Patents by Inventor Timothy Ziemba

Timothy Ziemba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200035457
    Abstract: A high voltage power system is disclosed. In some embodiments, the high voltage power system includes a high voltage pulsing power supply; a transformer electrically coupled with the high voltage pulsing power supply; an output electrically coupled with the transformer and configured to output high voltage pulses with an amplitude greater than 1 kV and a frequency greater than 1 kHz; and a bias compensation circuit arranged in parallel with the output. In some embodiments, the bias compensation circuit can include a blocking diode; and a DC power supply arranged in series with the blocking diode.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 30, 2020
    Inventors: Timothy Ziemba, Ilia Slobodov, John Carscadden, Kenneth Miller
  • Publication number: 20200014378
    Abstract: Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 9, 2020
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager
  • Publication number: 20190393791
    Abstract: A high voltage power system is disclosed. In some embodiments, the high voltage power system includes a high voltage pulsing power supply; a transformer electrically coupled with the high voltage pulsing power supply; an output electrically coupled with the transformer and configured to output high voltage pulses with an amplitude greater than 1 kV and a frequency greater than 1 kHz; and a bias compensation circuit arranged in parallel with the output. In some embodiments, the bias compensation circuit can include a blocking diode; and a DC power supply arranged in series with the blocking diode.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 26, 2019
    Inventors: Timothy Ziemba, Ilia Slobodov, Alex Henson, Morgan Quinley, John Carscadden, James Prager, Kenneth Miller
  • Patent number: 10389345
    Abstract: Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: August 20, 2019
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager
  • Publication number: 20190109591
    Abstract: A nanosecond pulser may include a plurality of switch modules, a transformer, and an output. Each of the plurality of switch modules may include one or more solid state switches. The transformer may include a core, at least one primary winding wound around at least a portion of the core, each of the plurality of switch modules may be coupled with the primary windings, and a plurality of secondary windings wound at least partially around a portion of the core. The output may output electrical pulses having a peak voltage greater than about 1 kilovolt and having a pulse width of less than about 1000 nanoseconds. The output may output electrical pulses having a peak voltage greater than about 5 kilovolts, a peak power greater than about 100 kilowatts, a pulse width between 10 nanoseconds and 1000 nanoseconds, a rise time less than about 50 nanoseconds, or some combination thereof.
    Type: Application
    Filed: April 4, 2018
    Publication date: April 11, 2019
    Inventors: Kenneth E. Miller, Timothy Ziemba
  • Patent number: 10224822
    Abstract: A pulse generator is disclosed that includes at least the following stages a driver stage, a transformer stage, a rectifier stage, and an output stage. The driver stage may include at least one solid state switch such as, for example, of one or more IGBTs and/or one or more MOSFETs. The driver stage may also have a stray inductance less than 1,000 nH. The transformer stage may be coupled with the driver stage and/or with a balance stage and may include one or more transformers. The rectifier stage may be coupled with the transformer stage and may have a stray inductance less than 1,000 nH. The output stage may be coupled with the rectifier stage. The output stage may output a signal pulse with a voltage greater than 2 kilovolts and a frequency greater than 5 kHz. In some embodiments, the output stage may be galvanically isolated from a reference potential.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: March 5, 2019
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: Kenneth E. Miller, Timothy Ziemba, Ilia Slobodov, John G. Carscadden, James Prager
  • Patent number: 9960763
    Abstract: A nanosecond pulser may include a plurality of switch modules, a transformer, and an output. Each of the plurality of switch modules may include one or more solid state switches. The transformer may include a core, at least one primary winding wound around at least a portion of the core, each of the plurality of switch modules may be coupled with the primary windings, and a plurality of secondary windings wound at least partially around a portion of the core. The output may output electrical pulses having a peak voltage greater than about 1 kilovolt and having a pulse width of less than about 1000 nanoseconds. The output may output electrical pulses having a peak voltage greater than about 5 kilovolts, a peak power greater than about 100 kilowatts, a pulse width between 10 nanoseconds and 1000 nanoseconds, a rise time less than about 50 nanoseconds, or some combination thereof.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: May 1, 2018
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: Kenneth E. Miller, Timothy Ziemba
  • Patent number: 9929004
    Abstract: Systems and methods are discussed to create radiation from one or more compact toroids. Compact toroids can be created from plasma of gases within a confinement chamber using a plurality of coils of various densities of windings. High current pulses can be generated within the coil and switched at high frequencies to repeatedly generate compact toroids within the plasma. The plasma can produce radiation at various wavelengths that is focused toward a target or an intermediate focus.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: March 27, 2018
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager, Angus Macnab
  • Publication number: 20170294842
    Abstract: A pulse generator is disclosed that includes at least the following stages a driver stage, a transformer stage, a rectifier stage, and an output stage. The driver stage may include at least one solid state switch such as, for example, of one or more IGBTs and/or one or more MOSFETs. The driver stage may also have a stray inductance less than 1,000 nH. The transformer stage may be coupled with the driver stage and/or with a balance stage and may include one or more transformers. The rectifier stage may be coupled with the transformer stage and may have a stray inductance less than 1,000 nH. The output stage may be coupled with the rectifier stage. The output stage may output a signal pulse with a voltage greater than 2 kilovolts and a frequency greater than 5 kHz. In some embodiments, the output stage may be galvanically isolated from a reference potential.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 12, 2017
    Inventors: Kenneth E. Miller, Timothy Ziemba, IIia Slobodov, John G. Carscadden, James Prager
  • Publication number: 20170243731
    Abstract: Systems and methods are discussed to create radiation from one or more compact toroids. Compact toroids can be created from plasma of gases within a confinement chamber using a plurality of coils of various densities of windings. High current pulses can be generated within the coil and switched at high frequencies to repeatedly generate compact toroids within the plasma. The plasma can produce radiation at various wavelengths that is focused toward a target or an intermediate focus.
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager, Angus Macnab
  • Patent number: 9706630
    Abstract: A pulse generator is disclosed that includes at least the following stages a driver stage, a transformer stage, a rectifier stage, and an output stage. The driver stage may include at least one solid state switch such as, for example, of one or more IGBTs and/or one or more MOSFETs. The driver stage may also have a stray inductance less than 1,000 nH. The transformer stage may be coupled with the driver stage and/or with a balance stage and may include one or more transformers. The rectifier stage may be coupled with the transformer stage and may have a stray inductance less than 1,000 nH. The output stage may be coupled with the rectifier stage. The output stage may output a signal pulse with a voltage greater than 2 kilovolts and a frequency greater than 5 kHz. In some embodiments, the output stage may be galvanically isolated from a reference potential.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: July 11, 2017
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: Kenneth E. Miller, Timothy Ziemba, Ilia Slobodov, John G. Carscadden, James Prager
  • Publication number: 20170163254
    Abstract: Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
    Type: Application
    Filed: February 17, 2017
    Publication date: June 8, 2017
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager
  • Patent number: 9655221
    Abstract: Systems and methods are discussed to create radiation from one or more compact toroids. Compact toroids can be created from plasma of gases within a confinement chamber using a plurality of coils of various densities of windings. High current pulses can be generated within the coil and switched at high frequencies to repeatedly generate compact toroids within the plasma. The plasma can produce radiation at various wavelengths that is focused toward a target or an intermediate focus.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: May 16, 2017
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager, Angus Macnab
  • Patent number: 9601283
    Abstract: Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: March 21, 2017
    Assignee: EAGLE HARBOR TECHNOLOGIES INC.
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager
  • Patent number: 9495563
    Abstract: Systems and methods are disclosed to integrate signals. Some embodiments include an integrator comprising an active input; a passive input; a first integrator having a first integrator input and a first integrator output; a second integrator having a second integrator input and a second integrator output; a first plurality of switches coupled with the first integrator input, the second integrator input, the active input, and the passive input; a second plurality of switches coupled with the first integrator output and the second integrator output; and a controller. The controller may be configured to control the operation of the first plurality of switches to switch the active input between the first integrator input and the second integrator input, and control the operation of the first plurality of switches to switch the passive input between the first integrator input and the second integrator input.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: November 15, 2016
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager, Ilia Slobodov, Daniel Edward Lotz
  • Publication number: 20150303914
    Abstract: Embodiments described herein include a solid-state switch tube replacement for the radar system such as, for example, the SPY-1 radar system. Some embodiments provide for a technology for the precision switching that enables IGBT power modules to operate robustly in a series configuration and/or a parallel configuration to produce precision switching at high voltage (e.g., 20 kV and above) and high frequencies (e.g., 1 MHz and above).
    Type: Application
    Filed: January 27, 2015
    Publication date: October 22, 2015
    Inventors: Timothy Ziemba, Kenneth E. Miller, John Carscadden, James Prager
  • Publication number: 20150256086
    Abstract: A pulse generator is disclosed that includes at least the following stages a driver stage, a transformer stage, a rectifier stage, and an output stage. The driver stage may include at least one solid state switch such as, for example, of one or more IGBTs and/or one or more MOSFETs. The driver stage may also have a stray inductance less than 1,000 nH. The transformer stage may be coupled with the driver stage and/or with a balance stage and may include one or more transformers. The rectifier stage may be coupled with the transformer stage and may have a stray inductance less than 1,000 nH. The output stage may be coupled with the rectifier stage. The output stage may output a signal pulse with a voltage greater than 2 kilovolts and a frequency greater than 5 kHz. In some embodiments, the output stage may be galvanically isolated from a reference potential.
    Type: Application
    Filed: March 2, 2015
    Publication date: September 10, 2015
    Inventors: Kenneth E. Miller, Timothy Ziemba, Ilia Slobodov, John G. Carscadden, James Prager
  • Publication number: 20150130525
    Abstract: A nanosecond pulser may include a plurality of switch modules, a transformer, and an output. Each of the plurality of switch modules may include one or more solid state switches. The transformer may include a core, at least one primary winding wound around at least a portion of the core, each of the plurality of switch modules may be coupled with the primary windings, and a plurality of secondary windings wound at least partially around a portion of the core. The output may output electrical pulses having a peak voltage greater than about 1 kilovolt and having a pulse width of less than about 1000 nanoseconds. The output may output electrical pulses having a peak voltage greater than about 5 kilovolts, a peak power greater than about 100 kilowatts, a pulse width between 10 nanoseconds and 1000 nanoseconds, a rise time less than about 50 nanoseconds, or some combination thereof.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 14, 2015
    Inventors: Kenneth E. Miller, Timothy Ziemba
  • Publication number: 20150076372
    Abstract: Systems and methods are discussed to create radiation from one or more compact toroids. Compact toroids can be created from plasma of gases within a confinement chamber using a plurality of coils of various densities of windings. High current pulses can be generated within the coil and switched at high frequencies to repeatedly generate compact toroids within the plasma. The plasma can produce radiation at various wavelengths that is focused toward a target or an intermediate focus.
    Type: Application
    Filed: August 15, 2014
    Publication date: March 19, 2015
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager, Angus Mcnab
  • Patent number: 8963377
    Abstract: Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: February 24, 2015
    Assignee: Eagle Harbor Technologies Inc.
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager