Patents by Inventor Vivek K. De

Vivek K. De has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170187283
    Abstract: Generally, this disclosure describes an apparatus. The apparatus includes switch controller circuitry and zero crossing logic circuitry. The switch controller circuitry is to control a conduction state of a high side switch and a low side switch in a DC to DC converter. The zero crossing logic circuitry includes phase comparator circuitry, a first clocking circuitry and a second clocking circuitry. Each clocking circuitry includes one or more delay elements. The zero crossing logic circuitry is to monitor a switch node voltage, Vsw, and to determine whether Vsw is greater than a reference, Vref. The switch controller circuitry is to turn off a low side switch if Vsw is greater than Vref while the low side switch is turned on, Vsw greater than Vref corresponding to a negative inductor current.
    Type: Application
    Filed: December 23, 2015
    Publication date: June 29, 2017
    Applicant: Intel Corporation
    Inventors: Vaibhav Vaidya, Vivek K. De, Krishnan Ravichandran
  • Publication number: 20170139006
    Abstract: Sequential circuits with error-detection are provided. They may, for example, be used to replace traditional master-slave flip-flops, e.g., in critical path circuits to detect and initiate correction of late transitions at the input of the sequential. In some embodiments, such sequentials may comprise a transition detector with a time borrowing latch.
    Type: Application
    Filed: February 1, 2017
    Publication date: May 18, 2017
    Inventors: Keith A. Bowman, James W. Tschanz, Nam Sung Kim, Janice C. Lee, Christopher B. Wilkerson, Shih-Lien L. Lu, Tanay Karnik, Vivek K. De
  • Patent number: 9633716
    Abstract: Methods and systems to provide a multi-Vcc environment, such as to selectively boost an operating voltage of a logic block and/or provide a level-shifted control to the logic block. A multi-Vcc environment may be implemented to isolate a Vmin-limiting logic block from a single-Vcc environment, such as to reduce Vmin and/or improve energy efficiency in the single-Vcc environment. The logic block may include bit cells of a register file, a low-level processor cache, and/or other memory system. A cell Vcc may be boosted during a read mode and/or write wordlines (WWLs) and/or read wordlines (RWLs) may be asserted with boost. A wordline decoder may include a voltage level shifter with differential split-level logic, and a dynamic NAND, which may include NAND logic, a keeper circuit, and logic to delay a keeper control based on a delay of the level shifter to reduce contention during an initial NAND evaluation phase.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: April 25, 2017
    Assignee: Intel Corporation
    Inventors: Jaydeep P. Kulkarni, Bibiche M. Geuskens, James Tschanz, Vivek K. De, Muhammed M. Khellah
  • Patent number: 9627039
    Abstract: Described is an apparatus for self-induced reduction in write minimum supply voltage for a memory element. The apparatus comprises: a memory element having cross-coupled inverters coupled to a first supply node; a power device coupled to the first supply node and a second supply node, the second supply node coupled to power supply; and an access device having a gate terminal coupled to a word-line, a first terminal coupled to the memory element, and a second terminal coupled to a bit-line which is operable to be pre-discharged to a logical low level prior to write operation.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: April 18, 2017
    Assignee: Intel Corporation
    Inventors: Jaydeep P Kulkarni, Muhammad M Khellah, James W Tschanz, Bibiche M Geuskens, Vivek K De
  • Publication number: 20170083033
    Abstract: Some embodiments include apparatuses and methods having a power switching unit to receive a first voltage and provide a second voltage having a value based on a value of the first voltage, a first loop to provide digital control information to control a switching of the power switching unit in order to maintain a relationship between the value of the second voltage and a value of a reference voltage, and a second loop coupled to the power switching unit and the first loop to calculate a value of energy consumption of at least a portion of the apparatus based at least on the digital control information.
    Type: Application
    Filed: September 22, 2015
    Publication date: March 23, 2017
    Inventors: Sunghyun Park, Stephen Kim, Krishnan Ravichandran, Sriram R. Vangal, Vivek K. De
  • Patent number: 9600283
    Abstract: Methods and apparatuses for reducing power consumption of processor switch operations are disclosed. One or more embodiments may comprise specifying a subset of registers or state storage elements to be involved in a register or state storage operation, performing the register or state storage operation, and performing a switch operation. The embodiments may minimize the number of registers or state storage elements involved with the standby operation by specifying only the subset of registers or state storage elements, which may involve considerably fewer than the total number of registers or state storage or elements of the processor. The switch operation may be switch from one mode to another, such as a transition to or from a sleep mode, a context switch, or the execution of various types of instructions.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: March 21, 2017
    Assignee: Intel Corporation
    Inventors: Ethan Schuchman, Hong Wang, Chris Weaver, Belliappa M. Kuttanna, Asit Mallick, Vivek K. De, Per Hammarlund
  • Patent number: 9594625
    Abstract: Sequential circuits with error-detection are provided. They may, for example, be used to replace traditional master-slave flip-flops, e.g., in critical path circuits to detect and initiate correction of late transitions at the input of the sequential. In some embodiments, such sequentials may comprise a transition detector with a time borrowing latch.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: March 14, 2017
    Assignee: Intel Corporation
    Inventors: Keith A. Bowman, James W. Tschanz, Nam Sung Kim, Janice C. Lee, Christopher B. Wilkerson, Shih-Lien L. Lu, Tanay Karnik, Vivek K. De
  • Publication number: 20170041001
    Abstract: Described is an apparatus which comprises: a clamp coupled between a first power supply and a second power supply, the clamp including a plurality of transistors, a circuit to operate with the second power supply; and a control unit to turn on and off the plurality of transistors to adjust the second power supply when the apparatus enters a low power mode. The control unit includes a first comparator to compare the second power supply with a first reference, a second comparator to compare the second power supply with a second reference, and a counter. The counter counts up when the second power supply is higher than the first reference and counts down when the second power supply is lower than the second reference.
    Type: Application
    Filed: October 21, 2016
    Publication date: February 9, 2017
    Inventors: Arijit Raychowdhury, Charles Augustine, James W. Tschanz, Vivek K. De
  • Patent number: 9520877
    Abstract: Described are apparatuses and methods for detecting or repairing minimum-delay errors. The apparatus may include a minimum-delay error detector (MDED) to receive a clock signal and a data path signal and to detect a minimum-delay error (MDE) in the data path based on the received data path signal and the clock signal. The MDE may be repaired by adjusting one or more regional clock buffers coupled to the MDED. Further, the apparatus may include minimum-delay path replicas (MDPRs) used for detecting and repairing MDEs during normal system operations. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: December 13, 2016
    Assignee: Intel Corporation
    Inventors: Pascal A. Meinerzhagen, Sandip Kundu, James W. Tschanz, Vivek K. De
  • Patent number: 9484917
    Abstract: Described is an apparatus which comprises: a clamp coupled between a first power supply and a second power supply; and a circuit to operate with the second power supply, wherein the clamp is operable to adjust the second power supply when the apparatus enters a low power mode.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: November 1, 2016
    Assignee: Intel Corporation
    Inventors: Arijit Raychowdhury, Charles Augustine, James W. Tschanz, Vivek K. De
  • Publication number: 20160294281
    Abstract: Described is an apparatus for power management. The apparatus comprises: a first power supply node; a second power supply node; a controllable device coupled to the first power supply node and to the second power supply node, the controllable device operable to short the first power supply node to the second power supply node; a load coupled to the second power supply node; and a charge recovery pump (CRP) coupled to the first and second power supply nodes.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 6, 2016
    Inventors: Jaydeep P. KULKARNI, Pascal A. MEINERZHAGEN, Dinesh SOMASEKHAR, James W. TSCHANZ, Vivek K. DE
  • Publication number: 20160225438
    Abstract: Methods and systems to provide a multi-Vcc environment, such as to selectively boost an operating voltage of a logic block and/or provide a level-shifted control to the logic block. A multi-Vcc environment may be implemented to isolate a Vmin-limiting logic block from a single-Vcc environment, such as to reduce Vmin and/or improve energy efficiency in the single-Vcc environment. The logic block may include bit cells of a register file, a low-level processor cache, and/or other memory system. A cell Vcc may be boosted during a read mode and/or write wordlines (WWLs) and/or read wordlines (RWLs) may be asserted with boost. A wordline decoder may include a voltage level shifter with differential split-level logic, and a dynamic NAND, which may include NAND logic, a keeper circuit, and logic to delay a keeper control based on a delay of the level shifter to reduce contention during an initial NAND evaluation phase.
    Type: Application
    Filed: January 6, 2016
    Publication date: August 4, 2016
    Inventors: Jaydeep P. Kulkarni, Bibiche M. Geuskens, James Tschanz, Vivek K. De, Muhammed M. Khellah
  • Publication number: 20160210192
    Abstract: The disclosed system and method detect and correct register file read path errors that may occur as a result of reducing or eliminating supply voltage guardbands and/or frequency guardbands for a CPU, thereby increasing overall energy efficiency of the system.
    Type: Application
    Filed: March 28, 2016
    Publication date: July 21, 2016
    Inventors: Jaydeep P. Kulkarni, Keith A. Bowman, James W. Tschanz, Vivek K. De
  • Publication number: 20160182354
    Abstract: A router of a network-on-chip receives delay information associated with a plurality of links of the network-on-chip. The router determines at least one link of a data path based on the delay information.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 23, 2016
    Inventors: Vivek K. De, Ram K. Krishnamurthy, Gregory K. Chen, Mark A. Anders, Himanshu Kaul
  • Publication number: 20160170456
    Abstract: An integrated circuit (IC) package is disclosed. The IC package includes a first die; and a second die bonded to the CPU die in a three dimensional packaging layout.
    Type: Application
    Filed: September 25, 2012
    Publication date: June 16, 2016
    Applicant: INTEL CORPORATION
    Inventors: Siva G. Narendra, James W. Tschanz, Howard A. Wilson, Donald S. Gardner, Peter Hazucha, Gerhard Schrom, Tanay Karnik, Nitin Borkar, Vivek K. De, Shekhar Y. Borkar
  • Publication number: 20160173090
    Abstract: Described are apparatuses and methods for detecting or repairing minimum-delay errors. The apparatus may include a minimum-delay error detector (MDED) to receive a clock signal and a data path signal and to detect a minimum-delay error (MDE) in the data path based on the received data path signal and the clock signal. The MDE may be repaired by adjusting one or more regional clock buffers coupled to the MDED. Further, the apparatus may include minimum-delay path replicas (MDPRs) used for detecting and repairing MDEs during normal system operations. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventors: Pascal A. Meinerzhagen, Sandip Kundu, James W. Tschanz, Vivek K. De
  • Publication number: 20160141022
    Abstract: Described is an apparatus for self-induced reduction in write minimum supply voltage for a memory element. The apparatus comprises: a memory element having cross-coupled inverters coupled to a first supply node; a power device coupled to the first supply node and a second supply node, the second supply node coupled to power supply; and an access device having a gate terminal coupled to a word-line, a first terminal coupled to the memory element, and a second terminal coupled to a bit-line which is operable to be pre-discharged to a logical low level prior to write operation.
    Type: Application
    Filed: August 19, 2015
    Publication date: May 19, 2016
    Inventors: Jaydeep P. Kulkarni, Muhammad M. Khellah, James W. Tschanz, Bibiche M. Geuskens, Vivek K. De
  • Patent number: 9329918
    Abstract: The disclosed system and method detect and correct register file read path errors that may occur as a result of reducing or eliminating supply voltage guardbands and/or frequency guardbands for a CPU, thereby increasing overall energy efficiency of the system.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: May 3, 2016
    Assignee: INTEL CORPORATION
    Inventors: Jaydeep P. Kulkarni, Keith A. Bowman, James W. Tschanz, Vivek K. De
  • Patent number: 9299395
    Abstract: Methods and systems to provide a multi-Vcc environment, such as to selectively boost an operating voltage of a logic block and/or provide a level-shifted control to the logic block. A multi-Vcc environment may be implemented to isolate a Vmin-limiting logic block from a single-Vcc environment, such as to reduce Vmin and/or improve energy efficiency in the single-Vcc environment. The logic block may include bit cells of a register file, a low-level processor cache, and/or other memory system. A cell Vcc may be boosted during a read mode and/or write wordlines (WWLs) and/or read wordlines (RWLs) may be asserted with boost. A wordline decoder may include a voltage level shifter with differential split-level logic, and a dynamic NAND, which may include NAND logic, a keeper circuit, and logic to delay a keeper control based on a delay of the level shifter to reduce contention during an initial NAND evaluation phase.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: March 29, 2016
    Assignee: Intel Corporation
    Inventors: Jaydeep P. Kulkarni, Bibiche M. Geuskens, James Tschanz, Vivek K. De, Muhammad M. Khellah
  • Publication number: 20160034338
    Abstract: Sequential circuits with error-detection are provided. They may, for example, be used to replace traditional master-slave flip-flops, e.g., in critical path circuits to detect and initiate correction of late transitions at the input of the sequential. In some embodiments, such sequentials may comprise a transition detector with a time borrowing latch.
    Type: Application
    Filed: October 8, 2015
    Publication date: February 4, 2016
    Inventors: Keith A. Bowman, James W. Tschanz, Nam Sung Kim, Janice C. Lee, Christopher B. Wilkerson, Shih-Lien L. Lu, Tanay Karnik, Vivek K. De