Patents by Inventor Thomas H. Osterheld

Thomas H. Osterheld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200086452
    Abstract: A substrate polishing apparatus is disclosed that includes a polishing platform having two or more zones, each zone adapted to receive a different slurry component. A substrate polishing system is provided having a holder to hold a substrate, a polishing platform having a polishing pad, and a distribution system adapted to dispense, in a timed sequence, at least two different slurry components selected from a group consisting of an oxidation slurry component, a material removal slurry component, and a corrosion inhibiting slurry component. Polishing methods and systems adapted to polish substrates are provided, as are numerous other aspects.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Inventors: Rajeev Bajaj, Thomas H. Osterheld, Hung Chen, Terrance Y. Lee
  • Patent number: 10589399
    Abstract: A chemical mechanical polishing system includes a substrate support configured to hold a substrate, a polishing pad assembly include a membrane and a polishing pad portion having a polishing surface, a polishing pad carrier, and a drive system configured to cause relative motion between the substrate support and the polishing pad carrier. The polishing pad portion is joined to the membrane on a side opposite the polishing surface. The polishing surface has a width parallel to the polishing surface at least four times smaller than a diameter of the substrate. An outer surface of the polishing pad portion includes at least one recess and at least one plateau having a top surface that provides the polishing surface. The polishing surface has a plurality of edges defined by intersections between side walls of the at least one recess and a top surface of the at least one plateau.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: March 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jeonghoon Oh, Edwin C. Suarez, Jason Garcheung Fung, Eric Lau, King Yi Heung, Ashwin Murugappan Chockalingam, Daniel Redfield, Charles C. Garretson, Thomas H. Osterheld
  • Patent number: 10562147
    Abstract: A polishing system includes a platen having a top surface, an annular polishing pad supported on the platen, a carrier head to hold a substrate in contact with the annular polishing pad, a support structure from which the carrier head is suspended and which is configured to move the hold the carrier head laterally across the polishing pad, and a controller. The platen is rotatable about an axis of rotation that passes through approximately the center of the platen, and the inner edge of the annular polishing pad is positioned around the axis of rotation. The controller is configured to cause the support structure to position the carrier head such that a portion of the substrate overhangs the inner edge of the annular polishing pad while the substrate is contacting the polishing pad.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 18, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Paul D. Butterfield, Thomas H. Osterheld, Jeonghoon Oh, Shou-Sung Chang, Steven M. Zuniga, Fred C. Redeker
  • Publication number: 20200005140
    Abstract: A method of generating training spectra for training of a neural network includes generating a plurality of theoretically generated initial spectra from an optical model, sending the plurality of theoretically generated initial spectra to a feedforward neural network to generate a plurality of modified theoretically generated spectra, sending an output of the feedforward neural network and empirically collected spectra to a discriminatory convolutional neural network, determining that the discriminatory convolutional neural network does not discriminate between the modified theoretically generated spectra and empirically collected spectra, and thereafter, generating a plurality of training spectra from the feedforward neural network.
    Type: Application
    Filed: June 21, 2019
    Publication date: January 2, 2020
    Inventors: Benjamin Cherian, Nicholas Wiswell, Jun Qian, Thomas H. Osterheld
  • Publication number: 20200005139
    Abstract: A method of generating training spectra for training of a neural network includes measuring a first plurality of training spectra from one or more sample substrates, measuring a characterizing value for each training spectra of the plurality of training spectra to generate a plurality of characterizing values with each training spectrum having an associated characterizing value, measuring a plurality of dummy spectra during processing of one or more dummy substrates, and generating a second plurality of training spectra by combining the first plurality of training spectra and the plurality of dummy spectra, there being a greater number of spectra in the second plurality of training spectra than in the first plurality of training spectra. Each training spectrum of the second plurality of training spectra having an associated characterizing value.
    Type: Application
    Filed: June 21, 2019
    Publication date: January 2, 2020
    Inventors: Benjamin Cherian, Nicholas Wiswell, Jun Qian, Thomas H. Osterheld
  • Patent number: 10500694
    Abstract: A substrate polishing apparatus is disclosed that includes a polishing platform having two or more zones, each zone adapted to receive a different slurry component. A substrate polishing system is provided having a holder to hold a substrate, a polishing platform having a polishing pad, and a distribution system adapted to dispense, in a timed sequence, at least two different slurry components selected from a group consisting of an oxidation slurry component, a material removal slurry component, and a corrosion inhibiting slurry component. Polishing methods and systems adapted to polish substrates are provided, as are numerous other aspects.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: December 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Rajeev Bajaj, Thomas H. Osterheld, Hung Chen, Terrance Y. Lee
  • Patent number: 10478937
    Abstract: A chemical mechanical polishing apparatus includes a platen to support a polishing pad, and an in-situ acoustic emission monitoring system including an acoustic emission sensor supported by the platen, a waveguide configured to extending through at least a portion of the polishing pad, and a processor to receive a signal from the acoustic emission sensor. The in-situ acoustic emission monitoring system is configured to detect acoustic events caused by deformation of the substrate and transmitted through the waveguide, and the processor is configured to determine a polishing endpoint based on the signal.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: November 19, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jianshe Tang, David Masayuki Ishikawa, Benjamin Cherian, Jeonghoon Oh, Thomas H. Osterheld
  • Publication number: 20190283209
    Abstract: A polishing apparatus includes a polishing station to hold a polishing pad, a carrier head to hold a substrate in contact with a polishing pad at the polishing station, a camera positioned to capture an image of a lower surface of a consumable part when the consumable part moves away from the polishing pad, and a controller configured to perform an image processing algorithm on the image to determine whether the consumable part is damaged. The consumable part can be a retaining ring on a carrier head, or a conditioner disk on a conditioner head.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 19, 2019
    Inventors: Thomas H. Osterheld, Dominic J. Benvegnu
  • Publication number: 20190283204
    Abstract: A chemical mechanical polishing apparatus includes a platen to support a polishing pad, the platen having a recess, a flexible membrane in the recess, and an in-situ vibration monitoring system to generate a signal. The in-situ acoustic monitoring system includes a vibration sensor supported by the flexible membrane and positioned to couple to an underside of the polishing pad.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 19, 2019
    Inventors: Boguslaw A. Swedek, Dominic J. Benvegnu, Chih Chung Chou, Nicholas Wiswell, Thomas H. Osterheld, Jeonghoon Oh
  • Patent number: 10256111
    Abstract: A method for polishing dies locations on a substrate with a polishing module. A thickness at selected locations on the substrate is premeasured at a metrology station, each location corresponding to a location of a single die. The thickness obtained by the metrology station for the selected locations of the substrate is provided to a controller of a polishing module. The thickness corrections for each selected location on the substrate are determined. A polishing step in a polishing recipe is formed from the thickness correction for each selected location. A polishing parameter for each die location is calculated for the recipe.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: April 9, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Eric Lau, King Yi Heung, Charles C. Garretson, Jun Qian, Thomas H. Osterheld, Shuchivrat Datar, David Chui
  • Publication number: 20180056477
    Abstract: A polishing system includes a platen having a top surface, an annular polishing pad supported on the platen, a carrier head to hold a substrate in contact with the annular polishing pad, a support structure from which the carrier head is suspended and which is configured to move the hold the carrier head laterally across the polishing pad, and a controller. The platen is rotatable about an axis of rotation that passes through approximately the center of the platen, and the inner edge of the annular polishing pad is positioned around the axis of rotation. The controller is configured to cause the support structure to position the carrier head such that a portion of the substrate overhangs the inner edge of the annular polishing pad while the substrate is contacting the polishing pad.
    Type: Application
    Filed: August 30, 2017
    Publication date: March 1, 2018
    Inventors: Paul D. Butterfield, Thomas H. Osterheld, Jeonghoon Oh, Shou-Sung Chang, Steven M. Zuniga, Fred C. Redeker
  • Publication number: 20180005842
    Abstract: A method for polishing dies locations on a substrate with a polishing module. A thickness at selected locations on the substrate is premeasured at a metrology station, each location corresponding to a location of a single die. The thickness obtained by the metrology station for the selected locations of the substrate is provided to a controller of a polishing module. The thickness corrections for each selected location on the substrate are determined. A polishing step in a polishing recipe is formed from the thickness correction for each selected location. A polishing parameter for each die location is calculated for the recipe.
    Type: Application
    Filed: June 13, 2017
    Publication date: January 4, 2018
    Inventors: Eric LAU, King Yi HEUNG, Charles C. GARRETSON, Jun QIAN, Thomas H. OSTERHELD, Shuchivrat DATAR, David CHUI
  • Publication number: 20170309494
    Abstract: Embodiments of the invention provide a non-uniform substrate polishing apparatus that includes a polishing pad with two or more zones, each zone adapted to apply a different slurry chemistry to a different area on a substrate to create a film thickness profile on the substrate having at least two different film thicknesses. Polishing methods and systems adapted to polish substrates are also provided, as are numerous other aspects.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 26, 2017
    Inventors: Thomas H. Osterheld, Rajeev Bajaj
  • Publication number: 20170297163
    Abstract: A substrate polishing apparatus is disclosed that includes a polishing platform having two or more zones, each zone adapted to receive a different slurry component. A substrate polishing system is provided having a holder to hold a substrate, a polishing platform having a polishing pad, and a distribution system adapted to dispense, in a timed sequence, at least two different slurry components selected from a group consisting of an oxidation slurry component, a material removal slurry component, and a corrosion inhibiting slurry component. Polishing methods and systems adapted to polish substrates are provided, as are numerous other aspects.
    Type: Application
    Filed: June 28, 2017
    Publication date: October 19, 2017
    Inventors: Rajeev Bajaj, Thomas H. Osterheld, Hung Chen, Terrance Y. Lee
  • Publication number: 20170274498
    Abstract: A chemical mechanical polishing system includes a substrate support configured to hold a substrate, a polishing pad assembly include a membrane and a polishing pad portion having a polishing surface, a polishing pad carrier, and a drive system configured to cause relative motion between the substrate support and the polishing pad carrier. The polishing pad portion is joined to the membrane on a side opposite the polishing surface. The polishing surface has a width parallel to the polishing surface at least four times smaller than a diameter of the substrate. An outer surface of the polishing pad portion includes at least one recess and at least one plateau having a top surface that provides the polishing surface. The polishing surface has a plurality of edges defined by intersections between side walls of the at least one recess and a top surface of the at least one plateau.
    Type: Application
    Filed: March 17, 2017
    Publication date: September 28, 2017
    Inventors: Jeonghoon Oh, Edwin C. Suarez, Jason Garcheung Fung, Eric Lau, King Yi Heung, Ashwin Murugappan Chockalingam, Daniel Redfield, Charles C. Garretson, Thomas H. Osterheld
  • Publication number: 20160256978
    Abstract: A chemical mechanical polishing apparatus includes a platen to support a polishing pad, and an in-situ acoustic emission monitoring system including an acoustic emission sensor supported by the platen, a waveguide configured to extending through at least a portion of the polishing pad, and a processor to receive a signal from the acoustic emission sensor. The in-situ acoustic emission monitoring system is configured to detect acoustic events caused by deformation of the substrate and transmitted through the waveguide, and the processor is configured to determine a polishing endpoint based on the signal.
    Type: Application
    Filed: March 5, 2015
    Publication date: September 8, 2016
    Inventors: Jianshe Tang, David Masayuki Ishikawa, Benjamin Cherian, Jeonghoon Oh, Thomas H. Osterheld
  • Publication number: 20160101497
    Abstract: A polishing apparatus includes a plurality of stations supported on a platform, the plurality of stations including at least two polishing stations and a transfer station, each polishing station including a platen to support a polishing pad, a plurality of carrier heads suspended from and movable along a track such that each polishing station is selectively positionable at the stations, and a controller configured to control motion of the carrier heads along the track such that during polishing at each polishing station only a single carrier head is positioned in the polishing station.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Doyle E. Bennett, Thomas H. Osterheld, Benjamin Cherian, Dominic J. Benvegnu, Harry Q. Lee, Allen L. D'Ambra, Jagan Rangarajan
  • Publication number: 20160027668
    Abstract: Embodiments of the invention provide a non-uniform substrate polishing apparatus that includes a polishing pad with two or more zones, each zone adapted to apply a different slurry chemistry to a different area on a substrate to create a film thickness profile on the substrate having at least two different film thicknesses. Polishing methods and systems adapted to polish substrates are also provided, as are numerous other aspects.
    Type: Application
    Filed: July 25, 2014
    Publication date: January 28, 2016
    Inventors: Thomas H. Osterheld, Rajeev Bajaj
  • Patent number: 9242337
    Abstract: A method for controlling the residue clearing process of a chemical mechanical polishing (“CMP”) process is provided. Dynamic in-situ profile control (“ISPC”) is used to control polishing before residue clearing starts, and then a new polishing recipe is dynamically calculated for the clearing process. Several different methods are disclosed for calculating the clearing recipe. First, in certain implementations when feedback at T0 or T1 methods are used, a post polishing profile and feedback offsets are generated in ISPC software. Based on the polishing profile and feedback generated from ISPC before the start of the clearing process, a flat post profile after clearing is targeted. The estimated time for the clearing step may be based on the previously processed wafers (for example, a moving average of the previous endpoint times). The calculated pressures may be scaled to a lower (or higher) baseline pressure for a more uniform clearing.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: January 26, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jun Qian, Sivakumar Dhandapani, Benjamin Cherian, Thomas H. Osterheld, Charles C. Garretson
  • Patent number: 9227293
    Abstract: A polishing apparatus includes a plurality of stations supported on a platform, the plurality of stations including at least two polishing stations and a transfer station, each polishing station including a platen to support a polishing pad, a plurality of carrier heads suspended from and movable along a track such that each polishing station is selectively positionable at the stations, and a controller configured to control motion of the carrier heads along the track such that during polishing at each polishing station only a single carrier head is positioned in the polishing station.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 5, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Doyle E. Bennett, Thomas H. Osterheld, Benjamin Cherian, Dominic J. Benvegnu, Harry Q. Lee, Allen L. D'Ambra, Jagan Rangarajan