Patents by Inventor Thomas Gehrke

Thomas Gehrke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128396
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Application
    Filed: December 11, 2023
    Publication date: April 18, 2024
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Patent number: 11843072
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: December 12, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Publication number: 20210328094
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Patent number: 11049994
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: June 29, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Publication number: 20210184079
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 17, 2021
    Inventors: Scott D. Schellhammer, Scott E. Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Patent number: 10923627
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: February 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Scott D. Schellhammer, Scott E. Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Publication number: 20200243651
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: December 21, 2018
    Publication date: July 30, 2020
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventors: T. Warren Weeks, JR., Edwin Lanier Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 10431714
    Abstract: Engineered substrates for semiconductor devices are disclosed herein. A device in accordance with a particular embodiment includes a transducer structure having a plurality of semiconductor materials including a radiation-emitting active region. The device further includes an engineered substrate having a first material and a second material, at least one of the first material and the second material having a coefficient of thermal expansion at least approximately matched to a coefficient of thermal expansion of at least one of the plurality of semiconductor materials. At least one of the first material and the second material is positioned to receive radiation from the active region and modify a characteristic of the light.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: October 1, 2019
    Assignee: Qromis, Inc.
    Inventors: Martin F. Schubert, Cem Basceri, Vladimir Odnoblyudov, Casey Kurth, Thomas Gehrke
  • Publication number: 20190229190
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: December 21, 2018
    Publication date: July 25, 2019
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventors: T. Warren Weeks, JR., Edwin Lanier Piner, Thomas Gehrke, Kevin J. Linthicum
  • Publication number: 20190214468
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: December 4, 2018
    Publication date: July 11, 2019
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventors: T. Warren Weeks, JR., Edwin Lanier Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 10177229
    Abstract: A semiconductor material includes a compositionally-graded transition layer, an intermediate later and a gallium nitride material layer. The compositionally-graded transition layer has a back surface and a top surface, and includes a gallium nitride alloy. The gallium concentration in the compositionally-graded transition layer increases from the back surface to the front surface. The intermediate layer is formed under the compositionally-graded transition layer. The gallium nitride material layer is formed over the compositionally-graded transition layer, and has a crack level of less than 0.005 ?m/?m2.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: January 8, 2019
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 10147727
    Abstract: Some embodiments include a conductive structure which has a first conductive material having a work function of at least 4.5 eV, and a second conductive material over and directly against the first conductive material. The second conductive material has a work function of less than 4.5 eV, and is shaped as an upwardly-opening container. The conductive structure includes a third conductive material within the upwardly-opening container shape of the second conductive material and directly against the second conductive material. The third conductive material is a different composition relative to the second conductive material. Some embodiments include wordlines, and some embodiments include transistors.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: December 4, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Jaydeb Goswami, Zailong Bian, Yushi Hu, Eric R. Blomiley, Jaydip Guha, Thomas Gehrke
  • Publication number: 20180175039
    Abstract: Some embodiments include a conductive structure which has a first conductive material having a work function of at least 4.5 eV, and a second conductive material over and directly against the first conductive material. The second conductive material has a work function of less than 4.5 eV, and is shaped as an upwardly-opening container. The conductive structure includes a third conductive material within the upwardly-opening container shape of the second conductive material and directly against the second conductive material. The third conductive material is a different composition relative to the second conductive material. Some embodiments include wordlines, and some embodiments include transistors.
    Type: Application
    Filed: February 13, 2018
    Publication date: June 21, 2018
    Applicant: Micron Technology, Inc.
    Inventors: Jaydeb Goswami, Zailong Bian, Yushi Hu, Eric R. Blomiley, Jaydip Guha, Thomas Gehrke
  • Publication number: 20180138182
    Abstract: Some embodiments include a conductive structure which has a first conductive material having a work function of at least 4.5 eV, and a second conductive material over and directly against the first conductive material. The second conductive material has a work function of less than 4.5 eV, and is shaped as an upwardly-opening container. The conductive structure includes a third conductive material within the upwardly-opening container shape of the second conductive material and directly against the second conductive material. The third conductive material is a different composition relative to the second conductive material. Some embodiments include wordlines, and some embodiments include transistors.
    Type: Application
    Filed: November 11, 2016
    Publication date: May 17, 2018
    Inventors: Jaydeb Goswami, Zailong Bian, Yushi Hu, Eric R. Blomiley, Jaydip Guha, Thomas Gehrke
  • Patent number: 9972628
    Abstract: Some embodiments include a conductive structure which has a first conductive material having a work function of at least 4.5 eV, and a second conductive material over and directly against the first conductive material. The second conductive material has a work function of less than 4.5 eV, and is shaped as an upwardly-opening container. The conductive structure includes a third conductive material within the upwardly-opening container shape of the second conductive material and directly against the second conductive material. The third conductive material is a different composition relative to the second conductive material. Some embodiments include wordlines, and some embodiments include transistors.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: May 15, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Jaydeb Goswami, Zailong Bian, Yushi Hu, Eric R. Blomiley, Jaydip Guha, Thomas Gehrke
  • Publication number: 20170345972
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Application
    Filed: August 17, 2017
    Publication date: November 30, 2017
    Inventors: Scott D. Schellhammer, Scott E. Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Publication number: 20170288089
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Application
    Filed: June 23, 2017
    Publication date: October 5, 2017
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Patent number: 9748442
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: August 29, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Scott D. Schellhammer, Scott E. Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Patent number: 9705028
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: July 11, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Publication number: 20170104126
    Abstract: Various embodiments of light emitting devices with built-in chromaticity conversion and associated methods of manufacturing are described herein. In one embodiment, a method for manufacturing a light emitting device includes forming a first semiconductor material, an active region, and a second semiconductor material on a substrate material in sequence, the active region being configured to produce a first emission. A conversion material is then formed on the second semiconductor material. The conversion material has a crystalline structure and is configured to produce a second emission. The method further includes adjusting a characteristic of the conversion material such that a combination of the first and second emission has a chromaticity at least approximating a target chromaticity of the light emitting device.
    Type: Application
    Filed: December 20, 2016
    Publication date: April 13, 2017
    Inventors: Cem Basceri, Thomas Gehrke, Charles M. Watkins