a resistive two-terminal selector that can be in a low resistive state or a high resistive state depending on the voltage being applied. A MOS (“metal-oxide-semiconductor”) transistor in addition to a capacitor or transistor acting as a capacitor can also be included. A first terminal of the capacitor can be connected to a voltage source, and the second terminal of the capacitor can be connected to the selector device. A floating gate of an NMOS transistor can be connected to the other side of the selector device, and a second NMOS transistor can be connected in series with the first NMOS transistor.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: May 19, 2020
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo
  • Patent number: 10608180
    Abstract: Providing for a two-terminal memory cell having intrinsic current limiting characteristic is described herein. By way of example, the two-terminal memory cell can comprise a particle donor layer having a moderate resistivity, comprised of unstable or partially unstable metal compounds. The metal compounds can be selected to release metal atoms in response to an external stimulus (e.g., an electric field, a voltage, a current, heat, etc.) into an electrically-resistive switching medium, which is at least in part permeable to drift or diffusion of the metal atoms. The metal atoms form a thin filament through the switching medium, switching the memory cell to a conductive state. The moderate resistivity of the particle donor layer in conjunction with the thin filament can result in an intrinsic resistance to current through the memory cell at voltages above a restriction voltage, protecting the memory cell from excessive current.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: March 31, 2020
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Xianliang Liu, Xu Zhao, Zeying Ren, FNU Atiquzzaman, Joanna Bettinger, Fengchiao Joyce Lin
  • Publication number: 20200051630
    Abstract: A non-volatile memory device is provided that uses one or more volatile elements. In some embodiments, the non-volatile memory device can include a resistive two-terminal selector that can be in a low resistive state or a high resistive state depending on the voltage being applied. A MOS (“metal-oxide-semiconductor”) transistor in addition to a capacitor or transistor acting as a capacitor can also be included. A first terminal of the capacitor can be connected to a voltage source, and the second terminal of the capacitor can be connected to the selector device. A floating gate of an NMOS transistor can be connected to the other side of the selector device, and a second NMOS transistor can be connected in series with the first NMOS transistor.
    Type: Application
    Filed: February 18, 2019
    Publication date: February 13, 2020
    Inventors: Hagop Nazarian, Sung Hyun Jo
  • Patent number: 10541025
    Abstract: A configuration bit for a switching block routing array comprising a non-volatile memory cell is provided. By way of example, the configuration bit and switching block routing array can be utilized for a field programmable gate array, or other suitable circuit(s), integrated circuit(s), application specific integrated circuit(s), electronic device or the like. The configuration bit can comprise a switch that selectively connects or disconnects a node of the switching block routing array. A non-volatile memory cell connected to the switch can be utilized to activate or deactivate the switch. In one or more embodiments, the non-volatile memory cell can comprise a volatile resistance switching device connected in serial to a gate node of the switch, configured to trap charge at the gate node to activate the switch, or release the charge at the gate node to deactivate the switch.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: January 21, 2020
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo
  • Patent number: 10489700
    Abstract: Various embodiments disclosed herein provide for a neuromorphic logic system, comprising a bitline and a set of wordlines. The neuromorphic logic system also includes a set of resistive switching memory cells, respectively comprising a two-terminal volatile switching device and a two-terminal non-volatile memory device, at each intersection between the bit line and the set of wordlines, wherein the set of resistive switching memory cells are programmed to a set of resistive states and receive a voltage on the bitline above an activation threshold and wherein the magnitude of the voltage applied to the bitline corresponds to a magnitude of a sensory input, resulting in a current that corresponds to the magnitude of the sensor input and the set of resistive states.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: November 26, 2019
    Assignee: Crossbar, Inc.
    Inventors: Mehdi Asnaashari, Tanmay Kumar, Hagop Nazarian, Sung Hyun Jo
  • Patent number: 10483462
    Abstract: Providing for improved manufacturing of silver-based electrodes to facilitate formation of a robust metallic filament for a resistive switching device is disclosed herein. By way of example, a silver electrode can be embedded with a non-silver material to reduce surface energy of silver atoms of a silver-based conductive filament, increasing structural strength of the conductive filament within a resistive switching medium. In other embodiments, an electrode formed of a base material can include silver material to provide mobile particles for an adjacent resistive switching material. The silver material can drift or diffuse into the resistive switching material to form a structurally robust conductive filament therein.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: November 19, 2019
    Assignee: Crossbar, Inc.
    Inventors: Sung Hyun Jo, Xianliang Liu, Fnu Atiquzzaman
  • Patent number: 10475511
    Abstract: Two-terminal memory can be formed into a memory array that contains many discrete memory cells in a physical and a logical arrangement. Where each memory cell is isolated from surrounding circuitry by a single transistor, the resulting array is referred to as a 1T1R memory array. In contrast, where a group of memory cells are isolated from surrounding circuitry by a single transistor, the result is a 1TnR memory array. Because memory cells of a group are not isolated among themselves in the 1TnR case, bit disturb effects are theoretically possible when operating on a single memory cell. Read operations are disclosed for two-terminal memory devices configured to mitigate bit disturb effects, despite a lack of isolation transistors among memory cells of an array. Disclosed operations can facilitate reduced bit disturb effects even for high density two-terminal memory cell arrays.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 12, 2019
    Assignee: Crossbar, Inc.
    Inventors: Lin Shih Liu, Tianhong Yan, Sung Hyun Jo, Sang Nguyen, Hagop Nazarian
  • Publication number: 20190272882
    Abstract: A method for erasing a memory cell includes applying a first erase to memory cells to erase the memory cells, wherein first memory cells are in a weakly erased state in response to the first erase, and wherein second memory cells are in a normally erased state in response to the first erase, thereafter applying a first weak program to the memory cells, wherein the second memory cells enter a programmed state and the third memory cells remain in the erased state in response to the first weak program, and thereafter applying a read to the memory cells to identify the second memory cells, and applying a second erase to the second memory cells to thereby erase the second memory cells.
    Type: Application
    Filed: March 4, 2019
    Publication date: September 5, 2019
    Inventors: Jeremy Guy, Sung Hyun Jo, Hagop Nazarian, Ruchirkumar Shah, Liang Xiao
  • Publication number: 20190122732
    Abstract: Solid-state memory having a non-linear current-voltage (I-V) response is provided. By way of example, the solid-state memory can be a selector device. The selector device can be formed in series with a non-volatile memory device via a monolithic fabrication process. Further, the selector device can provide a substantially non-linear I-V response suitable to mitigate leakage current for the non-volatile memory device. In various disclosed embodiments, the series combination of the selector device and the non-volatile memory device can serve as one of a set of memory cells in a 1-transistor, many-resistor resistive memory cell array.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventor: Sung Hyun Jo
  • Patent number: 10224370
    Abstract: A resistive switching device. The device includes a first electrode comprising a first metal material overlying the first dielectric material and a switching material comprising an amorphous silicon material. The device includes a second electrode comprising at least a second metal material. In a specific embodiment, the device includes a buffer material disposed between the first electrode and the switching material. The buffer material provides a blocking region between the switching material and the first electrode so that the blocking region is substantially free from metal particles from the second metal material when a first voltage is applied to the second electrode.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: March 5, 2019
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Wei Lu
  • Patent number: 10210929
    Abstract: A non-volatile memory device is provided that uses one or more volatile elements. In some embodiments, the non-volatile memory device can include a resistive two-terminal selector that can be in a low resistive state or a high resistive state depending on the voltage being applied. A MOS (“metal-oxide-semiconductor”) transistor in addition to a capacitor or transistor acting as a capacitor can also be included. A first terminal of the capacitor can be connected to a voltage source, and the second terminal of the capacitor can be connected to the selector device. A floating gate of an NMOS transistor can be connected to the other side of the selector device, and a second NMOS transistor can be connected in series with the first NMOS transistor.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: February 19, 2019
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo
  • Patent number: 10211397
    Abstract: A first architecture for a volatile resistive-switching device with a selector layer (e.g., a highly resistive layer such as a resistive switching medium) non-planar surfaces is detailed. For example, the selector layer can have a first surface that intersects a second surface at an angle (e.g., oblique angle). The angle can be adjusted to control current-voltage response for the volatile resistive-switching device. A second architecture for volatile resistive-switching device with a first terminal having a high particle diffusivity and a second terminal having a low particle diffusivity. The second architecture can provide diode-like current-voltage responses at a sizes (e.g., sub-20 nanometers) in which conventional diodes do not scale.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: February 19, 2019
    Assignee: CROSSBAR, INC.
    Inventor: Sung Hyun Jo