Patents by Inventor Tadashi Ogasawara

Tadashi Ogasawara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8029655
    Abstract: Provided is a sputtering target which can give a high water barrier property and a high flexibility to a sputtering film, can keep a high film forming rate certainly in sputtering, and can make damages to an objective substance wherein a film is to be formed as small as possible. In order to realize this, a mixed powder which contains 20 to 80% by weight of a SiO powder, the balance of the powder being made of a TiO2 powder and/or a Ti powder, is pressed and sintered. The sintered body has a composition of Si?Ti?O? wherein ?, ? and ? are mole ratios of Si, Ti and O, respectively, and the ratio of ?/? ranges from 0.45 to 7.25 and the ratio of ?/(?+?) ranges from 0.80 to 1.70.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: October 4, 2011
    Assignees: OSAKA Titanium technologies Co., Ltd., ROHM Co., Ltd.
    Inventors: Jyunji Kido, Yoshitake Natsume, Tadashi Ogasawara, Kazuomi Azuma, Koichi Mori
  • Patent number: 7951284
    Abstract: A water electrolysis apparatus includes a plurality of unit cells. A membrane electrode assembly of the unit cell includes an anode side power feeding element and a cathode side power feeding element stacked on an anode catalyst layer and a cathode catalyst layer on both surfaces of a solid polymer electrolyte membrane. A surface of the anode side power feeding element is subjected to a grinding process, and then, subjected to an etching process to form a smooth surface.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: May 31, 2011
    Assignees: Honda Motor Co., Ltd., OSAKA Titanium Technologies Co., Ltd.
    Inventors: Koji Nakazawa, Masanori Okabe, Masato Kita, Kenji Taruya, Tadashi Ogasawara, Kazuomi Azuma, Takashi Onishi
  • Publication number: 20100226850
    Abstract: An even titanium oxide film is economically formed on the surface of a substrate. To actualize the film formation, an aqueous titanium tetrachloride solution containing 0.1 to 17% by weight of Ti is applied in a film-like state on the surface of a heat resistant substrate. While the liquid film state is kept as it is, the aqueous titanium tetrachloride solution is heated to 300° C. or more and H2O and HCl in the liquid film are accordingly evaporated to form a titanium oxide film. In the case where the substrate is of aluminum inferior in acid resistance, an acid-resistant film such as an oxide film is previously formed on the surface of the metal substrate.
    Type: Application
    Filed: January 19, 2007
    Publication date: September 9, 2010
    Applicant: Osaka Titanium Technologies C., Ltd
    Inventors: Tadashi Ogasawara, Shinji Shimosaki, Kazuomi Azuma, Masahiro Yoshihara
  • Publication number: 20100089204
    Abstract: A process for producing Ti, comprising a reduction step of reacting TiCl4 with Ca in a CaCl2-containing molten salt having the Ca dissolved therein to thereby form Ti particles, a separation step of separating the Ti particles formed in said molten salt from said molten salt and an electrolysis step of electrolyzing the molten salt so as to increase the Ca concentration, wherein the molten salt increased in Ca concentration in the electrolysis step is introduced into a regulating cell to thereby render the Ca concentration of the molten salt constant and thereafter the molten salt is used for the reduction of TiCl4 in the reduction step. In the present invention, the Ca concentration of the molten salt to be fed to the corresponding reduction vessel can be inhibited from fluctuating and, at the same time, can maintain high concentration levels. Further, a large volume of the molten salt can be treated continuously.
    Type: Application
    Filed: August 22, 2006
    Publication date: April 15, 2010
    Applicant: SUMITOMO TITANIUM CORPORATION
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Toru Uenishi, Masahiko Hori, Kazuo Takemura, Katsunori Dakeshita
  • Patent number: 7648560
    Abstract: The present invention is a method for producing Ti or a Ti alloy through reduction of TiCl4 by Ca, which can produce the high-purity metallic Ti or high-purity Ti alloy. A molten salt containing CaCl2 and having Ca dissolved therein is held in a reactor vessel, and a metallic chloride containing TiCl4 is reacted with Ca in the molten salt to generate Ti particles or Ti alloy particles in a molten CaCl2 solution, which allows enhancement of a feed rate of TiCl4 which is of a raw material of Ti, and also allows a continuous operation. Therefore, the high-purity metallic Ti or the high-purity Ti alloy can economically be produced with high efficiency. Further, the method by the present invention eliminates the need of replenishment of expensive metallic Ca and of the operation for separately handling Ca which is highly reactive and difficult to handle.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: January 19, 2010
    Assignee: Osaka Titanium Technologies Co., Ltd.
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi, Katsunori Dakeshita
  • Publication number: 20090291029
    Abstract: A full spectrum light emitting lamp and one or more translucent base bodies surrounding the lamp are disposed in the lighting apparatus, the one or more translucent bas bodies having a photocatalytic reaction layer which bears a photocatalyst made of a titanium dioxide thin film therein, or the one or more translucent base bodies having the photocatalytic reaction layer which bears the photocatalyst made of the titanium dioxide thin film therein and having infrared light-absorbing functions, and a space through which air can flow is formed between the lamp and the translucent base body. Therefore, an ultraviolet light, a visible light and an infrared light can effectively be utilized according to characteristics such as an air purifying function of the ultraviolet light, a lighting function of the visible light, and a heating function of the infrared light to thereby save optical energy emitted from the lamp.
    Type: Application
    Filed: June 12, 2007
    Publication date: November 26, 2009
    Inventors: Tadashi Ogasawara, Toshiaki Matsuo, Shinji Shimosaki, Kazuomi Azuma, Yoji Mitani
  • Publication number: 20090239738
    Abstract: Titanium oxide-based photocatalysts which contain a metal halide in titanium oxide and which are prepared from titanium oxide and/or its precursor, which may optionally be heat treated, by contact with a reactive gas containing a metal halide of the formula MXn or MOXn (wherein M=a metal, X=a halogen, and n=an integer) with heating stably develop a high photocatalytic activity with visible light irradiation. The photocatalysts may subsequently be stabilized by contact with water or by heat treatment, and/or promoted by contact with a heteropoly acid and/or an isopoly acid so as to include a metal complex in the titanium oxide. Photocatalysts prepared in this manner exhibit novel ESR features. The present invention also provides methods for preparing these photocatalysts, a photocatalyst dispersion and a photocatalytic coating fluid containing such a photocatalyst, and photocatalytic functional products and methods for their manufacture using the photocatalyst.
    Type: Application
    Filed: February 13, 2009
    Publication date: September 24, 2009
    Applicants: SUMITOMO METAL INDUSTRIES, LTD., OSAKA TITANIUM TECHNOLOGIES CO., LTD.
    Inventors: Katsumi Okada, Katsuhiro Nishihara, Yasuhiro Masaki, Haruhiko Kajimura, Michiyasu Takahashi, Tadashi Yao, Tadashi Ogasawara, Munetoshi Watanabe, Shiji Shimosaki, Kouji Oda, Sadanobu Nagaoka
  • Publication number: 20090152122
    Abstract: The present invention provides a method for electrolyzing molten salt that can enhance the concentration of metal-fog forming metal in the molten salt by carrying out the electrolysis under conditions that the molten salt containing the chloride of metal-fog forming metal is supplied from one end of an electrolytic cell to a space between an anode and a cathode in a continuous or intermittent manner to provide a flow rate in one direction to the molten salt in the vicinity of the surface of the cathode and thus to allow the molten salt to flow in one direction in the vicinity of the surface of the cathode. According to the present invention, while high current efficiency is maintained, only the molten salt enriched with metal-fog forming metal such as Ca can be effectively taken out. Further, this method can easily be carried out by using the electrolytic cell according to the present invention.
    Type: Application
    Filed: August 22, 2006
    Publication date: June 18, 2009
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Toru Uenishi, Masahiko Hori, Kazuo Takemura, Katsunori Dakeshita
  • Publication number: 20090127108
    Abstract: Provided is a sputtering target which can give a high water barrier property and a high flexibility to a sputtering film, can keep a high film forming rate certainly in sputtering, and can make damages to an objective substance wherein a film is to be formed as small as possible. In order to realize this, a mixed powder which contains 20 to 80% by weight of a SiO powder, the balance of the powder being made of a TiO2 powder and/or a Ti powder, is pressed and sintered. The sintered body has a composition of Si?Ti?O? wherein ?, ? and ? are mole ratios of Si, Ti and O, respectively, and the ratio of ?/? ranges from 0.45 to 7.25 and the ratio of ?/(?+?) ranges from 0.80 to 1.70.
    Type: Application
    Filed: July 3, 2006
    Publication date: May 21, 2009
    Applicants: OSAKA TITANIUM TECHNOLOGIES CO., LTD, INT'L MANUFACTURING & ENGINEERING SRVCS CO., LTD
    Inventors: Jyunji Kido, Yoshitake Natsume, Tadashi Ogasawara, Kazuomi Azuma, Koichi Mori
  • Publication number: 20090123769
    Abstract: A titanium oxide photocatalyst responsive to visible light which can exhibit a high photocatalytic activity in response to visible light is produced by subjecting titanium oxide and/or titanium hydroxide obtained by neutralizing an acidic titanium compound with a nitrogen-containing base to heat treatment in an atmosphere containing a hydrolyzable metal compound (e.g., a titanium halide) and then to additional heat treatment in a gas having a moisture content of 0.5-4.0 volume % at a temperature of 350° C. or above. The photocatalyst which is a nitrogen-containing titanium oxide has no substantial peak at a temperature of 600° C. or above in a mass fragment spectrum obtained by thermal desorption spectroscopy in which the ratio m/e of the mass number m to the electric charged e of ions is 28, and the peak having the smallest half band width is in the range of 400-600° C. in the spectrum. The nitrogen content calculated from the peak appearing at 400 eV±1.
    Type: Application
    Filed: March 22, 2007
    Publication date: May 14, 2009
    Applicant: SUMITOMO TITANIUM CORPORATION
    Inventors: Yasuhiro Masaki, Katsuhiro Nishihara, Tadashi Fukuda, Katsumi Okada, Masahito Tasaka, Shinji Shimosaki, Hideaki Kanno, Sadanobu Nagaoka, Kazuomi Azuma, Tadashi Ogasawara
  • Publication number: 20090114546
    Abstract: The present invention provides a method by which a metal-fog-forming metal dissolved in one portion of “a molten salt mixture consisted of one or more of metal-fog-forming metal containing molten salts” (generally, a molten salt) can be removed and transferred to another portion of the molten salt to increase the concentration thereof. The method can hence be utilized as one of means for treating molten salts in various industrial fields in which metal-fog-forming metal-containing molten salts such as Ca or Na are handled. In particular, when the method is utilized in producing Ti by Ca reduction, the Ca dissolved in the molten salt to be fed to an electrolytic cell can be rapidly removed (recovered) and the Ca formation efficiency during the electrolysis of the molten salt can be enhanced. Consequently, Ca formation and TiCl4 reduction in the electrolysis of the molten salt can be efficiently carried out and a stable operation on a commercial scale is possible.
    Type: Application
    Filed: March 9, 2007
    Publication date: May 7, 2009
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi
  • Publication number: 20090101517
    Abstract: In producing Ti or a Ti alloy through reduction by Ca, an electrolytic-bath salt taken out from a reduction process is electrolyzed to recover Ca and the electrolytic-bath salt as a solid substance, and the recovered Ca and electrolytic-bath salt are delivered to the reduction process. Therefore, heat generation is suppressed in the reduction process by utilizing latent heat of fusion possessed by the solid substance, thereby largely improving production efficiency and thermal efficiency. Additionally, a reaction temperature is easily controlled, and a raw-material loading rate can be enhanced to efficiently produce Ti or the Ti alloy. At this point, using a pulling electrolysis method of the invention, the solid-state Ca and electrolytic-bath salt can be obtained at a low voltage and high current efficiency, i.e., with the relatively small power consumption.
    Type: Application
    Filed: March 16, 2006
    Publication date: April 23, 2009
    Inventors: Kazuo Takemura, Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori
  • Patent number: 7521133
    Abstract: Titanium oxide-based photocatalysts which contain a metal halide in titanium oxide and which are prepared from titanium oxide and/or its precursor, which may optionally be heat treated, by contact with a reactive gas containing a metal halide of the formula MXn or MOXn (wherein M=a metal, X=a halogen, and n=an integer) with heating stably develop a high photocatalytic activity with visible light irradiation. The photocatalysts may subsequently be stabilized by contact with water or by heat treatment, and/or promoted by contact with a heteropoly acid and/or an isopoly acid so as to include a metal complex in the titanium oxide. Photocatalysts prepared in this manner exhibit novel ESR features. The present invention also provides methods for preparing these photocatalysts, a photocatalyst dispersion and a photocatalytic coating fluid containing such a photocatalyst, and photocatalytic functional products and methods for their manufacture using the photocatalyst.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: April 21, 2009
    Assignees: Osaka Titanium Technologies Co., Ltd., Sumitomo Metal Industries, Ltd.
    Inventors: Katsumi Okada, Katsuhiro Nishihara, Yasuhiro Masaki, Haruhiko Kajimura, Michiyasu Takahashi, Tadashi Yao, Tadashi Ogasawara, Munetoshi Watanabe, Shiji Shimosaki, Kouji Oda, Sadanobu Nagaoka
  • Publication number: 20080296170
    Abstract: Hypochlorous acid is produced economically without the supply of electricity energy from outside. To actualize the production, a photoelectric cell having a titanium oxide electrode 1 and a counter electrode 2 is placed in an electrolyte solution 3 containing a metal chloride. Under the environment that oxygen can be supplied to the counter electrode 2 of the photoelectric cell in the electrolyte solution 3, the titanium oxide electrode 1 is irradiated with light.
    Type: Application
    Filed: January 26, 2007
    Publication date: December 4, 2008
    Applicant: OSAKA Titanium Technologies Co., Ltd.
    Inventors: Kazuomi Azuma, Tadashi Ogasawara, Shinji Shimosaki, Katsumi Katakura
  • Publication number: 20080250901
    Abstract: A TiCl4 gas is supplied to a molten CaCl2 liquid held in a reactor vessel 6 through a raw material feed pipe 11, TiCl4 is reduced to produce granular metallic Ti by Ca melted in the CaCl2 liquid. The molten CaCl2 liquid in which Ti granules taken out downward from the reactor vessel 6 is mixed is delivered to a separation process 12, the molten CaCl2 liquid is heated in a heating vessel 15, and separation is generated by a difference in specific gravity, whereby the molten CaCl2 liquid 16 is located in an upper layer while a metallic Ti 17 is located in a lower layer. The metallic Ti 17 in the lower layer is taken out from a high-melting-point metal discharge port 18, and the metallic Ti 17 is solidified to yield an ingot. The molten CaCl2 liquid 16 in the upper layer is delivered to an electrolysis process 13 along with the molten CaCl2 liquid taken out from the reactor vessel 6, and Ca generated by the electrolysis and CaCl2 are returned into the reactor vessel 6.
    Type: Application
    Filed: March 8, 2006
    Publication date: October 16, 2008
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Katsunori Dakeshita, Masahiko Hori
  • Publication number: 20080217184
    Abstract: An apparatus for producing Ti by Ca reduction by the invention includes a reaction tank retaining a molten salt in which a molten salt CaCl2 is contained and Ca is dissolved, an electrolytic cell retaining a molten salt containing CaCl2, and a continuum body which is movably constructed while part of the continuum body is immersed in the molten salt either within the reaction tank or electrolytic cell. In the inventive method for producing Ti by Ca reduction, the molten salt in the electrolytic cell is electrolyzed to generate Ca on the cathode side which is transported to the reaction tank while deposited on and adheres to the continuum body, and TiCl4 is supplied to the reaction tank to generate Ti.
    Type: Application
    Filed: October 26, 2005
    Publication date: September 11, 2008
    Applicants: SUMITOMO TITANIUM CORPORATION, TOHOTITANIUM CO., LTD.
    Inventors: Masahiko Hori, Tadashi Ogasawara, Makoto Yamaguchi, Toru Uenishi, Masanori Yamaguchi, Yuichi Ono, Susumu Kosemura, Eiji Nishimura
  • Publication number: 20080110765
    Abstract: A method for producing a metal by an electrolytic process using an yttria-containing porous ceramic body as a diaphragm is provided; the calcium formed by electrolysis cannot pass through the diaphragm, hence the back reaction can be effectively inhibited. Preferably, to be used is a diaphragm comprising a porous ceramic body having a purity of yttrium of 90 mass % or more (more preferably, 99% or more), a porosity of 1% or more and a pore diameter of 20 ?m or less, and having a thickness of 0.05-50 mm and a metal halide is used as the electrolytic bath. The method can be utilized for producing metals such as calcium or rare earth elements, in particular. For example, when the method is applied to the production of calcium, metallic calcium can be produced with ease and at low cost without the need for enormous heat energy.
    Type: Application
    Filed: December 9, 2005
    Publication date: May 15, 2008
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi
  • Publication number: 20080095930
    Abstract: The lowness of the initial efficiency which is a drawback of lithium secondary batteries wherein a SiO negative electrode is used is largely made better without hindering a large initial charge capacity peculiar to the lithium secondary batteries. A fall in the cycle characteristic when the thickness of the SiO layer is made large is prevented. To realize these matters, a thin film of SiO is formed, as a negative electrode active material layer, on the surface of a current collector by vacuum evaporation or sputtering. The film is preferably formed by an ion plating process. The thickness of the SiO thin film is set to 5 ?m or more. The surface roughness of the current collector is set to follows: the maximum height roughness Rz=5.0 or more. After the formation of the thin film, the film is thermally treated in a nonoxidative atmosphere.
    Type: Application
    Filed: September 5, 2005
    Publication date: April 24, 2008
    Applicant: Sumitomo Titanium Corporation
    Inventors: Yoshitake Natsume, Tadashi Ogasawara, Kazuomi Azuma
  • Publication number: 20080078679
    Abstract: A method for production of metal by molten-salt electrolysis of the present invention is a method for production of metal by molten-salt electrolysis which is performed by filling a molten salt of calcium chloride in an electrolysis vessel having a anode and a cathode, one of the anode or cathode is arranged surrounding the other electrode, the cathode has at least one hole communicating the inner area surrounded by the cathode with the outer area, and the molten salt flows through the communicating holes from one area including the anode (the inner area or outer area) to the other area.
    Type: Application
    Filed: October 5, 2005
    Publication date: April 3, 2008
    Applicants: TOHO TITANIUM CO., LTD., SUMITOMO TITANIUM CORPORATION
    Inventors: Masanori Yamaguchi, Yuichi Ono, Susumu Kosemura, Eiji Nishimura, Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi
  • Publication number: 20080053838
    Abstract: A method for production of metal by molten-salt electrolysis is a method for production of metal by molten-salt electrolysis which is performed by filling molten salt of a metal chloride in an electrolysis vessel having an anode and a cathode, and a molten salt which reduces solubility of the metal in the molten salt is used.
    Type: Application
    Filed: October 5, 2005
    Publication date: March 6, 2008
    Applicants: TOHO TITANIUM CO., LTD., SUMITOMO TITANIUM CORPORATION
    Inventors: Masanori Yamaguchi, Yuichi Ono, Susumu Kosemura, Eiji Nishimura, Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi