Patents by Inventor Tony P. Chiang

Tony P. Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9000407
    Abstract: A switching element for resistive-switching memory (ReRAM) provides a controllable, consistent filament break-point at an abrupt structural discontinuity between a layer of high-k high-ionicity variable-resistance (VR) material and a layer of low-k low-ionicity VR material. The high-ionicity layer may be crystalline and the low-ionicity layer may be amorphous. The consistent break-point and characteristics of the low-ionicity layer facilitate lower-power operation. The defects (e.g., oxygen or nitrogen vacancies) that constitute the filament originate either in the high-ionicity VR layer or in a source electrode. The electrode nearest to the low-ionicity layer may be intrinsically inert or may be rendered effectively inert. Some electrodes are rendered effectively inert by the creation of the low-ionicity layer over the electrode.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: April 7, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Dipankar Pramanik
  • Patent number: 8995172
    Abstract: Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. In one embodiment, the current limiting component comprises at least one layer of resistive material that is configured to improve the switching performance and lifetime of the formed resistive switching memory element. The electrical properties of the formed current limiting layer, or resistive layer, are configured to lower the current flow through the variable resistance layer during the logic state programming steps (i.e., “set” and “reset” steps) by adding a fixed series resistance in the formed resistive switching memory element found in the nonvolatile memory device.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: March 31, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
  • Patent number: 8987865
    Abstract: A resistor structure incorporated into a resistive switching memory cell or device to form memory devices with improved device performance and lifetime is provided. The resistor structure may be a two-terminal structure designed to reduce the maximum current flowing through a memory device. A method is also provided for making such memory device. The method includes depositing a resistor structure and depositing a variable resistance layer of a resistive switching memory cell of the memory device, where the resistor structure is disposed in series with the variable resistance layer to limit the switching current of the memory device. The incorporation of the resistor structure is very useful in obtaining desirable levels of device switching currents that meet the switching specification of various types of memory devices. The memory devices may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: March 24, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Dipankar Pramanik, Tony P. Chiang, Mankoo Lee
  • Publication number: 20150079727
    Abstract: Embodiments described herein provide improvements to indium-gallium-zinc oxide devices, such as amorphous IGZO thin film transistors, and methods for forming such devices. A relatively thin a-IGZO channel may be utilized. A plasma treatment chemical precursor passivation may be provided to the front-side a-IGZO interface. High-k dielectric materials may be used in the etch-stop layer at the back-side a-IGZO interface. A barrier layer may be formed above the gate electrode before the gate dielectric layer is deposited. The conventional etch-stop layer, typically formed before the source and drain regions are defined, may be replaced by a pre-passivation layer that is formed after the source and drain regions are defined and may include multiple sub-layers.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: Intermolecular, Inc.
    Inventors: Mankoo Lee, Charlene Chen, Tony P. Chiang, Dipankar Pramanik
  • Patent number: 8980766
    Abstract: Provided are methods of forming nonvolatile memory elements using atomic layer deposition techniques, in which at least two different layers of a memory element are deposited sequentially and without breaking vacuum in a deposition chamber. This approach may be used to prevent oxidation of various materials used for electrodes without a need for separate oxygen barrier layers. A combination of signal lines and resistive switching layers may be used to cap the electrodes and to minimize their oxidation. As such, fewer layers are needed in a memory element. Furthermore, atomic layer deposition allows more precise control of electrode thicknesses. In some embodiments, a thickness of an electrode may be less than 50 Angstroms. Overall, atomic layer deposition of electrodes and resistive switching layers lead to smaller thicknesses of entire memory elements making them more suitable for low aspect ratio features of advanced nodes.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: March 17, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Tim Minvielle, Takeshi Yamaguchi
  • Patent number: 8981332
    Abstract: A nonvolatile resistive memory element includes an oxygen-gettering layer. The oxygen-gettering layer is formed as part of an electrode stack, and is more thermodynamically favorable in gettering oxygen than other layers of the electrode stack. The Gibbs free energy of formation (?fG°) of an oxide of the oxygen-gettering layer is less (i.e., more negative) than the Gibbs free energy of formation of an oxide of the adjacent layers of the electrode stack. The oxygen-gettering layer reacts with oxygen present in the adjacent layers of the electrode stack, thereby preventing this oxygen from diffusing into nearby silicon layers to undesirably increase an SiO2 interfacial layer thickness in the memory element and may alternately be selected to decrease such thickness during subsequent processing.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 17, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Dipankar Pramanik, Milind Weling
  • Patent number: 8980765
    Abstract: Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: March 17, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Sunil Shanker, Tony P. Chiang
  • Patent number: 8980709
    Abstract: A resistive-switching memory element is described. The memory element includes a first electrode, a porous layer over the first electrode including a point defect embedded in a plurality of pores of the porous layer, and a second electrode over the porous layer, wherein the nonvolatile memory element is configured to switch between a high resistive state and a low resistive state.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: March 17, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Chi-I Lang, Prashant B. Phatak
  • Patent number: 8975727
    Abstract: A resistor structure incorporated into a resistive switching memory cell with improved performance and lifetime is provided. The resistor structure may be a two-terminal structure designed to reduce the maximum current flowing through a memory cell. A method is also provided for making such a memory cell. The method includes depositing a resistor structure and depositing a variable resistance layer of a resistive switching memory cell of the memory cell, where the resistor structure is disposed in series with the variable resistance layer to limit the switching current of the memory cell. The incorporation of the resistor structure is very useful in obtaining desirable levels of switching currents that meet the switching specification of various types of memory cells. The memory cells may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: March 10, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim, Tim Minvielle, Dipankar Pramanik, Takeshi Yamaguchi
  • Patent number: 8975114
    Abstract: Embodiments of the invention generally relate to memory devices and methods for fabricating such memory devices. In one embodiment, a method for fabricating a resistive switching memory device includes depositing a metallic layer on a lower electrode disposed on a substrate and exposing the metallic layer to an activated oxygen source while heating the substrate to an oxidizing temperature within a range from about 300° C. to about 600° C. and forming a metal oxide layer from an upper portion of the metallic layer during an oxidation process. The lower electrode contains a silicon material and the metallic layer contains hafnium or zirconium. Subsequent to the oxidation process, the method further includes heating the substrate to an annealing temperature within a range from greater than 600° C. to about 850° C. while forming a metal silicide layer from a lower portion of the metallic layer during a silicidation process.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 10, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Dipankar Pramanik, Tony P. Chiang, Tim Minvielle, Takeshi Yamaguchi
  • Publication number: 20150056748
    Abstract: Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.
    Type: Application
    Filed: October 2, 2014
    Publication date: February 26, 2015
    Inventors: Pragati Kumar, Sean Barstow, Tony P. Chiang, Sunil Shanker
  • Publication number: 20150056723
    Abstract: Substrate processing systems and methods are described for processing substrates having two or more regions. The processing includes one or more of molecular self-assembly and combinatorial processing. At least one of materials, processes, processing conditions, material application sequences, and process sequences is different for the processing in at least one region of the substrate relative to at least one other region of the substrate. Processing systems are described that include numerous processing modules. The modules include a site-isolated reactor (SIR) configured for one or more of molecular self-assembly and combinatorial processing of a substrate.
    Type: Application
    Filed: October 6, 2014
    Publication date: February 26, 2015
    Inventors: David E. Lazovsky, Tony P. Chiang, Sandra G. Malhotra
  • Publication number: 20150056749
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies.
    Type: Application
    Filed: October 3, 2014
    Publication date: February 26, 2015
    Inventors: Yun Wang, Tony P. Chiang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik
  • Publication number: 20150053910
    Abstract: Multistate nonvolatile memory elements are provided. The multistate nonvolatile memory elements contain multiple layers. Each layer may be based on a different bistable material. The bistable materials may be resistive switching materials such as resistive switching metal oxides. Optional conductor layers and current steering elements may be connected in series with the bistable resistive switching metal oxide layers.
    Type: Application
    Filed: October 3, 2014
    Publication date: February 26, 2015
    Inventor: Tony P. Chiang
  • Patent number: 8963117
    Abstract: This disclosure provides a nonvolatile memory device and related methods of manufacture and operation. The device may include one or more resistive random access memory (ReRAM) approaches to provide a memory device with more predictable operation. In particular, the forming voltage required by particular designs may be reduced through the use of a barrier layer, a reverse polarity forming voltage pulse, a forming voltage pulse where electrons are injected from a lower work function electrode, or an anneal in a reducing environment. One or more of these techniques may be applied, depending on the desired application and results.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: February 24, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Pragati Kumar, Tony P. Chiang, Prashant B Phatak, Yun Wang
  • Publication number: 20150037959
    Abstract: Embodiments generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching capacity by using multiple layers of variable resistance layers. In one embodiment, the resistive switching element comprises at least three layers of variable resistance materials to increase the number of logic states. Each variable resistance layer may have an associated high resistance state and an associated low resistance state. As the resistance of each variable resistance layer determines the digital data bit that is stored, the multiple variable resistance layers per memory element allows for additional data storage without the need to further increase the density of nonvolatile memory devices.
    Type: Application
    Filed: October 20, 2014
    Publication date: February 5, 2015
    Inventor: Tony P. Chiang
  • Publication number: 20150034896
    Abstract: Nonvolatile memory elements including resistive switching metal oxides may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
    Type: Application
    Filed: September 17, 2014
    Publication date: February 5, 2015
    Inventors: Pragati Kumar, Sean Barstow, Tony P. Chiang, Sandra G Malhotra
  • Publication number: 20150021774
    Abstract: Methods for sealing a porous dielectric are presented including: receiving a substrate, the substrate including the porous dielectric; exposing the substrate to an organosilane, where the organosilane includes a hydrolysable group for facilitating attachment with the porous dielectric, and where the organosilane does not include an alkyl group; and forming a layer as a result of the exposing to seal the porous dielectric. In some embodiments, methods are presented where the organosilane includes: alkynyl groups, aryl groups, flouroalkyl groups, heteroarlyl groups, alcohol groups, thiol groups, amine groups, thiocarbamate groups, ester groups, ether groups, sulfide groups, and nitrile groups. In some embodiments, method further include: removing contamination from the porous dielectric and a conductive region of the substrate prior to the exposing; and removing contamination from the conductive region after the forming.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 22, 2015
    Inventors: Tony P. Chiang, Majid Keshavarz, David E. Lazovsky
  • Publication number: 20150017780
    Abstract: A nonvolatile resistive memory element includes one or more novel oxygen isolation structures that protect the resistive switching material of the memory element from oxygen migration. One such oxygen isolation structure comprises an oxygen barrier layer that isolates the resistive switching material from other portions of the resistive memory device during fabrication and/or operation of the memory device. Another such oxygen isolation structure comprises a sacrificial layer that reacts with unwanted oxygen migrating toward the resistive switching material during fabrication and/or operation of the memory device.
    Type: Application
    Filed: October 2, 2014
    Publication date: January 15, 2015
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim, Dipankar Pramanik
  • Patent number: 8921156
    Abstract: Non-volatile resistive-switching memories are described, including a memory element having a first electrode, a second electrode, a metal oxide between the first electrode and the second electrode. The metal oxide switches using bulk-mediated switching, has a bandgap greater than 4 electron volts (eV), has a set voltage for a set operation of at least one volt per one hundred angstroms of a thickness of the metal oxide, and has a leakage current density less than 40 amps per square centimeter (A/cm2) measured at 0.5 volts (V) per twenty angstroms of the thickness of the metal oxide.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: December 30, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Prashant B Phatak, Tony P. Chiang, Pragati Kumar, Michael Miller