Patents by Inventor William M. Johnson

William M. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9065564
    Abstract: A communication system for providing world-wide, mobile Internet communication to a plurality of users and a method therefore. The system includes ground-based, multi-channel, radio frequency transmitting and receiving broadcasting grids that are capable of providing content to multiple users via cell towers and low-altitude, optical transmitting and receiving satellites that are in optical communication with the ground-based, multi-channel, RF transmitting and receiving broadcasting grids. The method includes transmitting optical and/or RF signals between at least one of the ground-based, multi-channel, RF transmitting and receiving broadcasting grids and at least one of the low-altitude, optical transmitting and receiving satellites.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: June 23, 2015
    Inventor: William M. Johnson
  • Patent number: 8706322
    Abstract: A method of controlling inertial attitude of an artificial satellite in order to perform a navigation function and to maximize terrestrial coverage of the Earth by the satellite. The method includes deploying the artificial satellite in an orbit about the poles of the Earth; applying gyroscopic precession to the artificial satellite spin axis to precess and maintain the satellite near the ecliptic pole; deploying the artificial satellite so that the spin axis is initially perpendicular to or substantially perpendicular to sun lines; and applying gyroscopic precession to the artificial satellite spin axis to precess the spin axis away from an initial deployed attitude at a selectively-variable precession rate and to maintain the spin axis perpendicular to or substantially perpendicular to the sun lines.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: April 22, 2014
    Inventor: William M. Johnson
  • Patent number: 8676503
    Abstract: A method of and apparatus for determining and controlling the inertial attitude of a spinning artificial satellite without using a suite of inertial gyroscopes. The method and apparatus operate by tracking three astronomical objects near the Earth's ecliptic pole and the satellite's and/or star tracker's spin axis and processing the track information.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: March 18, 2014
    Inventor: William M. Johnson
  • Publication number: 20130307859
    Abstract: Systems, processors and methods are disclosed for organizing processing datapaths to perform operations in parallel while executing a single program. Each datapath executes the same sequence of instructions, using a novel instruction sequencing method. Each datapath is implemented through a processor having a data memory partitioned into identical regions. A master processor fetches instructions and conveys them to the datapath processors. All processors are connected serially by an instruction pipeline, such that instructions are executed in parallel datapaths, with execution in each datapath offset in time by one clock cycle from execution in adjacent datapaths. The system includes an interconnection network that enables full sharing of data in both horizontal and vertical dimensions, with the effect of coupling any datapath to the memory of any other datapath without adding processing cycles in common usage.
    Type: Application
    Filed: September 4, 2012
    Publication date: November 21, 2013
    Inventor: William M. Johnson
  • Publication number: 20130101293
    Abstract: A communication system for providing world-wide, mobile Internet communication to a plurality of users and a method therefore. The system includes ground-based, multi-channel, radio frequency transmitting and receiving broadcasting grids that are capable of providing content to multiple users via cell towers and low-altitude, optical transmitting and receiving satellites that are in optical communication with the ground-based, multi-channel, RF transmitting and receiving broadcasting grids. The method includes transmitting optical and/or RF signals between at least one of the ground-based, multi-channel, RF transmitting and receiving broadcasting grids and at least one of the low-altitude, optical transmitting and receiving satellites.
    Type: Application
    Filed: October 3, 2012
    Publication date: April 25, 2013
    Inventor: William M. Johnson
  • Publication number: 20120131309
    Abstract: Traditionally, providing parallel processing within a multi-core system has been very difficult. Here, however, a system in provided where serial source code is automatically converted into parallel source code, and a processing cluster is reconfigured “on the fly” to accommodate the parallelized code based on an allocation of memory and compute resources. Thus, the processing cluster and its corresponding system programming tool provide a system that can perform parallel processing from a serial program that is transparent to a user.
    Type: Application
    Filed: September 14, 2011
    Publication date: May 24, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: William M. Johnson, Murali S. Chinnakonda, Jeffrey L. Nye, Toshio Nagata, John W. Glotzbach, Hamid R. Sheikh, Ajay Jayaraj, Stephen Busch, Shalini Gupta, Robert J.P. Nychka, David H. Bartley, Ganesh Sundararajan
  • Patent number: 8185262
    Abstract: A method of and apparatus for determining and controlling the inertial attitude of a spinning artificial satellite without using a suite of inertial gyroscopes. The method and apparatus operate by tracking three astronomical objects near the Earth's ecliptic pole and the satellite's and/or star tracker's spin axis and processing the track information.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: May 22, 2012
    Inventor: William M. Johnson
  • Publication number: 20110297794
    Abstract: A method of controlling inertial attitude of an artificial satellite in order to perform a navigation function and to maximize terrestrial coverage of the Earth by the satellite. The method includes deploying the artificial satellite in an orbit about the poles of the Earth; applying gyroscopic precession to the artificial satellite spin axis to precess and maintain the satellite near the ecliptic pole; deploying the artificial satellite so that the spin axis is initially perpendicular to or substantially perpendicular to sun lines; and applying gyroscopic precession to the artificial satellite spin axis to precess the spin axis away from an initial deployed attitude at a selectively-variable precession rate and to maintain the spin axis perpendicular to or substantially perpendicular to a the sun lines.
    Type: Application
    Filed: August 18, 2011
    Publication date: December 8, 2011
    Inventor: William M. Johnson
  • Patent number: 8000735
    Abstract: A wireless communications device includes a host processing unit, a modem processing unit, and a memory transport interface. The wireless communications device typically runs a variety of software tasks, some of which require considerably more memory than others. By processing the memory intensive tasks with the host processing unit and assigning tasks requiring high computing power but relatively smaller memory to the modem processor unit, a smaller on-chip memory can be used for the modem processor unit tasks. In addition, by using a messaging transport interface to transfer data between tasks running on different processing units, smaller local memories can be used in place of a shared memory. For example, by allocating and storing L1 tasks at the modem processing unit and allocating/storing L2 and L3 tasks at the host processing unit, duplicate memory components may be reduced or removed, thereby lowering system costs and improving system efficiency.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: August 16, 2011
    Assignee: GlobalFoundries Inc.
    Inventors: Michael Barclay, Terry Lynn Cole, Richard Powell, William M. Johnson, David W. Smith, Ralf Findeisen, Derek Golightly
  • Patent number: 7852472
    Abstract: A spectroscopy system uses a probe laser beam and an opposing excitation laser beam, i.e., running opposite to a direction of the probe laser beam, but transmitted co-linearly with one another along a same optical path. A thermal lens effect acting on the probe laser beam allows for controlling alignment of the two laser beams and allows for supplementary measurements of parameters for the spectroscopy system based on geometric analysis of detected image signals. The alignment of the two laser beams is controlled by detection of the probe laser beam with respect to the effects of the excitation laser beam on a medium through which the two laser beams are passing.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: December 14, 2010
    Inventor: William M. Johnson
  • Publication number: 20100228407
    Abstract: A method of and apparatus for determining and controlling the inertial attitude of a spinning artificial satellite without using a suite of inertial gyroscopes. The method and apparatus operate by tracking three astronomical objects near the Earth's ecliptic pole and the satellite's and/or star tracker's spin axis and processing the track information.
    Type: Application
    Filed: April 20, 2010
    Publication date: September 9, 2010
    Inventor: William M. Johnson
  • Publication number: 20100169578
    Abstract: A system comprises tag memories and data memories. Sources use the tag memories with the data memories as a cache. Arbitration of a cache request is replayed, based on an arbitration miss and way hit, without accessing the tag memories. A method comprises receiving a cache request sent by a source out of a plurality of sources. The sources use tag memories with data memories as a cache. The method further comprises arbitrating the cache request, and replaying arbitration, based on an arbitration miss and way hit, without accessing the tag memories.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Robert NYCHKA, William M. JOHNSON, Thang M. TRAN
  • Patent number: 7739003
    Abstract: A method of and apparatus for determining and controlling the inertial attitude of a spinning artificial satellite without using a suite of inertial gyroscopes. The method and apparatus operate by tracking three astronomical objects near the Earth's ecliptic pole and the satellite's and/or star tracker's spin axis and processing the track information.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: June 15, 2010
    Inventor: William M. Johnson
  • Publication number: 20090222153
    Abstract: A method of and apparatus for determining and controlling the inertial attitude of a spinning artificial satellite without using a suite of inertial gyroscopes. The method and apparatus operate by tracking three astronomical objects near the Earth's ecliptic pole and the satellite's and/or star tracker's spin axis and processing the track information.
    Type: Application
    Filed: February 2, 2009
    Publication date: September 3, 2009
    Inventor: William M. Johnson
  • Publication number: 20070180310
    Abstract: Disclosed herein are a system and method for designing digital circuits. In some embodiments, the digital circuits include processors having dedicated messaging hardware that enable processor cores to minimize interrupt activity related to inter-core communications. The messaging hardware receives and parses any message in its entirety prior to passing the contents of the message on to the digital circuit. In other embodiments, the digital circuit functionalities are partitioned across individual cores to enable parallel execution. Each core may be provided with standardized messaging hardware that shields internal implementation details from all other cores. This modular approach accelerates development and testing, and renders parallel circuit design to more efficiently attain feasible speedups. These digital circuit cores may be homogenous or heterogeneous.
    Type: Application
    Filed: January 26, 2007
    Publication date: August 2, 2007
    Applicant: TEXAS INSTRUMENTS, INC.
    Inventors: William M. Johnson, Jeffrey L. Nye
  • Patent number: 6577929
    Abstract: The present invention provides methods of and apparatus for determining the inertial attitude of an aerospace vehicle. In one embodiment, the invention provides a rotational astronomical object-sighting concept to determine the inertial attitude of an axis of the aerospace vehicle without the star identification or dragback. In another embodiment, the invention provides an attitude measurement apparatus comprising a high sensitivity optical sensor and a low power inertial sensor.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: June 10, 2003
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: William M. Johnson, Howard Musoff, Darryl G. Sargent, Jerold P. Gilmore, Cornelius J. Dennehy
  • Publication number: 20030023355
    Abstract: The present invention provides methods of and apparatus for determining the inertial attitude of an aerospace vehicle. In one embodiment, the invention provides a rotational astronomical object-sighting concept to determine the inertial attitude of an axis of the aerospace vehicle without the star identification or dragback. In another embodiment, the invention provides an attitude measurement apparatus comprising a high sensitivity optical sensor and a low power inertial sensor.
    Type: Application
    Filed: January 28, 2002
    Publication date: January 30, 2003
    Inventors: William M. Johnson, Howard Musoff, Darryl G. Sargent, Jerold P. Gilmore, Cornelius J. Dennehy
  • Patent number: 6298423
    Abstract: A load/store functional unit and a corresponding data cache of a superscalar microprocessor is disclosed. The load/store functional unit includes a plurality of reservation station entries which are accessed in parallel and which are coupled to the data cache in parallel. The load/store functional unit also includes a store buffer circuit having a plurality of store buffer entries. The store buffer entries are organized to provide a first in first out buffer where the outputs from less significant entries of the buffer are provided as inputs to more significant entries of the buffer.
    Type: Grant
    Filed: August 26, 1996
    Date of Patent: October 2, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: William M. Johnson, David B. Witt, Murali Chinnakonda
  • Patent number: 6279101
    Abstract: A super-scalar microprocessor performs operations upon a plurality of instructions at each of its fetch, decode, execute, and write-back stages. To support such operations, the super-scalar microprocessor includes a dispatch arrangement including an instruction cache for fetching blocks of instructions including a plurality of instructions and an instruction decoder which decodes and dispatches the instructions to functional units for execution. The instruction decoder applies a dispatch criteria to selected instructions of each block of instructions and dispatches the selected instructions which satisfy the dispatch criteria. The dispatch criteria includes the requirement that the instructions be dispatched speculatively in order, that supporting operands be available for the execution of the instructions, or tagged values substituted that will be available later, and that the functional units required for executing the instructions be available.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 21, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David B. Witt, William M. Johnson
  • Patent number: 6256728
    Abstract: A processor is configured to detect a branch instruction have a forward branch target address within a predetermined range of the branch fetch address of the branch instruction. If the branch instruction is predicted taken, instead of canceling subsequent instructions and fetching the branch target address, the processor allows sequential fetching to continue and selectively cancels the sequential instructions which are not part of the predicted instruction sequence (i.e. the instructions between the predicted taken branch instruction and the target instruction identified by the forward branch target address). Instructions within the predicted instruction sequence which may already have been fetched prior to predicting the branch instruction taken may be retained within the pipeline of the processor, and yet subsequent instructions may be fetched.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: July 3, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David B. Witt, William M. Johnson