Patents by Inventor Trung T. Doan

Trung T. Doan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8066551
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: November 29, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey P. Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Danny Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong
  • Publication number: 20110284866
    Abstract: A light emitting diode (LED) device having a substantially conformal wavelength-converting layer for producing uniform white light and a method of making said LED at both the wafer and individual die levels are provided. The LED device includes a metal substrate, a p-type semiconductor coupled to the metal substrate, an active region coupled to the p-type semiconductor, an n-type semiconductor coupled to the active region, and a wavelength converting layer coupled to the n-type semiconductor.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 24, 2011
    Inventors: CHUONG A. TRAN, Trung T. Doan, Jui-Kang Yen, Yung-Wei Chen
  • Patent number: 8034716
    Abstract: Semiconductor structures and methods of making a vertical diode structure are provided. The vertical diode structure may have associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer may be formed over the interior surface of the diode opening and contacting the active region. The diode opening may initially be filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that may be heavily doped with a first type dopant and a bottom portion that may be lightly doped with a second type dopant. The top portion may be bounded by the bottom portion so as not to contact the titanium silicide layer. In one embodiment of the vertical diode structure, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: October 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Tyler A. Lowrey, Trung T. Doan, Raymond A. Turi, Graham R. Wolstenholme
  • Patent number: 8012774
    Abstract: A light emitting diode (LED) device having a substantially conformal wavelength-converting layer for producing uniform white light and a method of making said LED at both the wafer and individual die levels are provided. The LED device includes a metal substrate, a p-type semiconductor coupled to the metal substrate, an active region coupled to the p-type semiconductor, an n-type semiconductor coupled to the active region, and a wavelength-converting layer coupled to the n-type semiconductor.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: September 6, 2011
    Assignee: SemiLEDs Optoelectronics Co., Ltd.
    Inventors: Chuong A. Tran, Trung T. Doan, Jui-Kang Yen, Yung-Wei Chen
  • Publication number: 20110195639
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Danny Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong
  • Publication number: 20110163416
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.
    Type: Application
    Filed: March 14, 2011
    Publication date: July 7, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
  • Patent number: 7964436
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: June 21, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung T. Doan
  • Patent number: 7935950
    Abstract: An ovonic phase-change semiconductor memory device having a reduced area of contact between electrodes of chalcogenide memories, and methods of programming the same are disclosed. Such memory devices include a lower electrode including non-parallel sidewalls. An insulative material overlies the lower electrode such that an upper surface of the lower electrode is exposed. In one embodiment, the insulative material and lower electrode may have a co-planar upper surface. In another embodiment, an upper surface of the lower electrode is within a recess in the insulative material. A chalcogenide material and an upper electrode are formed over the upper surface of the lower electrode. This allows the memory cells to be made smaller and allows the overall power requirements for the memory cell to be minimized.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: May 3, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Trung T. Doan, D. Mark Durcan, Brent D. Gilgen
  • Patent number: 7927190
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: April 19, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Danny Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong
  • Patent number: 7906393
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: March 15, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
  • Patent number: 7871934
    Abstract: A process is provided for forming vertical contacts in the manufacture of integrated circuits and devices. The process eliminates the need for precise mask alignment and allows the etch of the contact hole to be controlled independent of the etch of the interconnect trough. The process includes the steps of: forming an insulating layer on the surface of a substrate; forming an etch stop layer on the surface of the insulating layer; forming an opening in the etch stop layer; etching to a first depth through the opening in the etch stop layer and into the insulating layer to form an interconnect trough; forming a photoresist mask on the surface of the etch stop layer and in the trough; and continuing to etch through the insulating layer until reaching the surface of the substrate to form a contact hole. The above process may be repeated one or more times during the formation of multilevel metal integrated circuits.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: January 18, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Charles H. Dennison, Trung T. Doan
  • Publication number: 20100282164
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Application
    Filed: July 20, 2010
    Publication date: November 11, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 7807503
    Abstract: A die-wafer package includes a singulated semiconductor die having a first plurality of bond pads on a first surface and a second plurality of bond pads on a second, opposing surface thereof. Each of the first and second pluralities of bond pads includes an under-bump metallization (UBM) layer. The singulated semiconductor die is disposed on a semiconductor die site of a semiconductor wafer and a first plurality of conductive bumps electrically couples the first plurality of bond pads of the singulated semiconductor die with a first set of bond pads formed on the semiconductor die site. A second plurality of conductive bumps is disposed on a second set of bond pads of the semiconductor die site. A third plurality of conductive bumps is disposed on the singulated semiconductor die's second plurality of bond pads. The second and third pluralities of conductive bumps are configured for electrical interconnection with an external device.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: October 5, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Trung T. Doan
  • Patent number: 7771537
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Publication number: 20100102433
    Abstract: A chip-scale or wafer-level package, having passivation layers on substantially all surfaces thereof to form a hermetically sealed package, is provided. The package may be formed by disposing a first passivation layer on the passive or back side surface of a semiconductor wafer. The semiconductor wafer may be attached to a flexible membrane and diced, such as by a wafer saw, to separate the semiconductor devices. Once diced, the flexible membrane may be stretched so as to laterally displace the individual semiconductor devices away from one another and substantially expose the side edges thereof. Once the side edges of the semiconductor devices are exposed, a passivation layer may be formed on the side edges and active surfaces of the devices. A portion of the passivation layer over the active surface of each semiconductor device may be removed so as to expose conductive elements formed therebeneath.
    Type: Application
    Filed: December 30, 2009
    Publication date: April 29, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Trung T. Doan
  • Patent number: 7656012
    Abstract: A chip-scale or wafer-level-package, having passivation layers on substantially all surfaces thereof to form a hermetically sealed-package, is provided. The package may be formed by disposing a first passivation layer on the passive or backside surface of a semiconductor wafer. The semiconductor wafer may be attached to a flexible membrane and diced, such as by a wafer saw, to separate the semiconductor devices. Once diced, the flexible membrane may be stretched so as to laterally displace the individual semiconductor devices away from one another and substantially expose the side edges thereof. Once the side edges of the semiconductor devices are exposed, a passivation layer may be formed on the side edges and active surfaces of the devices. A portion of the passivation layer over the active surface of each semiconductor device may be removed so as to expose conductive elements formed therebeneath.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: February 2, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Trung T. Doan
  • Publication number: 20100019388
    Abstract: A process for forming vertical contacts in the manufacture of integrated circuits and devices eliminating the need for precise mask alignment and allowing the etching of the contact hole controlled independent of the etching of the interconnect trough that may be repeated during the formation of multilevel integrated circuits. The process includes forming an insulating layer on the surface of a substrate; forming an etch stop layer on the surface of the insulating layer; forming an opening in the etch stop layer; etching to a first depth through the opening in the etch stop layer and into the insulating layer to form an interconnect trough; forming a photoresist mask on the surface of the etch stop layer and in the trough; and continuing to etch through the insulating layer until reaching the surface of the substrate to form a contact hole.
    Type: Application
    Filed: September 23, 2009
    Publication date: January 28, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Charles H. Dennison, Trung T. Doan
  • Patent number: 7647886
    Abstract: Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers are disclosed herein. In one embodiment, the system includes a gas phase reaction chamber, a first exhaust line coupled to the reaction chamber, first and second traps each in fluid communication with the first exhaust line, and a vacuum pump coupled to the first exhaust line to remove gases from the reaction chamber. The first and second traps are operable independently to individually and/or jointly collect byproducts from the reaction chamber. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: January 19, 2010
    Assignee: Micron Technology, Inc.
    Inventors: David J. Kubista, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Kevin L. Beaman, Er-Xuan Ping, Lingyi A. Zheng, Cem Basceri
  • Publication number: 20090311843
    Abstract: Disclosed is a container capacitor structure and method of constructing it. An etch mask and etch are used to expose portions of an exterior surface of electrode (“bottom electrodes”) of the container capacitor structure. The etch provides a recess between proximal pairs of container capacitor structures, which recess is available for forming additional capacitance. Accordingly, a capacitor dielectric and a top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Advantageously, surface area common to both the first electrode and second electrodes is increased over using only the interior surface, which provides additional capacitance without a decrease in spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location.
    Type: Application
    Filed: August 25, 2009
    Publication date: December 17, 2009
    Inventors: D. Mark Durcan, Trung T. Doan, Roger R. Lee, Fernando Gonzalez, Er-Xuan Ping
  • Patent number: 7625694
    Abstract: Disclosed herein are techniques for using diblock copolymer (DBCP) films as etch masks to form small dots or holes in integrated circuit layers. In an embodiment, the DBCP film is deposited on the circuit layer to be etched. Then the DCBP film is confined to define an area of interest in the DCBP film in which hexagonal domains will eventually be formed. Such confinement can constitute masking and exposing the DCBP film using photolithographic techniques. Such masking preferably incorporates knowledge of the domain spacing and/or grain size of the to-be-formed domains in the area of interest to ensure that a predictable number and/or orientation of the domains will result in the area of interest, although this is not strictly necessary in all useful embodiments. Domains are then formed in the area of interest in the DBCP film which comprises a hexagonal array of cylindrical domains in a matrix. The film is then treated (e.g.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, Daryl C. New, Trung T. Doan