Patents by Inventor Tadashi Ogasawara

Tadashi Ogasawara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080038139
    Abstract: Provided are a porous sintered compact suitable for a filter, a power feeder in a polymer electrolyte membrane type water electrolyzer, a current collector in a solid polymer fuel cell and in addition a liquid dispersion plate, especially an ink dispersion plate for an ink jet printer ink and the like. A titanium powder sintered compact made of a plate-like porous compact is obtained by sintering spherical powder made of titanium or a titanium alloy produced by means of a gas atomization method. A void ratio in the range of from 35 to 55% is realized by filling without applying a pressure and sintering without applying a pressure.
    Type: Application
    Filed: July 25, 2007
    Publication date: February 14, 2008
    Applicant: Sumitomo Titanium Corporation
    Inventors: Takashi Onishi, Tadashi Ogasawara, Munetoshi Watanabe, Masamichi Kato
  • Publication number: 20070295167
    Abstract: A mixed molten salt containing CaCl2 and NaCl is held in the reactor cell 1 at a temperature not more than 600° C. TiCl4 which is of a Ti raw material is introduced into the reactor cell 1 while Na is introduced into the reactor cell 1. Na introduced into the reactor cell 1 is replaced by Ca, Ca is dissolved in the molten salt, Ca reduces TiCl4 introduced into the reactor cell 1, and thereby Ti particles are generated. The generated Ti particles are introduced to a separation cell 2 along with the molten salt, and the Ti particles and Na are separated from the molten salt. The residual molten salt is introduced to an electrolytic cell 3 to generate Na by high-temperature electrolysis at the temperature more than 600° C. The generated Na is returned to the reactor cell 1 to replenish Na consumed in the reactor cell 1. The highly reactive Ca is not directly handled, and Na which is easy to handle is used in a circulating manner. Therefore, the Ti or Ti alloy can economically be produced by Ca reduction.
    Type: Application
    Filed: October 13, 2004
    Publication date: December 27, 2007
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi, Kazuo Takemura
  • Patent number: 7297271
    Abstract: Provided are a porous sintered compact suitable for a filter, a power feeder in a polymer electrolyte membrane type water electrolyzer, a current collector in a solid polymer fuel cell and in addition a liquid dispersion plate, especially an ink dispersion plate for an ink jet printer ink and the like. A titanium powder sintered compact made of a plate-like porous compact is obtained by sintering spherical powder made of titanium or a titanium alloy produced by means of a gas atomization method. A void ratio in the range of from 35 to 55% is realized by filling without applying a pressure and sintering without applying a pressure.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: November 20, 2007
    Assignee: Sumitomo Titanium Corporation
    Inventors: Takashi Onishi, Tadashi Ogasawara, Munetoshi Watanabe, Masamichi Kato
  • Publication number: 20070248831
    Abstract: A highly active titanium oxide photocatalyst of the type responsive to visible light is prepared by subjecting a titanium (hydr)oxide raw material obtained by neutralizing an acidic titanium compound in ammonia or an amine under conditions such that the final pH is 7 or below to heat treatment in an atmosphere containing a hydrolyzable compound followed by contact with water and additional heat treatment at a temperature of at least 350° C. The resulting titanium oxide photocatalyst comprises titanium oxide with a specific surface area of at most 120 m2/g and with the amount of surface hydroxyl groups being at least 600 ?eq/g. Preferably the density of surface hydroxyl groups is at least 8 ?eq/m2, and the ratio of the amount of terminal type hydroxyl groups (T) to the amount of bridge type hydroxyl groups (B) in the surface hydroxyl groups satisfies T/B?0.20. This titanium oxide photocatalyst has an ESR spectrum having two types of triplet signal for which the g values of the main spectra are 1.993-2.
    Type: Application
    Filed: April 19, 2005
    Publication date: October 25, 2007
    Applicant: Sumitomo Titanium Corporation
    Inventors: Katsuhiro Nishihara, Yasuhiro Masaki, Tadashi Fukuda, Katsumi Okada, Shinji Shimosaki, Sadanobu Nagaoka, Hideaki Kanno, Kazuomi Azuma, Tadashi Ogasawara
  • Publication number: 20070193411
    Abstract: The present invention is a method for producing Ti or a Ti alloy through reduction of TiCl4 by Ca, which can produce the high-purity metallic Ti or high-purity Ti alloy. A molten salt containing CaCl2 and having Ca dissolved therein is held in a reactor vessel, and a metallic chloride containing TiCl4 is reacted with Ca in the molten salt to generate Ti particles or Ti alloy particles in a molten CaCl2 solution, which allows enhancement of a feed rate of TiCl4 which is of a raw material of Ti, and also allows a continuous operation. Therefore, the high-purity metallic Ti or the high-purity Ti alloy can economically be produced with high efficiency. Further, the method by the present invention eliminates the need of replenishment of expensive metallic Ca and of the operation for separately handling Ca which is highly reactive and difficult to handle.
    Type: Application
    Filed: October 6, 2004
    Publication date: August 23, 2007
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi, Katsunori Dakeshita
  • Publication number: 20070187255
    Abstract: The invention is a method for producing Ti or Ti alloys through reduction of TiCl4 by Ca, which can produce high-purity Ti metals or Ti alloys. A molten salt containing CaCl2 and having Ca dissolved therein is held in a reactor cell, electrolysis is performed in the molten salt in the reactor cell, and particulate Ti or Ti alloys are generated in the molten salt by supplying a metallic chloride containing TiCl4 to the molten salt so as to react with Ca generated on a cathode electrode side by the electrolysis, allowing enhancement of a feed rate of TiCl4 as a raw material of Ti, and also a continuous operation. Further, the method by the invention eliminates the need of the separate handling of Ca, because a reducing reaction and an electrolytic reaction can simultaneously proceed in the reactor cell to replenish Ca, consumed in the reducing reaction, by the electrolytic reaction.
    Type: Application
    Filed: February 16, 2005
    Publication date: August 16, 2007
    Applicant: EndoArt SA
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi, Katsunori Dakeshita
  • Publication number: 20070181435
    Abstract: The method by the invention in which a molten salt is held in a reactor cell 1 to perform electrolysis in the molten salt of the reactor cell, the molten salt containing CaCl2 while Ca being dissolved in the molten salt, and Ti or Ti alloys are generated in the molten salt by supplying a metallic chloride containing TiCl4 into the molten salt such that the metallic chloride containing TiCl4 is caused to react with Ca generated on a cathode electrode side by the electrolysis, makes it possible to produce the high-purity Ti metals or Ti alloy. Furthermore, the reactor cell 1 includes a membrane 4 which partitions an inside of the reactor cell into a side of an anode electrode 2 and a side of a cathode electrode 3, and the membrane 4 blocks the movement of Ca generated on the cathode electrode side in the reactor cell toward the anode electrode side while permitting the molten salt to flow in the reactor cell, which allows a back reaction by Ca to be effectively suppressed.
    Type: Application
    Filed: February 1, 2005
    Publication date: August 9, 2007
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi, Katsunori Dakeshita
  • Publication number: 20070166219
    Abstract: A high-purity silicon monoxide vapor deposition material which, in the formation of a film by vapor deposition, is effective in inhibiting splashing, and which has an average bulk density of 2.0 g/cml and a Vickers hardness of 500 or higher; a process for producing a high-purity silicon monoxide vapor deposition material consisting of SiO and metal impurities as the remainder, the total amount of the impurities being, 50 ppm or smaller, which comprises conducting a degassing, treatment in a raw-material chamber at a temperature lower than the sublimation temperature of silicon monoxide, raising the temperature to sublimate silicon monoxide, and depositing the silicon monoxide on a substrate in a deposition chamber.
    Type: Application
    Filed: September 7, 2006
    Publication date: July 19, 2007
    Applicant: Sumitomo Titanium Corporation
    Inventors: Nobuhiro Arimoto, Kazuo Nishioka, Shingo Kizaki, Tadashi Ogasawara, Makoto Fujita
  • Publication number: 20070131057
    Abstract: A method for producing Ti or Ti alloys through reduction by Ca, including: a reduction step of holding a molten salt, containing CaCl2 and having Ca dissolved therein, in a reactor vessel 1, and reacting a metallic chloride containing TiCl4 with Ca in said salt to generate particles of Ti or Ti alloys in said salt; and a separation step of separating particles of Ti or Ti alloys, generated in said salt, from said salt. An electrolysis step 8, in which CaCl2 discharged outside the reactor vessel 1 is electrolyzed into Ca and Cl2, and the generated Ca is used for the generation reaction of Ti or Ti alloys in the reactor vessel 1, is preferably added. In the electrolysis step 8, an alloy electrode made of a molten Ca alloy, if applied for a cathode, is effective in enhancing the electricity efficiency, and also can be effectively utilized as a carrier medium of Ca for raising a Ca concentration of molten salt. By this method, high-purity Ti metals can be efficiently and economically produced.
    Type: Application
    Filed: October 6, 2004
    Publication date: June 14, 2007
    Applicant: SUMITOMO TITANIUM CORPORATION
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi, Yuko Urasaki, Kazuo Takemura
  • Publication number: 20070059601
    Abstract: Greatly improved is an initial efficiency, which would be otherwise low as a fault, without reducing a magnitude of an initial charge capacity, which is a feature of a lithium secondary battery using an SiO as an negative electrode. A cycle characteristic is improved. In order to realize the improvements, a thin film of silicon oxide formed by vacuum vapor deposition or sputtering as an negative electrode active material layer 32 on a surface of a collector 31. The thin film is formed preferably by means of an ion plating method. The silicon oxide is SiOx (0.5?x<1.0) and a film thickness is in the range of from 0.1 to 50 ?m. A vacuum vapor deposition source that is used is an SiO deposit having a weight decrease percent (a rattler value) in a rattler test of 1.0% or less.
    Type: Application
    Filed: April 16, 2004
    Publication date: March 15, 2007
    Inventors: Yoshitake Natsume, Tadashi Ogasawara, Kazuomi Azuma
  • Publication number: 20070054044
    Abstract: A photocatalytic composite material having a photocatalytic titanium oxide film on the surface of a substrate is produced by a CVD method in which TiCl4 vapor is reacted with water vapor. The TiCl4 vapor and the water vapor are injected into a vapor deposition chamber (9) through nozzles (5) and (6), respectively, such that the resulting two injected vapor streams meet before reaching the substrate, thereby mixing the two vapors. Within 3 seconds after this mixing, the mixed vapors are brought into contact with a substrate (1) which is moving in one direction. Preferably the TiCl4 vapor is injected in a reverse direction with respect to the direction of movement of the substrate through a multi-orifice nozzle (5), while the water vapor is injected through a slit nozzle (6) disposed at a smaller angle with respect to the substrate.
    Type: Application
    Filed: July 6, 2004
    Publication date: March 8, 2007
    Applicant: SUMITOMO TITANIUM
    Inventors: Shinji Shimosaki, Tadashi Ogasawara, Sadanobu Nagaoka, Yasuhiro Masaki
  • Patent number: 7151068
    Abstract: A sintered object of silicon monoxide for use as a material for forming silicon oxide thin films is provided of which the evaporation residue as determined by subjecting a sample thereof to thermogravimetry at a heating temperature of 1,300° C. and in a vacuum atmosphere, namely at a pressure of not higher than 10 Pa, is not more than 4% by mass relative to the sample before measurement. This sintered object can be produced by sintering SiO particles having a particle diameter of not smaller than 250 ?m, either after press forming thereof or during press forming thereof, in a non-oxygen atmosphere. This sintered object is high in evaporation rate and, when it is used as a material for film formation, an improvement in productivity in producing silicon oxide thin films can be expected. Thus, it can be widely applied in forming silicon oxide thin films useful as electric insulating films, mechanical protection films, optical films, barrier films of food packaging materials, etc.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: December 19, 2006
    Assignee: Sumitomo Titanium Corporation
    Inventors: Yoshitake Natsume, Tadashi Ogasawara, Munetoshi Watanabe, Kazuomi Azuma, Toshiharu Iwase
  • Publication number: 20060266699
    Abstract: Provided are a porous sintered compact suitable for a filter, a power feeder in a polymer electrolyte membrane type water electrolyzer, a current collector in a solid polymer fuel cell and in addition a liquid dispersion plate, especially an ink dispersion plate for an ink jet printer ink and the like. A titanium powder sintered compact made of a plate-like porous compact is obtained by sintering spherical powder made of titanium or a titanium alloy produced by means of a gas atomization method. A void ratio in the range of from 35 to 55% is realized by filling without applying a pressure and sintering without applying a pressure.
    Type: Application
    Filed: August 10, 2006
    Publication date: November 30, 2006
    Applicant: Sumitomo Titanium Corporation
    Inventors: Takashi Onishi, Tadashi Ogasawara, Munetoshi Watanabe, Masamichi Kato
  • Publication number: 20060266698
    Abstract: Provided are a porous sintered compact suitable for a filter, a power feeder in a polymer electrolyte membrane type water electrolyzer, a current collector in a solid polymer fuel cell and in addition a liquid dispersion plate, especially an ink dispersion plate for an ink jet printer ink and the like. A titanium powder sintered compact made of a plate-like porous compact is obtained by sintering spherical powder made of titanium or a titanium alloy produced by means of a gas atomization method. A void ratio in the range of from 35 to 55% is realized by filling without applying a pressure and sintering without applying a pressure.
    Type: Application
    Filed: August 10, 2006
    Publication date: November 30, 2006
    Applicant: Sumitomo Titanium Corporation
    Inventors: Takashi Onishi, Tadashi Ogasawara, Munetoshi Watanabe, Masamichi Kato
  • Publication number: 20060266697
    Abstract: Provided are a porous sintered compact suitable for a filter, a power feeder in a polymer electrolyte membrane type water electrolyzer, a current collector in a solid polymer fuel cell and in addition a liquid dispersion plate, especially an ink dispersion plate for an ink jet printer ink and the like. A titanium powder sintered compact made of a plate-like porous compact is obtained by sintering spherical powder made of titanium or a titanium alloy produced by means of a gas atomization method. A void ratio in the range of from 35 to 55% is realized by filling without applying a pressure and sintering without applying a pressure.
    Type: Application
    Filed: August 10, 2006
    Publication date: November 30, 2006
    Applicant: Sumitomo Titanium Corporation
    Inventors: Takashi Onishi, Tadashi Ogasawara, Munetoshi Watanabe, Masamichi Kato
  • Publication number: 20060219053
    Abstract: The present invention relates to a method for producing a metal by a direct oxide reduction process with Ca. A CaCl2-based molten salt containing Ca is held in a reduction chamber 1, a metal oxide is introduced into the molten salt in the reduction chamber 1, and the metal oxide is reduced with the Ca in the molten salt to form said metal. The metal formed in the molten salt is separated from the molten salt in a separation means 2, and the molten salt deprived of the metal is introduced into a chlorination chamber 7 and subjected to chlorination treatment with chlorine gas to eliminate the byproduct CaO in the molten salt. The molten salt after chlorination treatment is introduced into an electrolysis chamber 8 and electrolyzed for the formation of Ca and chlorine from CaCl2, and the thus-formed Ca or Ca-containing molten salt is transferred from the electrolysis chamber 8 to the reduction chamber 1. The chlorine obtained in the electrolysis chamber 8 is used in the chlorination chamber 7.
    Type: Application
    Filed: July 14, 2004
    Publication date: October 5, 2006
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi
  • Publication number: 20060201800
    Abstract: A water electrolysis apparatus includes a plurality of unit cells. A membrane electrode assembly of the unit cell includes an anode side power feeding element and a cathode side power feeding element stacked on an anode catalyst layer and a cathode catalyst layer on both surfaces of a solid polymer electrolyte membrane. A surface of the anode side power feeding element is subjected to a grinding process, and then, subjected to an etching process to form a smooth surface.
    Type: Application
    Filed: February 24, 2006
    Publication date: September 14, 2006
    Applicants: Honda Motor Co., Ltd., Sumitomo Titanium Corporation
    Inventors: Koji Nakazawa, Masanori Okabe, Masato Kita, Kenji Taruya, Tadashi Ogasawara, Kazuomi Azuma, Takashi Onishi
  • Patent number: 7014722
    Abstract: In finifsh-cogging a high-purity titanium material into a cylindrical form as the final shape, if cylindrical cogging is performed in all stages of warm forging or if cylindrical cogging is performed in the initial stage of the warm forging, there is no need of peripherally restricting the cylindrical cogging material, so that even if longitudinal upset-forging is effected with an upsetting ratio of 2, the condition that the major diameter/minor diameter ratio of the section after forging is not more than 1.01 can be satisfied, developing superior upset-forgeability. This makes it possible, in producing disk-like targets for sputtering, to minimize cutting loss produced during the rolling and machining and to maximize the yield of products; therefore, the material can be widely used as a semiconductor material for electrodes and the like using a high-purity titanium material.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: March 21, 2006
    Assignee: Sumitomo Titanium Corporation
    Inventors: Nobuhiro Arimoto, Tadashi Ogasawara, Isao Uemura, Youji Mitani, Takashi Oonishi
  • Publication number: 20050227008
    Abstract: Titanium oxide-based photocatalysts which contain a metal halide in titanium oxide and which are prepared from titanium oxide and/or its precursor, which may optionally be heat treated, by contact with a reactive gas containing a metal halide of the formula MXn or MOXn (wherein M=a metal, X=a halogen, and n=an integer) with heating stably develop a high photocatalytic activity with visible light irradiation. The photocatalysts may subsequently be stabilized by contact with water or by heat treatment, and/or promoted by contact with a heteropoly acid and/or an isopoly acid so as to include a metal complex in the titanium oxide. Photocatalysts prepared in this manner exhibit novel ESR features. The present invention also provides methods for preparing these photocatalysts, a photocatalyst dispersion and a photocatalytic coating fluid containing such a photocatalyst, and photocatalytic functional products and methods for their manufacture using the photocatalyst.
    Type: Application
    Filed: March 20, 2003
    Publication date: October 13, 2005
    Inventors: Katsumi Okada, Katsuhiro Nishihara, Yasuhiro Masaki, Haruhiko Kajimura, Michiyasu Takahashi, Tadashi Yao, Tadashi Ogasawara, Munetoshi Watanabe, Shiji Shimosaki, Kouji Oda, Sadanobu Nagaoka
  • Publication number: 20050214533
    Abstract: A photocatalytic composite material having a high activity and good durability is produced by coating the surface of a substrate with a continuous film of titanium oxide by vapor deposition from titanium tetrachloride. In the case of a substrate which is a mass of inorganic fibers such as glass cloth, the individual fibers or filaments in the mass are coated with titanium oxide. The vapor deposition is performed by contacting the substrate, such as a mass of inorganic fibers, which has been heated to 100-300° C., with a mixture of distilled pure titanium tetrachloride vapor and water vapor to form a film of a titanium oxide precursor on the surface of the substrate. Then, the substrate is heated at 300-600° C. in an oxidizing atmosphere, resulting in the formation on the substrate surface of a continuous film of a photocatalyst having a high activity and good adhesion to the substrate and comprising crystalline titanium oxide with an average crystallite diameter of 50 nm or smaller.
    Type: Application
    Filed: July 26, 2002
    Publication date: September 29, 2005
    Applicant: Sumitomo Titanium Corporation
    Inventors: Shinji Shimosaki, Tadashi Ogasawara, Munetoshi Watanabe, Kouji Oda, Sadanobu Nagaoaka, Yasuhiro Masaki