Patents by Inventor Timothy Ziemba

Timothy Ziemba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11979141
    Abstract: Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: May 7, 2024
    Assignee: EHT Ventures LLC
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager
  • Publication number: 20240136152
    Abstract: A nanosecond pulser system is disclosed. In some embodiments, the nanosecond pulser system may include a nanosecond pulser having a nanosecond pulser input; a plurality of switches coupled with the nanosecond pulser input; one or more transformers coupled with the plurality of switches; and an output coupled with the one or more transformers and providing a high voltage waveform with a amplitude greater than 2 kV and a frequency greater than 1 kHz based on the nanosecond pulser input. The nanosecond pulser system may also include a control module coupled with the nanosecond pulser input; and an control system coupled with the nanosecond pulser at a point between the transformer and the output, the control system providing waveform data regarding an high voltage waveform produced at the point between the transformer and the output.
    Type: Application
    Filed: October 23, 2023
    Publication date: April 25, 2024
    Inventors: Kenneth Miller, John Carscadden, Ilia Slobodov, Timothy Ziemba, Huatsern Yeager, Eric Hanson, TaiSheng Yeager, Kevin Muggli, Morgan Quinley, James Prager, Connor Liston
  • Patent number: 11967484
    Abstract: A pulse generator is disclosed. The pulse generator includes a DC source; a plurality of switches, a transformer; and a pulsing output. The pulse generator can be coupled with a plasma chamber. The pulsing output outputs high voltage pulses having a peak-to-peak voltage greater than 1 kV and a voltage portion between consecutive high voltage bipolar pulses that has a negative slope that substantially offsets the voltage reduction on a wafer within a plasma chamber due to an ion current. The resulting voltage at the wafer may be substantially flat between consecutive pulses.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: April 23, 2024
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Christopher Bowman, Connor Liston, Kenneth Miller, Timothy Ziemba
  • Publication number: 20240120170
    Abstract: A high voltage pulsing power system is disclosed that include a DC power supply, a switch circuit electrically coupled with the DC power supply, a droop control circuit coupled with the switch circuit, and/or an output. The switch circuit includes a plurality of switch modules and produces a plurality of pulses. The droop control circuit includes a droop diode, a droop inductor, and a droop element. The droop diode may be electrically coupled in series between the switch circuit and the transformer primary that allows the negative pulse portion of the pulses to pass from the switching circuit to the transformer primary. The droop inductor and he droop element may be arranged in series across the droop diode to allow the negative pulse portion of the pulses to pass from the switching circuit to the transformer primary and/or store energy from the negative pulse portion of the pulses.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 11, 2024
    Inventors: Timothy Ziemba, Kenneth Miller
  • Publication number: 20240088877
    Abstract: A bipolar high voltage bipolar pulsing power supply is disclosed that can produce high voltage bipolar pulses with a positive high voltage pulse greater than about 2 kV followed by a negative high voltage pulse less than about ?2 kV with a positive to negative dwell period between the positive high voltage pulse and the negative high voltage pulse. A high voltage bipolar pulsing power supply, for example, can reproduce high voltage pulses with a pulse repetition rate greater than about 10 kHz.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Inventors: Alex Henson, Kevin Muggli, Timothy Ziemba, Kenneth Miller
  • Publication number: 20240048056
    Abstract: Some embodiments include methods and systems for wafer biasing in a plasma chamber. A method, for example, may include: generating a first high voltage by a first pulsed voltage source using DC voltages and coupling the first high voltage to a wafer in the plasma chamber via at least one direct connection, the at least one direct connection enabling ion energy control in the plasma chamber; generating one or more of low and medium voltages by a second pulsed voltage source; coupling, capacitively, the one or more of low and medium voltages to the wafer; and pulsing the first high voltage and the one or more of low and medium voltages to achieve a configurable ion energy distribution in the wafer.
    Type: Application
    Filed: August 16, 2023
    Publication date: February 8, 2024
    Inventors: Kenneth Miller, Timothy Ziemba, John Carscadden, Ilia Slobodov, James Prager
  • Patent number: 11875971
    Abstract: Some embodiments include a nanosecond pulser circuit. In some embodiments, a nanosecond pulser circuit may include: a high voltage power supply; a nanosecond pulser electrically coupled with the high voltage power supply and switches voltage from the high voltage power supply at high frequencies; a transformer having a primary side and a secondary side, the nanosecond pulser electrically coupled with the primary side of the transformer; and an energy recovery circuit electrically coupled with the secondary side of the transformer. In some embodiments, the energy recovery circuit comprises: an inductor electrically coupled with the high voltage power supply; a crowbar diode arranged in parallel with the secondary side of the transformer; and a second diode disposed in series with the inductor and arranged to conduct current from a load to the high voltage power supply.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: January 16, 2024
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: James Prager, Timothy Ziemba, Kenneth Miller, Ilia Slobodov, Morgan Quinley
  • Patent number: 11824542
    Abstract: A bipolar high voltage bipolar pulsing power supply is disclosed that can produce high voltage bipolar pulses with a positive high voltage pulse greater than about 2 kV followed by a negative high voltage pulse less than about ?2 kV with a positive to negative dwell period between the positive high voltage pulse and the negative high voltage pulse. A high voltage bipolar pulsing power supply, for example, can reproduce high voltage pulses with a pulse repetition rate greater than about 10 kHz.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: November 21, 2023
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Alex Henson, Kevin Muggli, Timothy Ziemba, Kenneth Miller
  • Patent number: 11824454
    Abstract: Some embodiments include methods and systems for wafer biasing in a plasma chamber. A method, for example, may include: generating a first high voltage by a first pulsed voltage source using DC voltages and coupling the first high voltage to a wafer in the plasma chamber via at least one direct connection, the at least one direct connection enabling ion energy control in the plasma chamber; generating one or more of low and medium voltages by a second pulsed voltage source; coupling, capacitively, the one or more of low and medium voltages to the wafer; and pulsing the first high voltage and the one or more of low and medium voltages to achieve a configurable ion energy distribution in the wafer.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: November 21, 2023
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Kenneth Miller, Timothy Ziemba, John Carscadden, Ilia Slobodov, James Prager
  • Patent number: 11810761
    Abstract: A nanosecond pulser system is disclosed. In some embodiments, the nanosecond pulser system may include a nanosecond pulser having a nanosecond pulser input; a plurality of switches coupled with the nanosecond pulser input; one or more transformers coupled with the plurality of switches; and an output coupled with the one or more transformers and providing a high voltage waveform with a amplitude greater than 2 kV and a frequency greater than 1 kHz based on the nanosecond pulser input. The nanosecond pulser system may also include a control module coupled with the nanosecond pulser input; and an control system coupled with the nanosecond pulser at a point between the transformer and the output, the control system providing waveform data regarding an high voltage waveform produced at the point between the transformer and the output.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: November 7, 2023
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Ilia Slobodov, John Carscadden, Kenneth Miller, Timothy Ziemba, Huatsern Yeager, Eric Hanson, TaiSheng Yeager, Kevin Muggli, Morgan Quinley, James Prager, Connor Liston
  • Publication number: 20230352271
    Abstract: Various RF plasma systems are disclosed that do not require a matching network. In some embodiments, the RF plasma system includes an energy storage capacitor; a switching circuit coupled with the energy storage capacitor, the switching circuit producing a plurality of pulses with a pulse amplitude and a pulse frequency, the pulse amplitude being greater than 100 volts; a resonant circuit coupled with the switching circuit. In some embodiments, the resonant circuit includes: a transformer having a primary side and a secondary side; and at least one of a capacitor, an inductor, and a resistor. In some embodiments, the resonant circuit having a resonant frequency substantially equal to the pulse frequency, and the resonant circuit increases the pulse amplitude to a voltage greater than 2 kV.
    Type: Application
    Filed: June 2, 2023
    Publication date: November 2, 2023
    Inventors: James Prager, Timothy Ziemba
  • Publication number: 20230336085
    Abstract: A high voltage power system is disclosed. In some embodiments, the high voltage power system includes a high voltage pulsing power supply; a transformer electrically coupled with the high voltage pulsing power supply; an output electrically coupled with the transformer and configured to output high voltage pulses with an amplitude greater than 1 kV and a frequency greater than 1 kHz; and a bias compensation circuit arranged in parallel with the output. In some embodiments, the bias compensation circuit can include a blocking diode; and a DC power supply arranged in series with the blocking diode.
    Type: Application
    Filed: June 24, 2023
    Publication date: October 19, 2023
    Inventors: Timothy Ziemba, Ilia Slobodov, Alex Henson, Morgan Quinley, John Carscadden, James Prager, Kenneth Miller
  • Patent number: 11728138
    Abstract: In some embodiments, a high voltage power supply is disclosed that provides a plurality of high voltage pulses without any voltage droop between two subsequent pulses. In some embodiments, a high voltage power supply is disclosed that provides a waveform of voltage versus time having a plurality of high voltage pulses having a voltage greater than 1 kV and with a substantially flat portion between pulse. In some embodiments, a high voltage power supply is disclosed that includes a snubber with a snubber resistor having a resistance of about 7.5 m?1.25?; and a snubber capacitor having a capacitance of about 2 ?F-35 ?F.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: August 15, 2023
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Christopher Bowman, Connor Liston, Kenneth Miller, Timothy Ziemba
  • Patent number: 11689107
    Abstract: A high voltage power system is disclosed. In some embodiments, the high voltage power system includes a high voltage pulsing power supply; a transformer electrically coupled with the high voltage pulsing power supply; an output electrically coupled with the transformer and configured to output high voltage pulses with an amplitude greater than 1 kV and a frequency greater than 1 kHz; and a bias compensation circuit arranged in parallel with the output. In some embodiments, the bias compensation circuit can include a blocking diode; and a DC power supply arranged in series with the blocking diode.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: June 27, 2023
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy Ziemba, Ilia Slobodov, Alex Henson, Morgan Quinley, John Carscadden, James Prager, Kenneth Miller
  • Patent number: 11670484
    Abstract: Various RF plasma systems are disclosed that do not require a matching network. In some embodiments, the RF plasma system includes an energy storage capacitor; a switching circuit coupled with the energy storage capacitor, the switching circuit producing a plurality of pulses with a pulse amplitude and a pulse frequency, the pulse amplitude being greater than 100 volts; a resonant circuit coupled with the switching circuit. In some embodiments, the resonant circuit includes: a transformer having a primary side and a secondary side; and at least one of a capacitor, an inductor, and a resistor. In some embodiments, the resonant circuit having a resonant frequency substantially equal to the pulse frequency, and the resonant circuit increases the pulse amplitude to a voltage greater than 2 kV.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: June 6, 2023
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: James Prager, Timothy Ziemba
  • Patent number: 11646176
    Abstract: Some embodiments include a high voltage, high frequency switching circuit.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: May 9, 2023
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: James Prager, Timothy Ziemba, Kenneth Miller, Ilia Slobodov
  • Patent number: 11636998
    Abstract: Some embodiments include a high voltage pulsing power supply. A high voltage pulsing power supply may include: a high voltage pulser having an output that provides pulses with an amplitude greater than about 1 kV, a pulse width greater than about 1 ?s, and a pulse repetition frequency greater than about 20 kHz; a plasma chamber; and an electrode disposed within the plasma chamber that is electrically coupled with the output of the high voltage pulser to produce a pulsing an electric field within the chamber.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: April 25, 2023
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy Ziemba, Ilia Slobodov, John Carscadden, Kenneth Miller, Morgan Quinley
  • Publication number: 20230073797
    Abstract: A nanosecond pulser system is disclosed. In some embodiments, the nanosecond pulser system may include a high voltage power supply; a nanosecond pulser electrically coupled with the high voltage power supply and switches voltage from the high voltage power supply at high frequencies; a transformer having a primary side and a secondary side, the nanosecond pulser electrically coupled with the primary side of the transformer; and an output electrically coupled with the transformer producing a waveform. In some embodiments, the waveform includes a plurality of high voltage pulses having a pulse amplitude greater than about 2 kV, a pulse width, and a pulse repetition frequency; and a sinusoidal waveform having a waveform frequency and a waveform amplitude greater than 100 V.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: Christopher Bowman, Connor Liston, Kenneth Miller, Timothy Ziemba
  • Patent number: 11587768
    Abstract: Some embodiments include a thermal management system for a nanosecond pulser. In some embodiments, the thermal management system may include a switch cold plates coupled with switches, a core cold plate coupled with one or more transformers, resistor cold plates coupled with resistors, or tubing coupled with the switch cold plates, the core cold plates, and the resistor cold plates. The thermal management system may include a heat exchanger coupled with the resistor cold plates, the core cold plate, the switch cold plate, and the tubing. The heat exchanger may also be coupled with a facility fluid supply.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: February 21, 2023
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy Ziemba, Ilia Slobodov, John Carscadden, Kenneth Miller, Connor Liston
  • Patent number: 11558048
    Abstract: A nanosecond pulser may include a plurality of switch modules, a transformer, and an output. Each of the plurality of switch modules may include one or more solid state switches. The transformer may include a core, at least one primary winding wound around at least a portion of the core, each of the plurality of switch modules may be coupled with the primary windings, and a plurality of secondary windings wound at least partially around a portion of the core. The output may output electrical pulses having a peak voltage greater than about 1 kilovolt and having a pulse width of less than about 1000 nanoseconds. The output may output electrical pulses having a peak voltage greater than about 5 kilovolts, a peak power greater than about 100 kilowatts, a pulse width between 10 nanoseconds and 1000 nanoseconds, a rise time less than about 50 nanoseconds, or some combination thereof.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: January 17, 2023
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Kenneth E. Miller, Timothy Ziemba