Patents by Inventor Yen-Cheng Lu

Yen-Cheng Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369518
    Abstract: An optical sensing apparatus including: a substrate including a first material; an absorption region including a second material different from the first material; an amplification region formed in the substrate and configured to collect at least a portion of the photo-carriers from the absorption region and to amplify the portion of the photo-carriers; an interface-dopant region formed in the substrate between the absorption region and the amplification region; a buffer layer formed between the absorption region and the interface-dopant region; one or more field-control regions formed between the absorption region and the interface-dopant region and at least partially surrounding the buffer layer; and a buried-dopant region formed in the substrate and separated from the absorption region, where the buried-dopant region is configured to collect at least a portion of the amplified portion of the photo-carriers from the amplification region.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 16, 2023
    Inventors: Yen-Cheng Lu, Yu-Hsuan Liu, Jung-Chin Chiang, Yun-Chung Na, Tsung-Ting Wu, Zheng-Shun Liu, Chou-Yun Hsu
  • Patent number: 11777049
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes a carrier conducting layer having a first surface; an absorption region is doped with a first dopant having a first conductivity type and a first peak doping concentration, wherein the carrier conducting layer is doped with a second dopant having a second conductivity type and a second peak doping concentration, wherein the carrier conducting layer comprises a material different from a material of the absorption region, wherein the carrier conducting layer is in contact with the absorption region to form at least one heterointerface, wherein a ratio between the first peak doping concentration of the absorption region and the second peak doping concentration of the carrier conducting layer is equal to or greater than 10; and a first electrode and a second electrode both formed over the first surface of the carrier conducting layer.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: October 3, 2023
    Assignee: Artilux, Inc.
    Inventors: Yen-Cheng Lu, Yun-Chung Na
  • Publication number: 20230280206
    Abstract: A photodetecting device is provided. The photodetecting device includes a silicon substrate, a germanium absorption region, and a plurality of microstructures. The silicon substrate includes a first surface and a second surface. The germanium absorption region is formed proximal to the first surface of the silicon substrate, and the germanium absorption region is configured to absorb photons and to generate photo-carriers. The plurality of microstructures are formed over the second surface of the silicon substrate, and the plurality of microstructures are configured to direct an optical signal towards the germanium absorption region. A system including an optical transmitter and an optical receiver is also provided.
    Type: Application
    Filed: May 11, 2023
    Publication date: September 7, 2023
    Inventors: YEN-CHENG LU, YUN-CHUNG NA, SHU-LU CHEN, CHIEN-YU CHEN, SZU-LIN CHENG, CHUNG-CHIH LIN, YU-HSUAN LIU
  • Publication number: 20230275177
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes a carrier conducting layer having a first surface; an absorption region is doped with a first dopant having a first conductivity type and a first peak doping concentration, wherein the carrier conducting layer is doped with a second dopant having a second conductivity type and a second peak doping concentration, wherein the carrier conducting layer comprises a material different from a material of the absorption region, wherein the carrier conducting layer is in contact with the absorption region to form at least one heterointerface, wherein a ratio between the first peak doping concentration of the absorption region and the second peak doping concentration of the carrier conducting layer is equal to or greater than 10; and a first electrode and a second electrode both formed over the first surface of the carrier conducting layer.
    Type: Application
    Filed: May 8, 2023
    Publication date: August 31, 2023
    Inventors: Yen-Cheng Lu, Yun-Chung Na
  • Publication number: 20230228881
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes: a substrate made by a first material or a first material-composite; an absorption layer made by a second material or a second material-composite, the absorption layer being supported by the substrate and the absorption layer including: a first surface; a second surface arranged between the first surface and the substrate; and a channel region having a dopant profile with a peak dopant concentration equal to or more than 1×1015 cm?3, wherein a distance between the first surface and a location of the channel region having the peak dopant concentration is less than a distance between the second surface and the location of the channel region having the peak dopant concentration, and wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is not less than 30 nm.
    Type: Application
    Filed: March 14, 2023
    Publication date: July 20, 2023
    Inventors: Szu-Lin Cheng, Chien-Yu Chen, Shu-Lu Chen, Yun-Chung Na, Ming-Jay Yang, Han-Din Liu, Che-Fu Liang, Jung-Chin Chiang, Yen-Cheng Lu, Yen-Ju Lin
  • Patent number: 11686614
    Abstract: A photodetecting device is provided. The photodetecting device includes a first photodetecting component including a substrate having a first absorption region configured to absorb photons having a first peak wavelength and to generate first photo-carriers, and a second photodetecting component including a second absorption region configured to absorb photons having a second peak wavelength different from the first peak wavelength and to generate second photo-carriers. The first photodetecting component further includes two first readout circuits and two first control circuits for the first photo-carriers and electrically coupled to the first absorption region.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: June 27, 2023
    Assignee: ARTILUX, INC.
    Inventors: Yen-Cheng Lu, Yun-Chung Na, Shu-Lu Chen, Chien-Yu Chen, Szu-Lin Cheng, Chung-Chih Lin, Yu-Hsuan Liu
  • Patent number: 11652184
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes a carrier conducting layer having a first surface; an absorption region is doped with a first dopant having a first conductivity type and a first peak doping concentration, wherein the carrier conducting layer is doped with a second dopant having a second conductivity type and a second peak doping concentration, wherein the carrier conducting layer comprises a material different from a material of the absorption region, wherein the carrier conducting layer is in contact with the absorption region to form at least one heterointerface, wherein a ratio between the first peak doping concentration of the absorption region and the second peak doping concentration of the carrier conducting layer is equal to or greater than 10; and a first electrode and a second electrode both formed over the first surface of the carrier conducting layer.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: May 16, 2023
    Assignee: Artilux, Inc.
    Inventors: Yen-Cheng Lu, Yun-Chung Na
  • Patent number: 11630212
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes: a substrate made by a first material or a first material-composite; an absorption layer made by a second material or a second material-composite, the absorption layer being supported by the substrate and the absorption layer including: a first surface; a second surface arranged between the first surface and the substrate; and a channel region having a dopant profile with a peak dopant concentration equal to or more than 1×1015 cm?3, wherein a distance between the first surface and a location of the channel region having the peak dopant concentration is less than a distance between the second surface and the location of the channel region having the peak dopant concentration, and wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is not less than 30 nm.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: April 18, 2023
    Assignee: Artilux, Inc.
    Inventors: Szu-Lin Cheng, Chien-Yu Chen, Shu-Lu Chen, Yun-Chung Na, Ming-Jay Yang, Han-Din Liu, Che-Fu Liang, Jung-Chin Chiang, Yen-Cheng Lu, Yen-Ju Lin
  • Patent number: 11574942
    Abstract: A semiconductor device includes a germanium region, a doped region in the germanium region, wherein the doped region is of a first conductivity type; and a counter-doped region in the germanium region and adjacent to the doped region, wherein the counter-doped region is of a second conductivity type different from the first conductivity type.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: February 7, 2023
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Yen-Cheng Lu, Ming-Jay Yang, Szu-Lin Cheng
  • Publication number: 20220359770
    Abstract: An optical sensing apparatus is provided. The optical sensing apparatus including: a substrate including a first material; an absorption region including a second material different from the first material, the absorption region configured to receive an optical signal and generate photo-carriers in response to receiving the optical signal; an amplification region formed in the substrate configured to collect at least a portion of the photo-carriers from the absorption region and to amplify the portion of the photo-carriers carriers; a buried-dopant region formed in the substrate and separated from the absorption region, wherein the buried-dopant region is configured to collect at least a portion of the amplified portion of the photo-carriers from the amplification region; and a buffer layer formed between the buried-dopant region and the absorption region, wherein the buffer layer is intrinsic and has a thickness not less than 150 nm.
    Type: Application
    Filed: April 26, 2022
    Publication date: November 10, 2022
    Inventors: Yen-Cheng Lu, Yu-Hsuan Liu, Jung-Chin Chiang, Yun-Chung Na
  • Publication number: 20220310685
    Abstract: Methods, devices, apparatus, and systems for photo-detecting are provided. In one aspect, a photo-detecting apparatus includes: a pixel having an absorption region configured to receive an optical signal and to generate photo-carriers in response to the optical signal, a substrate supporting the absorption region, and at least one additional region formed in the substrate. The absorption region includes a first material, the substrate includes a second material different from the first material. The at least one additional region includes a third material different from the second material. A total area of the absorption region and the at least one additional region is at least 20% of an area of the pixel.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 29, 2022
    Inventors: Yun-Chung Na, Chien-Yu Chen, Ming-Jay Yang, Jung-Chin Chiang, Yen-Cheng Lu
  • Patent number: 11448830
    Abstract: A photo-detecting apparatus includes an optical-to-electric converter, having a first output terminal, configured to convert an incident light to an electrical signal; a cascode transistor, having a control terminal, a first channel terminal and a second channel terminal, wherein the second channel terminal of the cascode transistor is coupled to the first output terminal of the optical-to-electric converter; and a reset transistor, having a control terminal, a first channel terminal and a second channel terminal, wherein the first channel terminal of the reset transistor is coupled to a supply voltage and the second channel terminal of the reset transistor is coupled to the first channel terminal of the cascode transistor.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: September 20, 2022
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Che-Fu Liang, Chien-Lung Chen, Yuan-Fu Lyu, Yen-Cheng Lu
  • Publication number: 20220262974
    Abstract: An optical sensing apparatus is provided. The optical sensing apparatus includes a semiconductor substrate composed of a first material; a transmitter-receiver set supported by the semiconductor substrate and including: (1) a photodetector includes an absorption region composed of a second material including germanium and configured to receive an optical signal and to generate photo-carriers in response to the optical signal; and (2) a light source including a light-emitting region composed of a third material including germanium and configured to emit a light toward a target; wherein the absorption region includes at least a property different from a property of the light-emitting region, wherein the property includes strain, conductivity type, peak doping concentration, or a ratio of the peak doping concentration to a peak doping concentration of the semiconductor substrate; wherein the first material is different from the second material and the third material.
    Type: Application
    Filed: March 4, 2022
    Publication date: August 18, 2022
    Inventors: Yen-Cheng Lu, Yun-Chung Na, Shu-Lu Chen, Yen-Ju Lin
  • Publication number: 20220120611
    Abstract: A photodetecting device is provided. The photodetecting device includes a first photodetecting component including a substrate having a first absorption region configured to absorb photons having a first peak wavelength and to generate first photo-carriers, and a second photodetecting component including a second absorption region configured to absorb photons having a second peak wavelength different from the first peak wavelength and to generate second photo-carriers. The first photodetecting component further includes two first readout circuits and two first control circuits for the first photo-carriers and electrically coupled to the first absorption region.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Inventors: YEN-CHENG LU, YUN-CHUNG NA, SHU-LU CHEN, CHIEN-YU CHEN, SZU-LIN CHENG, CHUNG-CHIH LIN, YU-HSUAN LIU
  • Patent number: 11255724
    Abstract: A photodetecting device for detecting different wavelengths includes a first photodetecting component including a substrate and a second photodetecting component including second absorption region. The substrate includes a first absorption region configured to absorb photons having a first peak wavelength and to generate first photo-carriers. The second absorption region is supported by the substrate and configured to absorb photons having a second peak wavelength and to generate second photo-carriers. The first absorption region and the second absorption region are overlapped along a vertical direction.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: February 22, 2022
    Assignee: ARTILUX, INC.
    Inventors: Yen-Cheng Lu, Yun-Chung Na, Shu-Lu Chen, Chien-Yu Chen, Szu-Lin Cheng, Chung-Chih Lin, Yu-Hsuan Liu
  • Publication number: 20210391370
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes a carrier conducting layer having a first surface; an absorption region is doped with a first dopant having a first conductivity type and a first peak doping concentration, wherein the carrier conducting layer is doped with a second dopant having a second conductivity type and a second peak doping concentration, wherein the carrier conducting layer comprises a material different from a material of the absorption region, wherein the carrier conducting layer is in contact with the absorption region to form at least one heterointerface, wherein a ratio between the first peak doping concentration of the absorption region and the second peak doping concentration of the carrier conducting layer is equal to or greater than 10; and a first electrode and a second electrode both formed over the first surface of the carrier conducting layer.
    Type: Application
    Filed: August 27, 2021
    Publication date: December 16, 2021
    Inventors: Yen-Cheng Lu, Yun-Chung Na, Tsung-Ting Wu, Shu-Lu Chen, Chih-Wei Yeh
  • Publication number: 20210373168
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes: a substrate made by a first material or a first material-composite; an absorption layer made by a second material or a second material-composite, the absorption layer being supported by the substrate and the absorption layer including: a first surface; a second surface arranged between the first surface and the substrate; and a channel region having a dopant profile with a peak dopant concentration equal to or more than 1×1015 cm?3, wherein a distance between the first surface and a location of the channel region having the peak dopant concentration is less than a distance between the second surface and the location of the channel region having the peak dopant concentration, and wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is not less than 30 nm.
    Type: Application
    Filed: August 17, 2021
    Publication date: December 2, 2021
    Inventors: Szu-Lin Cheng, Chien-Yu Chen, Shu-Lu Chen, Yun-Chung Na, Ming-Jay Yang, Han-Din Liu, Che-Fu Liang, Jung-Chin Chiang, Yen-Cheng Lu, Yen-Ju Lin
  • Patent number: 11105928
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes: a substrate made by a first material or a first material-composite; an absorption layer made by a second material or a second material-composite, the absorption layer being supported by the substrate and the absorption layer including: a first surface; a second surface arranged between the first surface and the substrate; and a channel region having a dopant profile with a peak dopant concentration equal to or more than 1×1015 cm?3, wherein a distance between the first surface and a location of the channel region having the peak dopant concentration is less than a distance between the second surface and the location of the channel region having the peak dopant concentration, and wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is not less than 30 nm.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: August 31, 2021
    Assignee: Artilux, Inc.
    Inventors: Szu-Lin Cheng, Chien-Yu Chen, Shu-Lu Chen, Yun-Chung Na, Ming-Jay Yang, Han-Din Liu, Che-Fu Liang, Jung-Chin Chiang, Yen-Cheng Lu, Yen-Ju Lin
  • Patent number: 11086227
    Abstract: Various methods are disclosed herein for reducing (or eliminating) printability of mask defects during lithography processes. An exemplary method includes performing a first lithography exposing process and a second lithography exposing process using a mask to respectively image a first set of polygons oriented substantially along a first direction and a second set of polygons oriented substantially along a second direction on a target. During the first lithography exposing process, a phase distribution of light diffracted from the mask is dynamically modulated to defocus any mask defect oriented at least partially along both the first direction and a third direction that is different than the first direction. During the second lithography exposing process, the phase distribution of light diffracted from the mask is dynamically modulated to defocus any mask defect oriented at least partially along both the second direction and a fourth direction that is different than the third direction.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: August 10, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Cheng Lu, Chia-Hao Hsu, Shinn-Sheng Yu, Chia-Chen Chen, Jeng-Horng Chen, Anthony Yen
  • Patent number: 10976655
    Abstract: A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: April 13, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Cheng Lu, Shinn-Sheng Yu, Jeng-Horng Chen, Anthony Yen