Patents by Inventor Tsung-Yuan Yu

Tsung-Yuan Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953740
    Abstract: A package structure including a photonic, an electronic die, an encapsulant and a waveguide is provided. The photonic die includes an optical coupler. The electronic die is electrically coupled to the photonic die. The encapsulant laterally encapsulates the photonic die and the electronic die. The waveguide is disposed over the encapsulant and includes an upper surface facing away from the encapsulant. The waveguide includes a first end portion and a second end portion, the first end portion is optically coupled to the optical coupler, and the second end portion has a groove on the upper surface.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11947173
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11935871
    Abstract: A semiconductor package including a first semiconductor die, a second semiconductor die, a first insulating encapsulation, a dielectric layer structure, a conductor structure and a second insulating encapsulation is provided. The first semiconductor die includes a first semiconductor substrate and a through silicon via (TSV) extending from a first side to a second side of the semiconductor substrate. The second semiconductor die is disposed on the first side of the semiconductor substrate. The first insulating encapsulation on the second semiconductor die encapsulates the first semiconductor die. A terminal of the TSV is coplanar with a surface of the first insulating encapsulation. The dielectric layer structure covers the first semiconductor die and the first insulating encapsulation. The conductor structure extends through the dielectric layer structure and contacts with the through silicon via.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Yi Tsai, Cheng-Chieh Hsieh, Tsung-Hsien Chiang, Hui-Chun Chiang, Tzu-Sung Huang, Ming-Hung Tseng, Kris Lipu Chuang, Chung-Ming Weng, Tsung-Yuan Yu, Tzuan-Horng Liu
  • Publication number: 20240069277
    Abstract: A semiconductor package includes a first die stack structure and a second die stack structure, an insulating encapsulation, a redistribution structure, at least one prism structure and at least one reflector. The first die stack structure and the second die stack structure are laterally spaced apart from each other along a first direction, and each of the first die stack structure and the second die stack structure comprises an electronic die; and a photonic die electronically communicating with the electronic die. The insulating encapsulation laterally encapsulates the first die stack structure and the second die stack structure. The redistribution structure is disposed on the first die stack structure, the second die stack structure and the insulating encapsulation, and electrically connected to the first die stack structure and the second die stack structure. The at least one prism structure is disposed within the redistribution structure and optically coupled to the photonic die.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Yi Kuo, Chen-Hua Yu, Cheng-Chieh Hsieh, Che-Hsiang Hsu, Chung-Ming Weng, Tsung-Yuan Yu
  • Publication number: 20240047332
    Abstract: A semiconductor package includes a first tier and a second tier underlying the first tier and including TIVs and third dies. The first tier includes a first redistribution structure and first and second dies disposed side-by-side and separated by a first insulating encapsulation. A surface of the first insulating encapsulation, surfaces of first die connectors of the first die, and truncated spherical surfaces of second die connectors of the second die are level. The first redistribution structure underlies the surfaces of the first insulating encapsulation and the first die connectors and the truncated spherical surfaces of the second die connectors. The third dies disposed below the first redistribution structure are electrically coupled to the first die through the first redistribution structure and laterally covered by a second insulating encapsulation. The TIVs penetrate through the second insulating encapsulation and are electrically coupled to the second die through the first redistribution structure.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 8, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzuan-Horng Liu, Hao-Yi Tsai, Kuo-Lung Pan, Tsung-Yuan Yu
  • Publication number: 20240012213
    Abstract: A photonic integrated circuit has a central region and a peripheral region surrounding the central region. The photonic integrated circuit includes a semiconductor layer, a seal ring structure, and a plurality of silicon waveguides. The seal ring structure is disposed on the semiconductor layer. The seal ring structure is located in the peripheral region and has at least one recess recessing towards the central region from a top view. The seal ring structure is a continuous structure from the top view. The silicon waveguides are embedded in the semiconductor layer.
    Type: Application
    Filed: September 21, 2023
    Publication date: January 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Yuan Yu, Hung-Yi Kuo, Cheng-Chieh Hsieh, Hao-Yi Tsai, Chung-Ming Weng, Hua-Kuei Lin, Che-Hsiang Hsu
  • Publication number: 20230384537
    Abstract: A method of making a semiconductor device includes defining an opening extending from a first side of a substrate to a second side of the substrate, wherein the first side of the substrate is opposite the second side of the substrate. The method further includes depositing a dielectric material into the opening, wherein the dielectric material has a first refractive index. The method further includes etching the dielectric material to define a core opening extending from the first side of the substrate to the second side of the substrate. The method further includes depositing a core material into the core opening, wherein the core material has a second refractive index different from the first refractive index, and the core material is optically transparent. The method further includes removing excess core material from a surface of the substrate.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 30, 2023
    Inventors: Yu-Hao CHEN, Chung-Ming WENG, Tsung-Yuan YU, Hui Yu LEE, Hung-Yi KUO, Jui-Feng KUAN, Chien-Te WU
  • Publication number: 20230378140
    Abstract: A semiconductor package including a first semiconductor die, a second semiconductor die, a first insulating encapsulation, a dielectric layer structure, a conductor structure and a second insulating encapsulation is provided. The first semiconductor die includes a first semiconductor substrate and a through substrate via (TSV) extending from a first side to a second side of the semiconductor substrate. The second semiconductor die is disposed on the first side of the semiconductor substrate. The first insulating encapsulation on the second semiconductor die encapsulates the first semiconductor die. A terminal of the TSV is coplanar with a surface of the first insulating encapsulation. The dielectric layer structure covers the first semiconductor die and the first insulating encapsulation. The conductor structure extends through the dielectric layer structure and contacts with the through substrate via.
    Type: Application
    Filed: August 1, 2023
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Yi Tsai, Cheng-Chieh Hsieh, Tsung-Hsien Chiang, Hui-Chun Chiang, Tzu-Sung Huang, Ming-Hung Tseng, Kris Lipu Chuang, Chung-Ming Weng, Tsung-Yuan Yu, Tzuan-Horng Liu
  • Publication number: 20230367062
    Abstract: Disclosed are semiconductor packages and manufacturing method of the semiconductor packages. In one embodiment, a semiconductor package includes a substrate, a first waveguide, a semiconductor die, and an adhesive layer. The first waveguide is disposed on the substrate. The semiconductor die is disposed on the substrate and includes a second waveguide aligned with the first waveguide. The adhesive layer is disposed between the first waveguide and the second waveguide.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Hua-Kuei Lin, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Che-Hsiang Hsu, Chewn-Pu Jou, Cheng-Tse Tang
  • Patent number: 11809000
    Abstract: A photonic integrated circuit includes a substrate, an interconnection layer, and a plurality of silicon waveguides. The interconnection layer is over the substrate. The interconnection layer includes a seal ring structure and an interconnection structure surrounded by the seal ring structure. The seal ring structure has at least one recess from a top view. The recess concaves towards the interconnection structure. The silicon waveguides are embedded in the substrate.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Yuan Yu, Hung-Yi Kuo, Cheng-Chieh Hsieh, Hao-Yi Tsai, Chung-Ming Weng, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11768338
    Abstract: An optical interconnect structure including a base substrate, an optical waveguide, a first reflector, a second reflector, a dielectric layer, a first lens, and a second lens is provided. The optical waveguide is embedded in the base substrate. The optical waveguide includes a first end portion and a second end portion opposite to the first end portion. The first reflector is disposed between the base substrate and the first end portion of the optical waveguide. The second reflector is disposed between the base substrate and the second end portion of the optical waveguide. The dielectric layer covers the base substrate and the optical waveguide. The first lens is disposed on the dielectric layer and located above the first end portion of the optical waveguide. The second lens is disposed on the dielectric layer and located above the second end portion of the optical waveguide.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Yu-Hsiang Hu, Chewn-Pu Jou, Feng-Wei Kuo
  • Patent number: 11754794
    Abstract: A semiconductor device includes a substrate. The semiconductor device further includes a waveguide on a first side of the substrate. The semiconductor device further includes a photodetector (PD) on a second side of the substrate, opposite the first side of the substrate. The semiconductor device further includes an optical through via (OTV) optically connecting the PD with the waveguide, wherein the OTV extends through the substrate from the first side of the substrate to the second side of the substrate.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hao Chen, Chung-Ming Weng, Tsung-Yuan Yu, Hui Yu Lee, Hung-Yi Kuo, Jui-Feng Kuan, Chien-Te Wu
  • Patent number: 11754780
    Abstract: Disclosed are semiconductor packages and manufacturing method of the semiconductor packages. In one embodiment, a semiconductor package includes a substrate, a first waveguide, a semiconductor die, and an adhesive layer. The first waveguide is disposed on the substrate. The semiconductor die is disposed on the substrate and includes a second waveguide aligned with the first waveguide. The adhesive layer is disposed between the first waveguide and the second waveguide.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: September 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Hua-Kuei Lin, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Che-Hsiang Hsu, Chewn-Pu Jou, Cheng-Tse Tang
  • Publication number: 20230280558
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Application
    Filed: May 5, 2023
    Publication date: September 7, 2023
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Publication number: 20230258881
    Abstract: A semiconductor device includes an optical connector element and an optical coupler. The optical connector element includes a base structure, a first polymer via and a cladding layer. The base structure has a first surface and a second surface opposite to the first surface. The first polymer via passes through the base structure from the first surface to the second surface. The cladding layer is surrounding the first polymer via, wherein a refractive index of the cladding layer is different than a refractive index of the first polymer via. The optical coupler is disposed over the optical connector element, wherein the optical coupler receives optical signals from the first polymer via.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 17, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Yu-Hao Chen
  • Publication number: 20230245967
    Abstract: A manufacturing method of a semiconductor package includes the following steps. A supporting layer is formed over a redistribution structure. A first planarization process is performed over the supporting layer. A lower dielectric layer is formed over the supporting layer, wherein the lower dielectric layer includes a concave exposing a device mounting region of the supporting layer. A first sacrificial layer is formed over the supporting layer, wherein the sacrificial layer filling the concave. A second planarization process is performed over the lower dielectric layer and the first sacrificial layer. A transition waveguide provided over the lower dielectric layer. The first sacrificial layer is removed. A semiconductor device is mounted over the device mounting region, wherein the semiconductor device includes a device waveguide is optically coupled to the transition waveguide.
    Type: Application
    Filed: March 27, 2023
    Publication date: August 3, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Hsiu-Jen Lin, Ming-Che Ho, Yu-Hsiang Hu, Chewn-Pu Jou, Cheng-Tse Tang
  • Publication number: 20230236372
    Abstract: Photonic devices and methods of manufacture are provided. In embodiments a fill material and/or a secondary waveguide are utilized in order to protect other internal structures such as grating couplers from the rigors of subsequent processing steps. Through the use of these structures at the appropriate times during the manufacturing process, damage and debris that would otherwise interfere with the manufacturing process of the device or operation of the device can be avoided.
    Type: Application
    Filed: March 27, 2023
    Publication date: July 27, 2023
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Chih-Hsuan Tai, Hua-Kuei Lin, Tsung-Yuan Yu, Min-Hsiang Hsu
  • Patent number: 11686908
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: June 27, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Publication number: 20230152542
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Application
    Filed: January 3, 2022
    Publication date: May 18, 2023
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11640935
    Abstract: A semiconductor package includes a redistribution structure, a supporting layer, a semiconductor device, and a transition waveguide structure. The redistribution structure includes a plurality of connectors. The supporting layer is formed over the redistribution structure and disposed beside and between the plurality of connectors. The semiconductor device is disposed on the supporting layer and bonded to the plurality of connectors, wherein the semiconductor device includes a device waveguide. The transition waveguide structure is disposed on the supporting layer adjacent to the semiconductor device, wherein the transition waveguide structure is optically coupled to the device waveguide.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: May 2, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Hsiu-Jen Lin, Ming-Che Ho, Yu-Hsiang Hu, Chewn-Pu Jou, Cheng-Tse Tang