Patents by Inventor Ulrich Boettiger

Ulrich Boettiger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9041840
    Abstract: An image sensor unit may have a backside-illuminated imager and an image co-processor stacked together. The image co-processor may be mounted in a cavity in a permanent carrier. The permanent carrier may include fluid channels that allow cooling fluid to flow past the image co-process and past the imager, thereby removing excess heat generated by the image sensor unit during operation.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: May 26, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Swarnal Borthakur, Scott Churchwell, Ulrich Boettiger, Marc Sulfridge, Andrew Perkins, Rick Lake
  • Publication number: 20150137297
    Abstract: An array of color filter elements may be formed over an array of photodiodes in an integrated circuit for an imaging device using a carrier substrate. The carrier substrate may have a planar surface with a release layer. A layer of color filter material may be applied to the release layer. The carrier substrate may then be flipped and the layer of color filter material may be bonded to the integrated circuit. Heat may be applied to activate the release layer and the carrier substrate may be removed at the interface between the release layer and the color filter material. The layer of color filter material may be patterned either before bonding the layer of color filter material or after the carrier substrate is removed. A layer of microlenses may be formed over the array of color filter elements using a carrier substrate.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Applicant: Aptina Imaging Corporation
    Inventors: Ulrich Boettiger, Swarnal Borthakur, Andrew Perkins
  • Publication number: 20150054962
    Abstract: An imaging system may include a first image sensor die stacked on top of a second image sensor die. A pixel array may include first pixels having photodiodes in the first image sensor die and second pixels having photodiodes in the second image sensor die. The first pixels may be optimized to detect a first type of electromagnetic radiation (e.g., visible light), whereas the second pixels may be optimized to detect a second type of electromagnetic radiation (e.g., infrared light). Light guide channels may be formed in the first image sensor die to help guide incident light to the photodiodes in the second image sensor substrate. The first and second image sensor dies may be bonded at a wafer level. A first image sensor wafer may be a backside illumination image sensor wafer and a second image sensor wafer may be a front or backside illumination image sensor wafer.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 26, 2015
    Inventors: Swarnal Borthakur, Ulrich Boettiger, Sergey Velichko
  • Patent number: 8779483
    Abstract: Electronic devices may be provided with imaging modules that include plasmonic light collectors. Plasmonic light collectors may be configured to exploit an interaction between incoming light and plasmons in the plasmonic light collector to alter the path of the incoming light. Plasmonic light collectors may include one or more spectrally tuned plasmonic image pixels configured to preferentially trap light of a given frequency. Spectrally tuned plasmonic image pixels may include plasmonic structures formed form a patterned metal layer over doped silicon layers. Doped silicon layers may be interposed between plasmonic structures and a reflective layer. Plasmonic image pixels may be used to absorb and detect as much as, or more than, ninety percent of incident light at wavelengths ranging from the infrared to the ultraviolet. Plasmonic image pixels that capture light of different colors may be arranged in patterned arrays to form imager modules or imaging spectrometers for optofluidic microscopes.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: July 15, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Kenneth Edward Salsman, Ulrich Boettiger, Dmitry Bakin, Curtis W. Stith
  • Patent number: 8704935
    Abstract: An imaging system may include an array of lenses, each of which is aligned over a respective one of a plurality of imaging pixels. The array of lenses may be formed in two layers. The first layer may include a first set of non-adjacent lenses and centering structures between the first lenses. The centering structures may be aligned with the first set of lenses as part of a mask design with a high level of accuracy. The second layer may include a second set of lenses, each of which is formed on a respective one of the centering structures. Forming the second set of lenses may include a reflow process in which surface tension forces center the second set of lenses on their respective centering structures, thereby aligning the second set of lenses with the first set of lenses with a high level of accuracy.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 22, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Ulrich Boettiger
  • Publication number: 20140055654
    Abstract: An image sensor unit may have a backside-illuminated imager and an image co-processor stacked together. The image co-processor may be mounted in a cavity in a permanent carrier. The permanent carrier may include fluid channels that allow cooling fluid to flow past the image co-process and past the imager, thereby removing excess heat generated by the image sensor unit during operation.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 27, 2014
    Applicant: Aptina Imaging Corporation
    Inventors: Swarnal Borthakur, Scott Churchwell, Ulrich Boettiger, Marc Sulfridge, Andrew Perkins, Rick Lake
  • Patent number: 8538120
    Abstract: An image sensor integrated circuit may contain image sensor pixels. A channel containing a fluid with particles such as cells may be formed on top of the image sensor. Some of the image sensor pixels may form a calibration sensor and some of the image sensor pixels may form an imager. As the fluid and particles flow through the channel at a flow rate, the calibration sensor may measures the flow rate and illumination intensity in the channel. Based on calibration data such as measured flow rate and measured illumination intensity, adjustments may be made to ensure that the imager acquires satisfactory image data. The adjustments may include flow rate adjustments, image acquisition data rate adjustments, and illumination adjustments. A processing unit in the channel may contain a laser or other component to destroy selected cells. A flared region in the channel may be used as a chromatograph.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 17, 2013
    Assignee: Aptina Imaging Corporation
    Inventors: Kenneth Edward Salsman, Ulrich Boettiger, Dmitry Bakin, Curtis W. Stith
  • Patent number: 8466437
    Abstract: A compact image sensor for imaging radiation emitted by fluorescing objects exposed to excitation light is disclosed. The compact image sensor includes a light guide defining a longitudinal axis for channeling radiation emitted by the fluorescing object; a reflective surface defined on the light guide that is oriented at an angle with respect to the longitudinal axis of the light guide to reflect the excitation light away from a detector of the image sensor; and the detector positioned at an end of the light guide for imaging radiation emitted by the fluorescing object. Also disclosed is a fluorescence imaging system for imaging radiation emitted by a fluorescing object to be imaged by compact image sensor and a method of fluorescence imaging.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: June 18, 2013
    Assignee: Aptina Imaging Corporation
    Inventor: Ulrich Boettiger
  • Patent number: 8445831
    Abstract: Various embodiments include interconnects for semiconductor structures that can include a first conductive structure, a second conductive structure and a non-hardening liquid conductive material in contact with the first and second structure. Other embodiments include semiconductor components and imager devices using the interconnects. Further embodiments include methods of forming a semiconductor structure and focusing methods for an imager device.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 21, 2013
    Assignee: Aptina Imaging Corporation
    Inventors: Rick Lake, Ulrich Boettiger, Shashikant Hegde, Jacques Duparre
  • Publication number: 20120326256
    Abstract: Electronic devices may be provided with imaging modules that include plasmonic light collectors. Plasmonic light collectors may be configured to exploit an interaction between incoming light and plasmons in the plasmonic light collector to alter the path of the incoming light. Plasmonic light collectors may include one or more spectrally tuned plasmonic image pixels configured to preferentially trap light of a given frequency. Spectrally tuned plasmonic image pixels may include plasmonic structures formed form a patterned metal layer over doped silicon layers. Doped silicon layers may be interposed between plasmonic structures and a reflective layer. Plasmonic image pixels may be used to absorb and detect as much as, or more than, ninety percent of incident light at wavelengths ranging from the infrared to the ultraviolet. Plasmonic image pixels that capture light of different colors may be arranged in patterned arrays to form imager modules or imaging spectrometers for optofluidic microscopes.
    Type: Application
    Filed: February 2, 2012
    Publication date: December 27, 2012
    Inventors: Kenneth Edward Salsman, Ulrich Boettiger, Dmitry Bakin, Curtis W. Stith
  • Publication number: 20120273695
    Abstract: A compact image sensor for imaging radiation emitted by fluorescing objects exposed to excitation light is disclosed. The compact image sensor includes a light guide defining a longitudinal axis for channeling radiation emitted by the fluorescing object; a reflective surface defined on the light guide that is oriented at an angle with respect to the longitudinal axis of the light guide to reflect the excitation light away from a detector of the image sensor; and the detector positioned at an end of the light guide for imaging radiation emitted by the fluorescing object. Also disclosed is a fluorescence imaging system for imaging radiation emitted by a fluorescing object to be imaged by compact image sensor and a method of fluorescence imaging.
    Type: Application
    Filed: June 21, 2011
    Publication date: November 1, 2012
    Applicant: APTINA IMAGING CORPORATION
    Inventor: ULRICH BOETTIGER
  • Publication number: 20120273906
    Abstract: Pixel arrays are provided for image sensors that have barriers between color filters in an array of color filters. Color filter barriers may be formed from a transparent or semi-transparent material. Color filter barriers may be formed from a low refractive index material. Color filters may be etched and color filter barrier material may be formed in the etched regions of the color filters. If desired, a layer of color filter barrier material may be etched to form open regions and color filter material may be formed in the open regions of the color filter barrier material. An image sensor may be a front-side illuminated image sensor or a back-side illuminated image sensor.
    Type: Application
    Filed: November 11, 2011
    Publication date: November 1, 2012
    Inventors: Jeffrey Mackey, Ulrich Boettiger, Mattia Cichocki, Loriston Ford, Rick Holscher, Mitchell J. Mooney, Brian Vaartstra
  • Publication number: 20120200749
    Abstract: An imaging system may include an image sensor configured to image materials at near field imaging ranges from the image sensor. Near field imaging ranges may be on the scale of 1-10 pixel sizes from the image sensor. The materials being imaged may be fluorescent materials that emit radiation at fluorescent wavelengths when the materials are exposed to radiation at excitation wavelengths. The image sensor may include color filter materials that block radiation at excitation wavelengths while transmitting radiation at fluorescent wavelengths. The image sensor may include light guides that reduce cross-talk between pixels and improve localization of emitted radiation, thereby allowing the image sensor to determine which pixel(s) is (are) located beneath the materials being imaged. The light guides may include may include sloped sidewalls and may include reflective sidewalls, which may improve radiation collection (e.g., efficiency) and localization of emitted radiation.
    Type: Application
    Filed: July 22, 2011
    Publication date: August 9, 2012
    Inventors: Ulrich Boettiger, Swarnal Borthakur, Jeffrey Mackey, Brian Vaartstra, Marc Sulfridge
  • Publication number: 20120194719
    Abstract: An image sensor unit has stacked imager and processor integrated circuits. The imager may have an image sensor pixel array on its front surface. Processor die may be mounted back-to-back with respective imagers on a wafer. A photodefinable dielectric film may cover the rear surface of the wafer. Metal traces in the photodefinable dielectric and through-silicon vias in each imager may be used to interconnect the processing circuitry on the front surface of a processor to the image sensor pixel array on the front surface of the imager. Openings may be formed in the photo definable dielectric to allow solder balls to form electrical connections with the metal traces. A cavity may be formed in a photo definable dielectric layer or an imager to accommodate the processor. The processor may also be mounted in a cavity in a separate silicon standoff structure before attaching the standoff structure to the imager.
    Type: Application
    Filed: April 6, 2011
    Publication date: August 2, 2012
    Inventors: Scott Churchwell, Ulrich Boettiger, Swarnal Borthakur, Andrew Perkins, Rick Lake, Marc Sulfridge
  • Publication number: 20120188421
    Abstract: An imaging system may include an array of lenses, each of which is aligned over a respective one of a plurality of imaging pixels. The array of lenses may be formed in two layers. The first layer may include a first set of non-adjacent lenses and centering structures between the first lenses. The centering structures may be aligned with the first set of lenses as part of a mask design with a high level of accuracy. The second layer may include a second set of lenses, each of which is formed on a respective one of the centering structures. Forming the second set of lenses may include a reflow process in which surface tension forces center the second set of lenses on their respective centering structures, thereby aligning the second set of lenses with the first set of lenses with a high level of accuracy.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 26, 2012
    Inventor: Ulrich Boettiger
  • Publication number: 20120147228
    Abstract: An imaging system may include an image sensor and lenses on a substrate. The lenses may focus light onto the image sensor. The imaging system may include multiple optical channels, each of which directs light at a particular wavelength or range of wavelengths to a particular region of the image sensor. The imaging system may include optical crosstalk suppression structures that reduce or minimize optical crosstalk between the optical channels. The optical crosstalk suppression structures may include, for each optical channel, at least a pair of matching color filters. The color filters may keep any light that leaks between optical channels from reaching the image sensor.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Inventors: Jacques Duparré, Ulrich Boettiger
  • Publication number: 20120061787
    Abstract: Various embodiments include interconnects for semiconductor structures that can include a first conductive structure, a second conductive structure and a non-hardening liquid conductive material in contact with the first and second structure. Other embodiments include semiconductor components and imager devices using the interconnects. Further embodiments include methods of forming a semiconductor structure and focusing methods for an imager device.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Inventors: Rick Lake, Ulrich Boettiger, Shashikant Hegde, Jacques Duparre
  • Publication number: 20120044341
    Abstract: An integrated circuit may contain image sensor pixels. Channels containing a fluid with samples such as cells may be formed on top of the image sensor. Control circuitry may be formed on the integrated circuit. The image sensor pixels may form light sensors and imagers. Portions of the channel may have multiple chambers such as fluorescence detection chambers. Gating structures and other fluid control structures may control the flow of fluid through the channels and chambers. Portions of the channel may be used to form chambers. The chambers may each be provided with one or more light sensors, light sources, and color filters to alter the color of illumination form a light source, one or more reactants such as dyes, antigens, and antibodies, and heaters. The control circuitry may be configured to control the imagers, the gating structures, the fluid control structures, the light source, the heaters, etc.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 23, 2012
    Inventors: Curtis W. Stith, Kenneth Edward Salsman, Dmitry Bakin, Ulrich Boettiger
  • Publication number: 20120045787
    Abstract: Micro-carrier systems may be used to carry and identify sample materials through an analysis system. Analysis systems may include an image sensor integrated circuit containing image sensor pixels. A channel containing a fluid with particles such as cells may be formed on top of the image sensor. Micro-carriers may be used to carry the cells in the fluid. Micro-carriers may have identifier regions and active regions. Identifier regions may include coded information identifying cells, fluid samples, or other materials carried in the active region. Active regions may carry reagents, trapping agents, cells or other sample materials. Active regions may be formed on a surface of a micro-carrier or may be formed in a cavity inside the micro-carrier. Micro-carriers may include magnetic control structures that can be used to guide, rotate, accelerate or position micro-carriers.
    Type: Application
    Filed: July 14, 2011
    Publication date: February 23, 2012
    Inventor: Ulrich Boettiger
  • Publication number: 20120045103
    Abstract: An image sensor integrated circuit may contain image sensor pixels. A channel containing a fluid with particles such as cells may be formed on top of the image sensor. Some of the image sensor pixels may form a calibration sensor and some of the image sensor pixels may form an imager. As the fluid and particles flow through the channel at a flow rate, the calibration sensor may measures the flow rate and illumination intensity in the channel. Based on calibration data such as measured flow rate and measured illumination intensity, adjustments may be made to ensure that the imager acquires satisfactory image data. The adjustments may include flow rate adjustments, image acquisition data rate adjustments, and illumination adjustments. A processing unit in the channel may contain a laser or other component to destroy selected cells. A flared region in the channel may be used as a chromatograph.
    Type: Application
    Filed: May 24, 2011
    Publication date: February 23, 2012
    Inventors: Kenneth Edward Salsman, Ulrich Boettiger, Dmitry Bakin, Curtis W. Stith