Patents by Inventor Takuya Aoyagi

Takuya Aoyagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10177069
    Abstract: A heat-dissipating structure is formed by bonding a first member and a second member, each being any of a metal, ceramic, and semiconductor, via a die bonding member; or a semiconductor module formed by bonding a semiconductor chip, a metal wire, a ceramic insulating substrate, and a heat-dissipating base substrate including metal, with a die bonding member interposed between each. At least one of the die bonding members includes a lead-free low-melting-point glass composition and metal particles. The lead-free low-melting-point glass composition accounts for 78 mol % or more in terms of the total of the oxides V2O5, TeO2, and Ag2O serving as main ingredients. The content of each of TeO2 and Ag2O is 1 to 2 times the content of V2O5, and at least one of BaO, WO3, and P2O5 is included as accessory ingredients, and at least one of Y2O3, La2O3, and Al2O3 is included as additional ingredients.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: January 8, 2019
    Assignee: HITACHI LTD.
    Inventors: Takashi Naito, Motomune Kodama, Takuya Aoyagi, Shigeru Kikuchi, Takashi Nogawa, Mutsuhiro Mori, Eiichi Ide, Toshiaki Morita, Akitoyo Konno, Taigo Onodera, Tatsuya Miyake, Akihiro Miyauchi
  • Patent number: 10170273
    Abstract: The purpose of the present invention is to provide a charged particle beam device that exhibits high performance due to the use of vanadium glass coatings, and to provide a method of manufacturing a component for a charged particle beam device. Specifically provided is a charged particle beam device using a vacuum component characterized by comprising a metal container, the interior space of which is evacuated to form a high vacuum, and coating layers formed on the surface on the interior space-side of the metal container, wherein the coating layers are vanadium-containing glass, which is to say an amorphous substance.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: January 1, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takashi Ichimura, Hiroyuki Ito, Shinichi Kato, Hisaya Murakoshi, Tadashi Fujieda, Tatsuya Miyake, Takashi Naitou, Takuya Aoyagi, Kenji Tanimoto
  • Publication number: 20180354843
    Abstract: The purpose of the present invention is to provide a lead-free glass composition in which crystallization is suppressed and which has a low softening point. This lead-free glass composition is characterized by containing silver oxide, tellurium oxide and vanadium oxide, and further containing at least one compound selected from among yttrium oxide, lanthanum oxide, cerium oxide, erbium oxide, ytterbium oxide, aluminum oxide, gallium oxide, indium oxide, iron oxide, tungsten oxide and molybdenum oxide as an additional component, and in that the content values (mol %) of silver oxide, tellurium oxide and vanadium oxide satisfy the relationships Ag2O>TeO2?V2O5 and Ag5O?2V2O5 when calculated in terms of the oxides, and in that the content of TeO2 is 25-37 mol. %.
    Type: Application
    Filed: January 11, 2017
    Publication date: December 13, 2018
    Applicant: HITACHI, LTD.
    Inventors: Takashi NAITO, Takuya AOYAGI, Tatsuya MIYAKE, Takeshi KONDO, Hiroki KANEKO, Kazutaka OKAMOTO
  • Publication number: 20180244561
    Abstract: The purpose of the present invention is to provide a joining material that can easily join materials to be joined even when characteristics and physical properties thereof differ greatly. To solve the above problem, the joining material according to the present invention is characterized by including a base material, a first layer that is disposed on one surface of the base material, and a second layer that is disposed on the other surface of the base material and includes a phase having a different coefficient of thermal expansion to that of the phase configuring the first layer, at least one of the first and second layers including glass having a softening point of 600° C. or lower.
    Type: Application
    Filed: July 11, 2016
    Publication date: August 30, 2018
    Applicant: HITACHI, LTD.
    Inventors: Takuya AOYAGI, Takashi NAITO, Tatsuya MIYAKE
  • Patent number: 10026923
    Abstract: An electronic component has an organic member between two transparent substrates, in which outer peripheral portions of the two transparent substrates are bonded by a sealing material containing low melting glass. The low melting glass contains vanadium oxide, tellurium oxide, iron oxide and phosphoric acid, and satisfies the following relations (1) and (2) in terms of oxides. The sealing material is formed of a sealing material paste which contains the low melting glass, a resin binder and a solvent, the low melting glass containing vanadium oxide, tellurium oxide, iron oxide and phosphoric acid, and satisfies the following relations (1) and (2) in terms of the oxides. Thereby, thermal damages to an organic element or an organic material contained in the electronic component can be reduced and an electronic component having a glass bonding layer of high reliability can be produced efficiently.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: July 17, 2018
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Takashi Naito, Shinichi Tachizono, Kei Yoshimura, Yuji Hashiba, Motomune Kodama, Masanori Miyagi, Takuya Aoyagi, Yuichi Sawai, Tadashi Fujieda, Takeshi Tsukamoto, Hajime Murakami
  • Publication number: 20180111218
    Abstract: It is an objective of the invention to provide a conductive joint article exhibiting electrical joinability comparable to that of solder joining of easy-to-solder joinable metals even when a joined member of the conductive joint article is made of a hard-to-solder joinable metal. There is provided a conductive joint article with conductive joined members electrically joined via a joining layer, at least one of the joined members being made of a hard-to-solder joinable metal. The joining layer comprises an oxide glass phase and a conductive metal phase. The oxide glass phase includes vanadium as a major constituent and at least one of phosphorus, barium and tungsten as an accessory constituent, and has a glass transition point of 390° C. or less. And, connection resistance between the joined members exhibits less than 1×10?5 ?/mm2.
    Type: Application
    Filed: April 22, 2016
    Publication date: April 26, 2018
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Takashi NAITO, Shinichi TACHIZONO, Kei YOSHIMURA, Yuji HASHIBA, Kiyomi NAKAMURA, Taigo ONODERA, Takuya AOYAGI, Tatsuya MIYAKE
  • Patent number: 9950948
    Abstract: An Ag2O—V2O5—TeO2 lead-free low-melting glass composition that is prevented or restrained from crystallization by heating so as to soften and flow more satisfactorily at a low temperature contains a principal component which includes a vanadium oxide, a tellurium oxide and a silver oxide; a secondary component which includes at least one selected from the group consisting of BaO, WO3 and P2O5; and an additional component which includes at least one selected from the group consisting of oxides of elements in Group 13 of periodic table. A total component of the principal component is 85 mole percent or more in terms of V2O5, TeO2 and Ag2O. Contents of TeO2 and Ag2O each is 1 to 2 times as much as a content of V2O5. A content of the secondary component is 0 to 13 mole percent. A content of the additional component is 0.1 to 3.0 mole percent.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: April 24, 2018
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Takashi Naito, Shinichi Tachizono, Kei Yoshimura, Yuji Hashiba, Takuya Aoyagi, Taigo Onodera, Tatsuya Miyake
  • Publication number: 20180094475
    Abstract: Provided are a vacuum heat insulating member which includes: a first substrate; a second substrate; and a sealing part disposed between the first substrate and the second substrate, in which an internal space is formed by surrounding by the first substrate, the second substrate and the sealing part, and in which the sealing part includes a glass phase and a metal phase, the metal phase being disposed on a side of the internal space of the glass phase. Thus, in the vacuum heat insulating member, an amount of a gas released from the glass phase to the internal space can be decreased and a high heat insulating property can be kept.
    Type: Application
    Filed: October 2, 2017
    Publication date: April 5, 2018
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Takashi NAITO, Kei YOSHIMURA, Yuji HASHIBA, Shinichi TACHIZONO, Takuya AOYAGI, Tatsuya MIYAKE
  • Publication number: 20180019096
    Abstract: The purpose of the present invention is to provide a charged particle beam device that exhibits high performance due to the use of vanadium glass coatings, and to provide a method of manufacturing a component for a charged particle beam device. Specifically provided is a charged particle beam device using a vacuum component characterized by comprising a metal container, the interior space of which is evacuated to form a high vacuum, and coating layers formed on the surface on the interior space-side of the metal container, wherein the coating layers are vanadium-containing glass, which is to say an amorphous substance.
    Type: Application
    Filed: January 21, 2016
    Publication date: January 18, 2018
    Inventors: Takashi ICHIMURA, Hiroyuki ITO, Shinichi KATO, Hisaya MURAKOSHI, Tadashi FUJIEDA, Tatsuya MIYAKE, Takashi NAITOU, Takuya AOYAGI, Kenji TANIMOTO
  • Publication number: 20180008231
    Abstract: An ultrasound probe is provided which maintains sufficient adhesion strength of the layers that configure the ultrasound probe and which matches the acoustic impedance of a piezoelectric element to that of the organism; also provided is an ultrasound diagnostic device provided with said ultrasound probe. This ultrasound probe (100a) is characterized by comprising a backing layer, a piezoelectric element layer (6E), an acoustic matching layer (2A) and an acoustic lens (1), laminated in that order, wherein an adhesion layer (14A) containing vanadium glass is provided between the piezoelectric element layer (6E) and the acoustic matching layer (2A).
    Type: Application
    Filed: January 27, 2016
    Publication date: January 11, 2018
    Inventors: Tatsuya MIYAKE, Toru WATANABE, Takashi NAITO, Takuya AOYAGI, Taigo ONODERA
  • Patent number: 9824900
    Abstract: The deterioration of the resin base materials in the bonded structure is prevented. In a bonded structure containing two base materials at least one of which is a resin, an oxide which contains either P or Ag, V, and Te, and are formed by softening on the two base materials, bond the two base materials. In addition, in a method for producing a bonded structure containing two base materials at least one of which is a resin containing: supplying an oxide containing either P or Ag, V, and Te to the base material; and applying electromagnetic waves to the oxide, whereby the oxide, which soften on the substrates, bond the two base material.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: November 21, 2017
    Assignee: Hitachi, Ltd.
    Inventors: Motomune Kodama, Takashi Naito, Yuichi Sawai, Tadashi Fujieda, Takuya Aoyagi, Masanori Miyagi
  • Patent number: 9796821
    Abstract: Mechanical strength of a composite material is enhanced by a simple process. In a composite material comprising a resin or a rubber and an oxide glass, the resin or the rubber is dispersed in the oxide glass, or the oxide glass is dispersed in the resin or the rubber. The composite material has a function that the oxide glass is softened and fluidized by electromagnetic waves.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: October 24, 2017
    Assignee: Hitachi, Ltd.
    Inventors: Takuya Aoyagi, Takashi Naito, Tadashi Fujieda, Yuichi Sawai, Hajime Murakami, Hiroshi Yoshida, Akihiro Miyauchi, Masahiko Ogino
  • Publication number: 20170301883
    Abstract: An electronic component has an organic member between two transparent substrates, in which outer peripheral portions of the two transparent substrates are bonded by a sealing material containing low melting glass. The low melting glass contains vanadium oxide, tellurium oxide, iron oxide and phosphoric acid, and satisfies the following relations (1) and (2) in terms of oxides. The sealing material is formed of a sealing material paste which contains the low melting glass, a resin binder and a solvent, the low melting glass containing vanadium oxide, tellurium oxide, iron oxide and phosphoric acid, and satisfies the following relations (1) and (2) in terms of the oxides. Thereby, thermal damages to an organic element or an organic material contained in the electronic component can be reduced and an electronic component having a glass bonding layer of high reliability can be produced efficiently.
    Type: Application
    Filed: June 28, 2017
    Publication date: October 19, 2017
    Inventors: Takashi NAITO, Shinichi TACHIZONO, Kei YOSHIMURA, Yuji HASHIBA, Motomune KODAMA, Masanori MIYAGI, Takuya AOYAGI, Yuichi SAWAI, Tadashi FUJIEDA, Takeshi TSUKAMOTO, Hajime MURAKAMI
  • Patent number: 9793011
    Abstract: Provided is a structure including a first member (2); a second member (3) disposed opposite to the first member (2); and a glass layer (4) disposed between the first member (2) and the second member (3) so as to bond the first member (2) and the second member (3). A glass transition point of the glass layer (4) is lower than a temperature of the glass layer (4) under operation. In the glass layer (4), at least either of ceramic and metallic particles 4b, 4c is dispersed. In a temperature region lower than the glass transition point of the glass layer (4), a thermal expansion coefficient thereof falls in between thermal expansion coefficients of the first member (2) and the second member (3). This allows thermal strain caused within the structure (1) to be reduced when the structure (1) is operated at a higher temperature than a room temperature.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: October 17, 2017
    Assignee: Hitachi, Ltd.
    Inventors: Ryou Ishibashi, Takashi Naitou, Motomune Kodama, Takuya Aoyagi, Tetsushi Hino, Motoo Aoyama, Tsuneyuki Hashimoto, Katsuhito Takahashi, Junichi Sakano, Hiroshi Nakano
  • Patent number: 9789568
    Abstract: An aluminum wire body, in which an aluminum or aluminum alloy electric wire and a metal to be joined are joined by solder, wherein the solder includes an oxide glass including vanadium and a conducting particle. Preferably, the conducting particle contained in the solder is 90% by volume or less and the oxide glass is 20% by volume to 90% by volume. Further preferably, the oxide glass includes 40% by mass or more of Ag2O in terms of oxides and the glass transition point is 180° C. or less.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: October 17, 2017
    Assignee: Hitachi, Ltd.
    Inventors: Takuya Aoyagi, Motomune Kodama, Takashi Naito, Tadashi Fujieda, Yuichi Sawai, Masanori Miyagi, Haruo Akahoshi, Norihisa Iwasaki
  • Patent number: 9786463
    Abstract: The conductive paste contains the following dispersed in a binder resin dissolved in a solvent: a plurality of particles comprising aluminum and/or an aluminum-containing alloy; and an oxide-comprising powder. The oxide contains vanadium with a valence no greater than 4 and a glass phase. In the method for manufacturing an electronic component, the conductive paste is applied to a substrate and fired, forming electrode wiring. The electronic component is provided with electrode wiring that has: a plurality of particles comprising aluminum and/or an aluminum-containing alloy; and an oxide affixing the particles to a substrate. The oxide contains vanadium with a valence no greater than 4. A compound layer containing vanadium and aluminum is formed on the surfaces of the particles, and the vanadium in the compound layer includes vanadium with a valence no greater than 4. This results in an electrode wiring with high reliability and water resistance.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: October 10, 2017
    Assignees: HITACHI, LTD., HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Takuya Aoyagi, Takashi Naito, Yuji Hashiba, Kei Yoshimura, Shinichi Tachizono
  • Publication number: 20170253522
    Abstract: An Ag2O—V2O5—TeO2 lead-free low-melting glass composition that is prevented or restrained from crystallization by heating so as to soften and flow more satisfactorily at a low temperature contains a principal component which includes a vanadium oxide, a tellurium oxide and a silver oxide; a secondary component which includes at least one selected from the group consisting of BaO, WO3 and P2O5; and an additional component which includes at least one selected from the group consisting of oxides of elements in Group 13 of periodic table. A total component of the principal component is 85 mole percent or more in terms of V2O5, TeO2 and Ag2O. Contents of TeO2 and Ag2O each is 1 to 2 times as much as a content of V2O5. A content of the secondary component is 0 to 13 mole percent. A content of the additional component is 0.1 to 3.0 mole percent.
    Type: Application
    Filed: May 18, 2017
    Publication date: September 7, 2017
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Takashi NAITO, Shinichi TACHIZONO, Kei YOSHIMURA, Yuji HASHIBA, Takuya AOYAGI, Taigo ONODERA, Tatsuya MIYAKE
  • Publication number: 20170236768
    Abstract: A heat-dissipating structure is formed by bonding a first member and a second member, each being any of a metal, ceramic, and semiconductor, via a die bonding member; or a semiconductor module formed by bonding a semiconductor chip, a metal wire, a ceramic insulating substrate, and a heat-dissipating base substrate including metal, with a die bonding member interposed between each. At least one of the die bonding members includes a lead-free low-melting-point glass composition and metal particles. The lead-free low-melting-point glass composition accounts for 78 mol % or more in terms of the total of the oxides V2O5, TeO2, and Ag2O serving as main ingredients. The content of each of TeO2 and Ag2O is 1 to 2 times the content of V2O5, and at least one of BaO, WO3, and P2O5 is included as accessory ingredients, and at least one of Y2O3, La2O3, and Al2O3 is included as additional ingredients.
    Type: Application
    Filed: September 9, 2015
    Publication date: August 17, 2017
    Applicant: HITACHI, LTD.
    Inventors: Takashi NAITO, Motomune KODAMA, Takuya AOYAGI, Shigeru KIKUCHI, Takashi NOGAWA, Mutsuhiro MORI, Eiichi IDE, Toshiaki MORITA, Akitoyo KONNO, Taigo ONODERA, Tatsuya MIYAKE, Akihiko MIYAUCHI
  • Patent number: 9728341
    Abstract: An electronic component has an organic member between two transparent substrates, in which outer peripheral portions of the two transparent substrates are bonded by a sealing material containing to melting glass. The low melting glass contains vanadium oxide, tellurium oxide, iron oxide and phosphoric acid, and satisfies the following relations (1) and (2) in terms of oxides. The sealing material is formed of a sealing material paste which contains the low melting glass, a resin binder and a solvent, the low melting glass containing vanadium oxide, tellurium oxide, iron oxide and phosphoric acid, and satisfies the following relations (1) and (2) in terms of the oxides. Thereby, thermal damages to an organic element or an organic material contained in the electronic component can be reduced and an electronic component having a glass bonding layer of high reliability can be produced efficiently.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: August 8, 2017
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Takashi Naito, Shinichi Tachizono, Kei Yoshimura, Yuji Hashiba, Motomune Kodama, Masanori Miyagi, Takuya Aoyagi, Yuichi Sawai, Tadashi Fujieda, Takeshi Tsukamoto, Hajime Murakami
  • Publication number: 20170203997
    Abstract: An object of the present invention is to provide a multi-layer glass with high degree of vacuum and high mass productivity. In order to achieve the object, the multi-layer glass according to the present invention includes a first glass substrate, a second glass substrate disposed facing the first glass substrate with a space therebetween, a sealing portion, which contains a glass composition and is disposed in a peripheral edge portion of the space between the first glass substrate and the second glass substrate, and column members disposed between the first glass substrate and the second glass substrate, wherein the column member is made of a metal or alloy, and a melting point of the metal or alloy is higher than a softening point of the glass composition and is lower than or equal to a temperature 20° C. higher than a flow point of the glass composition.
    Type: Application
    Filed: January 17, 2017
    Publication date: July 20, 2017
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Tatsuya MIYAKE, Takashi NAITO, Takuya AOYAGI, Eiichi OGIWARA, Akihito IWAI, Shinichi TACHIZONO, Kei YOSHIMURA, Yuji HASHIBA