Patents by Inventor Tomoji Kawai

Tomoji Kawai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11781099
    Abstract: A number analyzing method, a number analyzing device, and a storage medium for number analysis are disclosed, which enable, with high accuracy, analysis of the number or number distribution of particulate or molecular analytes according to the kinds of the analytes. A computer control program is executed on the basis of a data group of particle-passage detection signals which are detected by a nanopore device in accordance with passage of subject particles through a through-hole. Also, a particle type distribution estimating program is executed, to estimate probability density on the basis of a data group based on feature values indicating feature of the waveforms of pulse signals which correspond to the passage of particles and which are obtained as the particle-passage detection signals. Thus, the number of particles can be derived for each particle type.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: October 10, 2023
    Assignee: AIPORE INC.
    Inventors: Takashi Washio, Tomoji Kawai, Masateru Taniguchi, Makusu Tsutsui, Kazumichi Yokota, Akira Ishi, Takeshi Yoshida
  • Publication number: 20230159870
    Abstract: A number analyzing method, a number analyzing device, and a storage medium for number analysis are disclosed, which enable, with high accuracy, analysis of the number or number distribution of particulate or molecular analytes according to the kinds of the analytes. A computer control program is executed on the basis of a data group of particle-passage detection signals which are detected by a nanopore device in accordance with passage of subject particles through a through-hole. Also, a particle type distribution estimating program is executed, to estimate probability density on the basis of a data group based on feature values indicating feature of the waveforms of pulse signals which correspond to the passage of particles and which are obtained as the particle-passage detection signals. Thus, the number of particles can be derived for each particle type.
    Type: Application
    Filed: January 19, 2023
    Publication date: May 25, 2023
    Applicant: AIPORE INC.
    Inventors: Takashi WASHIO, Tomoji KAWAI, Masateru TANIGUCHI, Makusu TSUTSUI, Kazumichi YOKOTA, Akira ISHI, Takeshi YOSHIDA
  • Patent number: 11597898
    Abstract: A number analyzing method, a number analyzing device, and a storage medium for number analysis are disclosed, which enable, with high accuracy, analysis of the number or number distribution of particulate or molecular analytes according to the kinds of the analytes. A computer control program is executed on the basis of a data group of particle-passage detection signals which are detected by a nanopore device in accordance with passage of subject particles through a through-hole. Also, a particle type distribution estimating program is executed, to estimate probability density on the basis of a data group based on feature values indicating feature of the waveforms of pulse signals which correspond to the passage of particles and which are obtained as the particle-passage detection signals. Thus, the number of particles can be derived for each particle type.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: March 7, 2023
    Assignee: AIPORE INC.
    Inventors: Takashi Washio, Tomoji Kawai, Masateru Taniguchi, Makusu Tsutsui, Kazumichi Yokota, Akira Ishii, Takeshi Yoshida
  • Patent number: 11524295
    Abstract: Provided is a channel device that is capable of increasing the concentration of fine particles in a liquid only by use of fluid-dynamic flows without relying on electrostatic interactions. A channel device (1) in accordance with an embodiment of the present invention includes: a main channel (11) configured to allow a liquid containing fine particles to flow therethrough; a chamber (15) that is provided at an end of the main channel (11) and that is configured to store target fine particles which have increased in concentration; and a side channel (12) that is connected to a side face of the main channel (11) and that is configured to allow unwanted liquid to drain therethrough, wherein at least one of a height and a width of the side channel (12) is smaller than a particle size of the fine particles.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: December 13, 2022
    Assignee: AIPORE INC.
    Inventors: Wataru Tonomura, Makusu Tsutsui, Kazumichi Yokota, Akihide Arima, Masateru Taniguchi, Tomoji Kawai
  • Patent number: 11307161
    Abstract: It is an object to improve detection accuracy of an object as compared with prior arts. A flow passage (10) provided in a detection device (10) includes a substrate (1) and a covering member (2) provided at a position corresponding to the substrate (1). A covering member opening (HL2) of the covering member (2) is provided such that a substrate opening (HL1) of the substrate (1) is not covered with the covering member (2). The covering member (2) is arranged onto the substrate (1) such that a substrate capacitance and a covering member capacitance are connected in series. The covering member capacitance is lower than the substrate capacitance.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: April 19, 2022
    Assignee: Aipore Inc.
    Inventors: Makusu Tsutsui, Kazumichi Yokota, Akihide Arima, Wataru Tonomura, Masateru Taniguchi, Takashi Washio, Tomoji Kawai
  • Patent number: 11169071
    Abstract: In a method for analyzing samples involving the use of a device for analyzing samples, the device for analyzing samples includes at least a movement part through which a sample moves, and a measurement unit that is formed in a middle of the movement part and that measures a value of an ion current when the sample passes through the movement part. The analysis method includes at least a measurement step for measuring the value of the ion current when the sample passes through the movement part, and a determination step for determining a change over time in a quantity of ions from the value of the ion current measured in the measurement step. The quantity of ions includes a quantity of ions that have leaked from the sample during movement of the sample through the movement part.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: November 9, 2021
    Assignees: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, OSAKA UNIVERSITY, KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
    Inventors: Hirotoshi Yasaki, Takao Yasui, Noritada Kaji, Yoshinobu Baba, Tomoji Kawai, Satoyuki Kawano, Kentaro Doi, Takeshi Yanagida, Mao Fukuyama
  • Publication number: 20210270762
    Abstract: It is an object to improve detection accuracy of an object as compared with prior arts. A flow passage (10) provided in a detection device (10) includes a substrate (1) and a covering member (2) provided at a position corresponding to the substrate (1). A covering member opening (HL2) of the covering member (2) is provided such that a substrate opening (HL1) of the substrate (1) is not covered with the covering member (2). The covering member (2) is arranged onto the substrate (1) such that a substrate capacitance and a covering member capacitance are connected in series. The covering member capacitance is lower than the substrate capacitance.
    Type: Application
    Filed: July 10, 2019
    Publication date: September 2, 2021
    Inventors: Makusu Tsutsui, Kazumichi Yokota, Akihide Arima, Wataru Tonomura, Masateru Taniguchi, Takashi Washio, Tomoji Kawai
  • Patent number: 10876159
    Abstract: The present invention provides technology that uses current measurements to identify nucleotides and determine a nucleotide sequence in polynucleotides. The present invention calculates a modal value of a tunnel current that arises when a nucleotide or polynucleotide for analysis passes through between electrodes, and then employs the calculated modal value. The present invention accordingly enables direct rapid implementation to identify nucleotides and to determine a nucleotide sequence in a polynucleotide without marking.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: December 29, 2020
    Assignee: QUANTUM BIOSYSTEMS INC.
    Inventors: Masateru Taniguchi, Makusu Tsutsui, Kazumichi Yokota, Tomoji Kawai
  • Patent number: 10877021
    Abstract: A device for biological material detection includes a substrate; a through-hole through which a biological material to be tested passes, the through-hole being formed in the substrate; a molecule that interacts with the biological material to be tested passing through, the molecule being formed in the through-hole; a first chamber member that forms, with at least the surface including the through-hole on one surface side of the substrate, a first chamber to be filled with electrolyte; and a second chamber member that forms, with at least the surface including the through-hole on the other surface side of the substrate, a second chamber to be filled with electrolyte. The biological material to be tested is identified by the waveform of the ion current (passage time, shape, etc.) when the biological material to be tested passes through the through-hole.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: December 29, 2020
    Assignees: OSAKA UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, NATIONAL UNIVERSITY CORPORATION TOKYO MEDICAL AND DENTAL UNIVERSITY
    Inventors: Makusu Tsutsui, Kazumichi Yokota, Masateru Taniguchi, Tomoji Kawai, Mina Okochi, Masayoshi Tanaka, Yoshinobu Baba, Noritada Kaji, Takao Yasui, Yuji Miyahara, Yukichi Horiguchi
  • Patent number: 10830685
    Abstract: Provided is a device for electrical measurement designed to be able to perform high sensitivity detection by reading not only changes in steady-state current, but also the occurrence of transient current, and an electrical measurement apparatus including the device for electrical measurement. The device for electrical measurement includes a substrate on which are formed at least a sample separation channel and a sample migration channel, as well as a sample measuring unit, with one end of the sample separation channel formed to connect to one end of the sample migration channel, and the sample measuring unit including a first measuring unit connected to the sample migration channel, and a second measuring unit connected to the sample migration channel from the reverse side to the first measuring unit.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: November 10, 2020
    Assignee: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Yoshinobu Baba, Noritada Kaji, Takao Yasui, Tomoji Kawai, Takeshi Yanagida
  • Publication number: 20200251184
    Abstract: The present invention provides a classification analysis method, a classification analysis device, and a storage medium for classification analysis, which enable, with high accuracy, the classification analysis of particulate or molecular analytes. As a means for solving the problem, a data group of particle-passage detection signals is based which are detected by a nanopore device 8 in accordance with passage of subject particles through a through-hole 12. A feature value is obtained in advance which indicates the feature of the waveform of the pulse signals corresponding to the passage of the predetermined analyte and the feature value obtained in advance is set as the learning data for the machine learning. The feature value obtained from the pulse signals of said analyzed data is set as a variable and the classification analysis on the predetermined analytes in the analyzed data can be performed by executing a classification analysis program due to the machine learning.
    Type: Application
    Filed: December 12, 2017
    Publication date: August 6, 2020
    Applicant: Osaka University
    Inventors: Takashi WASHIO, Tomoji KAWAI, Masateru TANIGUCHI, Makusu TSUTSUI, Kazumichi YOKOTA, Akira ISHI, Takeshi YOSHIDA
  • Publication number: 20200070169
    Abstract: Provided is a channel device that is capable of increasing the concentration of fine particles in a liquid only by use of fluid-dynamic flows without relying on electrostatic interactions. A channel device (1) in accordance with an embodiment of the present invention includes: a main channel (11) configured to allow a liquid containing fine particles to flow therethrough; a chamber (15) that is provided at an end of the main channel (11) and that is configured to store target fine particles which have increased in concentration; and a side channel (12) that is connected to a side face of the main channel (11) and that is configured to allow unwanted liquid to drain therethrough, wherein at least one of a height and a width of the side channel (12) is smaller than a particle size of the fine particles.
    Type: Application
    Filed: May 9, 2018
    Publication date: March 5, 2020
    Inventors: Wataru TONOMURA, Makusu TSUTSUI, Kazumichi YOKOTA, Akihide ARIMA, Masateru TANIGUCHI, Tomoji KAWAI
  • Patent number: 10557167
    Abstract: Devices, systems and methods for sequencing protein samples are provided. In some examples, currents generated when a monomer passes through between electrodes of a nanogap electrode pair are measured for each of several different distances, so that monomers are identified when compared to a reference physical quantity of a known monomer, which may be obtained from a current measured with a similar inter-electrode distance(s) at which each of plural kinds of monomers are identifiable and ordered with predetermined accuracy and based on a detected physical quantity obtained from a tunneling current, which may be further normalized by the use of one or more reference substances.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: February 11, 2020
    Assignee: QUANTUM BIOSYSTEMS INC.
    Inventors: Tomoji Kawai, Masateru Taniguchi, Takahito Ohshiro, Mark Oldham, Eric Nordman
  • Publication number: 20200033248
    Abstract: In a method for analyzing samples involving the use of a device for analyzing samples, the device for analyzing samples includes at least a movement part through which a sample moves, and a measurement unit that is formed in a middle of the movement part and that measures a value of an ion current when the sample passes through the movement part. The analysis method includes at least a measurement step for measuring the value of the ion current when the sample passes through the movement part, and a determination step for determining a change over time in a quantity of ions from the value of the ion current measured in the measurement step. The quantity of ions includes a quantity of ions that have leaked from the sample during movement of the sample through the movement part.
    Type: Application
    Filed: October 4, 2017
    Publication date: January 30, 2020
    Inventors: Hirotoshi YASAKI, Takao YASUI, Noritada KAJI, Yoshinobu BABA, Tomoji KAWAI, Satoyuki KAWANO, Kentaro DOI, Takeshi YANAGIDA, Mao FUKUYAMA
  • Publication number: 20190367979
    Abstract: The present invention provides technology that uses current measurements to identify nucleotides and determine a nucleotide sequence in polynucleotides. The present invention calculates a modal value of a tunnel current that arises when a nucleotide or polynucleotide for analysis passes through between electrodes, and then employs the calculated modal value. The present invention accordingly enables direct rapid implementation to identify nucleotides and to determine a nucleotide sequence in a polynucleotide without marking.
    Type: Application
    Filed: December 28, 2018
    Publication date: December 5, 2019
    Inventors: Masateru Taniguchi, Makusu Tsutsui, Kazumichi Yokota, Tomoji Kawai
  • Publication number: 20190257787
    Abstract: The present invention provides a number analyzing method, a number analyzing device, and a storage medium for number analysis, which enable, with high accuracy, analysis of the number or number distribution of particulate or molecular analytes according to the kinds of the analytes. A computer control program is executed on the basis of a data group of particle-passage detection signals which are detected by a nanopore device (8) in accordance with passage of subject particles through a through-hole (12). Also, a particle type distribution estimating program, which is a number deriving means, is executed, to estimate probability density on the basis of a data group based on feature values indicating feature of the waveforms of pulse signals which correspond to the passage of particles and which are obtained as the particle-passage detection signals. Thus, the number of particles can be derived for each particle type.
    Type: Application
    Filed: December 19, 2016
    Publication date: August 22, 2019
    Applicant: Osaka University
    Inventors: Takashi WASHIO, Tomoji KAWAI, Masateru TANIGUCHI, Makusu TSUTSUI, Kazumichi YOKOTA, Akira ISHI, Takeshi YOSHIDA
  • Publication number: 20190128888
    Abstract: A device for biological material detection includes a substrate; a through-hole through which a biological material to be tested passes, the through-hole being formed in the substrate; a molecule that interacts with the biological material to be tested passing through, the molecule being formed in the through-hole; a first chamber member that forms, with at least the surface including the through-hole on one surface side of the substrate, a first chamber to be filled with electrolyte; and a second chamber member that forms, with at least the surface including the through-hole on the other surface side of the substrate, a second chamber to be filled with electrolyte. The biological material to be tested is identified by the waveform of the ion current (passage time, shape, etc.) when the biological material to be tested passes through the through-hole.
    Type: Application
    Filed: April 21, 2017
    Publication date: May 2, 2019
    Inventors: Makusu TSUTSUI, Kazumichi YOKOTA, Masateru TANIGUCHI, Tomoji KAWAI, Mina OKOCHI, Masayoshi TANAKA, Yoshinobu BABA, Noritada KAJI, Takao YASUI, Yuji MIYAHARA, Yukichi HORIGUCHI
  • Patent number: 10202644
    Abstract: The present invention provides technology that uses current measurements to identify nucleotides and determine a nucleotide sequence in polynucleotides. The present invention calculates a modal value of a tunnel current that arises when a nucleotide or polynucleotide for analysis passes through between electrodes, and then employs the calculated modal value. The present invention accordingly enables direct rapid implementation to identify nucleotides and to determine a nucleotide sequence in a polynucleotide without marking.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: February 12, 2019
    Assignee: QUANTUM BIOSYSTEMS INC.
    Inventors: Masateru Taniguchi, Makusu Tsutsui, Kazumichi Yokota, Tomoji Kawai
  • Publication number: 20180100792
    Abstract: Provided is a device for electrical measurement designed to be able to perform high sensitivity detection by reading not only changes in steady-state current, but also the occurrence of transient current, and an electrical measurement apparatus including the device for electrical measurement. The device for electrical measurement includes a substrate on which are formed at least a sample separation channel and a sample migration channel, as well as a sample measuring unit, with one end of the sample separation channel formed to connect to one end of the sample migration channel, and the sample measuring unit including a first measuring unit connected to the sample migration channel, and a second measuring unit connected to the sample migration channel from the reverse side to the first measuring unit.
    Type: Application
    Filed: April 6, 2016
    Publication date: April 12, 2018
    Inventors: Yoshinobu BABA, Noritada KAJI, Takao YASUI, Tomoji KAWAI, Takeshi YANAGIDA
  • Publication number: 20180023132
    Abstract: Devices, systems and methods for sequencing protein samples are provided. In some examples, currents generated when a monomer passes through between electrodes of a nanogap electrode pair are measured for each of several different distances, so that monomers are identified when compared to a reference physical quantity of a known monomer, which may be obtained from a current measured with a similar inter-electrode distance(s) at which each of plural kinds of monomers are identifiable and ordered with predetermined accuracy and based on a detected physical quantity obtained from a tunneling current, which may be further normalized by the use of one or more reference substances.
    Type: Application
    Filed: March 2, 2017
    Publication date: January 25, 2018
    Inventors: Tomoji Kawai, Masateru Taniguchi, Takahito Ohshiro, Mark Oldham, Eric Nordman