Patents by Inventor Sung Hyun Jo

Sung Hyun Jo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170229169
    Abstract: Providing for improved sensing of non-volatile resistive memory to achieve higher sensing margins, is described herein. The sensing can leverage current-voltage characteristics of a volatile selector device within the resistive memory. A disclosed sensing process can comprise activating the selector device with an activation voltage, and then lowering the activation voltage to a holding voltage at which the selector device deactivates for an off-state memory cell, but remains active for an on-state memory cell. Accordingly, very high on-off ratio characteristics of the selector device can be employed for sensing the resistive memory, providing sensing margins not previously achievable for non-volatile memory.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventors: Sung Hyun Jo, Hagop Nazarian, Lin Shih Liu
  • Patent number: 9698201
    Abstract: A high density non-volatile memory device is provided that uses one or more volatile elements. In some embodiments, the non-volatile memory device can include a resistive two-terminal selector that can be in a low resistive state or a high resistive state depending on the voltage being applied. A deep trench MOS (“metal-oxide-semiconductor”) transistor having a floating gate with small area relative to conventional devices can be provided, in addition to a capacitor or transistor acting as a capacitor. A first terminal of the capacitor can be connected to a voltage source, and the second terminal of the capacitor can be connected to the selector device. The small area floating gate of the deep trench transistor can be connected to the other side of the selector device, and a second transistor can be connected in series with the deep trench transistor.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: July 4, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo, Harry Yue Gee
  • Publication number: 20170179195
    Abstract: A resistive switching device. The device includes a first electrode comprising a first metal material overlying the first dielectric material and a switching material comprising an amorphous silicon material. The device includes a second electrode comprising at least a second metal material. In a specific embodiment, the device includes a buffer material disposed between the first electrode and the switching material. The buffer material provides a blocking region between the switching material and the first electrode so that the blocking region is substantially free from metal particles from the second metal material when a first voltage is applied to the second electrode.
    Type: Application
    Filed: March 6, 2017
    Publication date: June 22, 2017
    Inventors: Sung Hyun Jo, Wei Lu
  • Patent number: 9685483
    Abstract: A circuit operable as a non-volatile memory cell, formed in part from a volatile selection device, is provided. The circuit can be fabricated utilizing Integrated Circuit (IC)-Foundry compatible processes to simplify manufacturing, reduce cost and improve yield. For instance, the circuit can comprise a set of transistors fabricated at least in part with front-end-of-line IC processes, and can comprise the volatile selection device and a set of interconnects fabricated at least in part with back-end-of-line IC processes. In further embodiments, the volatile selection device can be a two-terminal, volatile resistive-switching device connected at one end to a gate of an n-well transistor, and connected at a second end to a gate of a p-well transistor.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: June 20, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo, Harry Yue Gee
  • Patent number: 9685608
    Abstract: Providing for two-terminal memory that mitigates diffusion of external material therein is described herein. In some embodiments, a two-terminal memory cell can comprise an electrode layer. The electrode layer can be at least in part permeable to ionically or chemically reactive material, such as oxygen or the like. The two-terminal memory can further comprise a diffusion mitigation material disposed between the electrode layer and external material. This diffusion mitigation material can be selected to mitigate or prevent diffusion of the undesired element(s) or compound(s), to mitigate or avoid exposure of such element(s) or compound(s) to the electrode layer. Accordingly, degradation of the two-terminal memory as a result of contact with the undesired element(s) or compound(s) can be mitigated by various disclosed embodiments.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: June 20, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Steven Patrick Maxwell, Sung Hyun Jo
  • Publication number: 20170162783
    Abstract: Provision of fabrication, construction, and/or assembly of a two-terminal memory device is described herein. The two-terminal memory device can include an active region with a silicon bearing layer, an interface layer, and an active metal layer. The interface layer can be grown on the silicon bearing layer, and the growth of the interface layer can be regulated with N2O plasma.
    Type: Application
    Filed: December 6, 2016
    Publication date: June 8, 2017
    Inventors: Sundar Narayanan, Sung Hyun Jo, Liang Zhao
  • Patent number: 9673255
    Abstract: A method for forming a resistive memory device includes providing a substrate comprising a first metal material, forming a conductive silicon-bearing layer on top of the first metal material, wherein the conductive silicon-bearing layer comprises an upper region and a lower region, and wherein the lower region is adjacent to the first metal material, forming an amorphous layer from the upper region of the conductive silicon-bearing layer, and disposing an active metal material above the amorphous layer.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: June 6, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Kuk-Hwan Kim, Tanmay Kumar
  • Patent number: 9633724
    Abstract: Providing for improved sensing of non-volatile resistive memory to achieve higher sensing margins, is described herein. The sensing can leverage current-voltage characteristics of a volatile selector device within the resistive memory. A disclosed sensing process can comprise activating the selector device with an activation voltage, and then lowering the activation voltage to a holding voltage at which the selector device deactivates for an off-state memory cell, but remains active for an on-state memory cell. Accordingly, very high on-off ratio characteristics of the selector device can be employed for sensing the resistive memory, providing sensing margins not previously achievable for non-volatile memory.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 25, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Hagop Nazarian, Lin Shih Liu
  • Patent number: 9627614
    Abstract: A method of suppressing propagation of leakage current in an array of switching devices. The method includes providing a dielectric breakdown element integrally and serially connected to a switching element within each of the switching device. A read voltage (for example) is applied to a selected cell. The propagation of leakage current is suppressed by each of the dielectric breakdown element in unselected cells in the array. The read voltage is sufficient to cause breakdown in the selected cells but insufficient to cause breakdown in the serially connected, unselected cells in a specific embodiment. Methods to fabricate of such devices and to program, to erase and to read the device are provided.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: April 18, 2017
    Assignee: The Regents of the University of Michigan
    Inventors: Wei Lu, Sung Hyun Jo
  • Patent number: 9627443
    Abstract: Providing for three-dimensional memory cells having enhanced electric field characteristics is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: April 18, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Joanna Bettinger, Xianliang Liu
  • Patent number: 9620206
    Abstract: A non-volatile memory device includes a word line extending along a first direction; a bit line extending along a second direction; a memory unit having a read transistor coupled to the bit line, at least one two-terminal memory cell, and a select transistor, the two-terminal memory cell having a first end coupled to the word line and a second end coupled to a gate of the read transistor. The second end of the two-terminal memory cell is coupled to a common node shared by a drain of the select transistor and the gate of the read transistor.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: April 11, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo, Wei Lu
  • Patent number: 9613694
    Abstract: Two-terminal memory can be set to a first state (e.g., conductive state) in response to a program pulse, or set a second state (e.g., resistive state) in response to an erase pulse. These pulses generally produce a voltage difference between the two terminals of the memory cell. Certain electrical characteristics associated with the pulses can be manipulated in order to enhance the efficacy of the pulse. For example, the pulse can be enhanced or improved to reduce power-consumption associated with the pulse, reduce a number of pulses used to successfully set the state of the memory cell, or to improve Ion distribution associated with active metal particles included in the memory cell.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: April 4, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Zhi Li, Tanmay Kumar, Sung Hyun Jo
  • Patent number: 9601692
    Abstract: A semiconductor device includes first electrodes disposed upon a substrate, wherein each first electrode comprises a metal containing material, switching devices disposed overlying the first electrodes, wherein each switching device comprises a first switching material, a second switching material, and an active metal, wherein the first switching material is disposed overlying and contacting the first electrodes, wherein the second switching material is disposed overlying and contacting the first switching material, wherein the active metal is disposed overlying and contacting the second switching material, wherein the first switching material is characterized by a first switching voltage, wherein the second switching material is characterized by a second switching voltage greater than the first switching voltage; and second electrodes disposed above the switching devices, comprising the metal material, and wherein each of the second electrodes is electrically coupled to the active metal material of the switc
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: March 21, 2017
    Assignee: CROSSBAR, INC.
    Inventor: Sung Hyun Jo
  • Patent number: 9601690
    Abstract: Provision of fabrication, construction, and/or assembly of a two-terminal memory device is described herein. The two-terminal memory device can include an active region with a silicon bearing layer, an interface layer, and an active metal layer. The interface layer can created comprising a non-stoichiometric sub-oxide that can be a combination of multiple silicon and/or silicon oxide layers with an aggregate chemical formula of SiOX, where X can be a non-integer greater than zero and less than 2. The sub-oxide can be created in a variety of ways, including various techniques related to growing the sub-oxide, depositing the sub-oxide, or transforming an extant film into the sub-oxide.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: March 21, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Harry Yue Gee, Mark Harold Clark, Steven Patrick Maxwell, Sung Hyun Jo, Natividad Vasquez, Jr.
  • Publication number: 20170066599
    Abstract: A transporting system includes a first rail including a first region and a second region, the first region being a region where the first rail extends linearly and the second region being a region where the first rail is curved. A second rail includes a third region, separated from the first region, and a fourth region overlapping the second region, wherein the first and second rails merge at a joining location that includes the second region and the fourth region. Optical lines are disposed in the second region and the fourth region, wherein the optical lines are parallel to each other in the fourth region. A first transporting unit travels on the first rail. A second transporting unit travels on the second rail. A first controller controls the traveling of the first and second transporting units using light transmitted or received through the optical lines.
    Type: Application
    Filed: May 16, 2016
    Publication date: March 9, 2017
    Inventors: KUN-JIN RYU, HYUN-MIN LEE, YOUN-BOO JUNG, SUNG-HYUN JO
  • Patent number: 9590013
    Abstract: A resistive switching device. The device includes a first electrode comprising a first metal material overlying the first dielectric material and a switching material comprising an amorphous silicon material. The device includes a second electrode comprising at least a second metal material. In a specific embodiment, the device includes a buffer material disposed between the first electrode and the switching material. The buffer material provides a blocking region between the switching material and the first electrode so that the blocking region is substantially free from metal particles from the second metal material when a first voltage is applied to the second electrode.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: March 7, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Wei Lu
  • Patent number: 9570683
    Abstract: Providing for three-dimensional memory cells having enhanced electric field characteristics and/or memory cells located at broken interconnects is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: February 14, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Kuk-Hwan Kim, Joanna Bettinger
  • Patent number: 9570678
    Abstract: A non-volatile memory device includes a first dielectric on a substrate, a first electrode disposed on the first dielectric, a second dielectric material disposed next to the first electrode, a patterned material disposed upon the second dielectric material and in contact with part of the first electrode, a third dielectric material disposed next to the patterned material and in contact with another part of the first electrode, wherein the patterned material and the third dielectric material contact at an interface region, wherein the interface region is characterized by a plurality of defects, a second electrode disposed on the patterned material, on the third dielectric, and on the interface region, wherein the second electrode comprises metal particles that are configured to be diffused within the interface region upon application of a bias voltage, and wherein metal particles are disposed within the plurality of defects in the interface region.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: February 14, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Hagop Nazarian
  • Patent number: 9564587
    Abstract: Providing for three-dimensional memory cells having enhanced electric field characteristics and/or memory cells located at broken interconnects is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: February 7, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Kuk-Hwan Kim, Joanna Bettinger
  • Patent number: RE46335
    Abstract: Method for a memory including a first, second, third and fourth cells include applying a read, program, or erase voltage, the first and second cells coupled to a first top interconnect, the third and fourth cells coupled to a second top interconnect, the first and third cells coupled to a first bottom interconnect, the second and fourth cells are to a second bottom interconnect, each cell includes a switching material overlying a non-linear element (NLE), the resistive switching material is associated with a first conductive threshold voltage, the NLE is associated with a lower, second conductive threshold voltage, comprising applying the read voltage between the first top and the first bottom electrode to switch the NLE of the first cell to conductive, while the NLEs of the second, third, and the fourth cells remain non-conductive, and detecting a read current across the first cell in response to the read voltage.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: March 7, 2017
    Assignee: Crossbar, Inc.
    Inventors: Wei Lu, Sung Hyun Jo, Hagop Nazarian