Patents by Inventor Yen-Cheng Lu

Yen-Cheng Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210066529
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes a carrier conducting layer having a first surface; an absorption region is doped with a first dopant having a first conductivity type and a first peak doping concentration, wherein the carrier conducting layer is doped with a second dopant having a second conductivity type and a second peak doping concentration, wherein the carrier conducting layer comprises a material different from a material of the absorption region, wherein the carrier conducting layer is in contact with the absorption region to form at least one heterointerface, wherein a ratio between the first peak doping concentration of the absorption region and the second peak doping concentration of the carrier conducting layer is equal to or greater than 10; and a first electrode and a second electrode both formed over the first surface of the carrier conducting layer.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 4, 2021
    Inventors: Yen-Cheng LU, Yun-Chung NA
  • Publication number: 20210058042
    Abstract: A photo-current amplification apparatus is provided. The photo-current amplification apparatus includes a photo-detecting device including: a substrate; an absorption region comprising germanium, the absorption region supported by the substrate and configured to receive an optical signal and to generate a first electrical signal based on the optical signal; an emitter contact region of a conductivity type; and a collector contact region of the conductivity type, wherein at least one of the emitter contact region or the collector contact region is formed outside the absorption region, and wherein a second electrical signal collected by the collector contact region is greater than the first electrical signal generated by the absorption region.
    Type: Application
    Filed: August 20, 2020
    Publication date: February 25, 2021
    Inventors: Yun-Chung Na, Yen-Cheng Lu
  • Publication number: 20200319545
    Abstract: A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Yen-Cheng Lu, Shinn-Sheng Yu, Jeng-Horng Chen, Anthony Yen
  • Publication number: 20200319345
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes: a substrate made by a first material or a first material-composite; an absorption layer made by a second material or a second material-composite, the absorption layer being supported by the substrate and the absorption layer including: a first surface; a second surface arranged between the first surface and the substrate; and a channel region having a dopant profile with a peak dopant concentration equal to or more than 1×1015 cm?3, wherein a distance between the first surface and a location of the channel region having the peak dopant concentration is less than a distance between the second surface and the location of the channel region having the peak dopant concentration, and wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is not less than 30 nm.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 8, 2020
    Inventors: Szu-Lin Cheng, Chien-Yu Chen, Shu-Lu Chen, Yun-Chung Na, Ming-Jay Yang, Han-Din Liu, Che-Fu Liang, Jung-Chin Chiang, Yen-Cheng Lu, Yen-Ju Lin
  • Publication number: 20200310250
    Abstract: Various methods are disclosed herein for reducing (or eliminating) printability of mask defects during lithography processes. An exemplary method includes performing a first lithography exposing process and a second lithography exposing process using a mask to respectively image a first set of polygons oriented substantially along a first direction and a second set of polygons oriented substantially along a second direction on a target. During the first lithography exposing process, a phase distribution of light diffracted from the mask is dynamically modulated to defocus any mask defect oriented at least partially along both the first direction and a third direction that is different than the first direction. During the second lithography exposing process, the phase distribution of light diffracted from the mask is dynamically modulated to defocus any mask defect oriented at least partially along both the second direction and a fourth direction that is different than the third direction.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Inventors: Yen-Cheng Lu, Chia-Hao Hsu, Shinn-Sheng Yu, Chia-Chen Chen, Jeng-Horng Chen, Anthony Yen
  • Publication number: 20200274017
    Abstract: An optoelectronic device includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type different from the first conductivity type, and a photoelectric conversion region between the first semiconductor region and the second semiconductor region. The photoelectric conversion region is of a third conductivity type the same as the first conductivity type.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 27, 2020
    Inventors: Yun-Chung Na, Yen-Cheng Lu, Yu-Hsuan Liu, Chung-Chih Lin, Tsung-Ting Wu, Szu-Lin Cheng
  • Publication number: 20200217715
    Abstract: A photodetecting device for detecting different wavelengths includes a first photodetecting component including a substrate and a second photodetecting component including second absorption region. The substrate includes a first absorption region configured to absorb photons having a first peak wavelength and to generate first photo-carriers. The second absorption region is supported by the substrate and configured to absorb photons having a second peak wavelength and to generate second photo-carriers. The first absorption region and the second absorption region are overlapped along a vertical direction.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 9, 2020
    Inventors: YEN-CHENG LU, YUN-CHUNG NA, SHU-LU CHEN, CHIEN-YU CHEN, SZU-LIN CHENG, CHUNG-CHIH LIN, YU-HSUAN LIU
  • Patent number: 10691014
    Abstract: A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 23, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Cheng Lu, Shinn-Sheng Yu, Jeng-Horng Chen, Anthony Yen
  • Publication number: 20200194480
    Abstract: A semiconductor device includes a germanium region, a doped region in the germanium region, wherein the doped region is of a first conductivity type; and a counter-doped region in the germanium region and adjacent to the doped region, wherein the counter-doped region is of a second conductivity type different from the first conductivity type.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 18, 2020
    Inventors: Yun-Chung Na, Yen-Cheng Lu, Ming-Jay Yang, Szu-Lin Cheng
  • Publication number: 20200192032
    Abstract: A photo-detecting apparatus includes an optical-to-electric converter, having a first output terminal, configured to convert an incident light to an electrical signal; a cascode transistor, having a control terminal, a first channel terminal and a second channel terminal, wherein the second channel terminal of the cascode transistor is coupled to the first output terminal of the optical-to-electric converter; and a reset transistor, having a control terminal, a first channel terminal and a second channel terminal, wherein the first channel terminal of the reset transistor is coupled to a supply voltage and the second channel terminal of the reset transistor is coupled to the first channel terminal of the cascode transistor.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 18, 2020
    Inventors: Yun-Chung Na, Che-Fu Liang, Chien-Lung Chen, Yuan-Fu Lyu, Yen-Cheng Lu
  • Patent number: 10684552
    Abstract: Various methods are disclosed herein for reducing (or eliminating) printability of mask defects during lithography processes. An exemplary method includes performing a first lithography exposing process and a second lithography exposing process using a mask to respectively image a first set of polygons oriented substantially along a first direction and a second set of polygons oriented substantially along a second direction on a target. During the first lithography exposing process, a phase distribution of light diffracted from the mask is dynamically modulated to defocus any mask defect oriented at least partially along both the first direction and a third direction that is different than the first direction. During the second lithography exposing process, the phase distribution of light diffracted from the mask is dynamically modulated to defocus any mask defect oriented at least partially along both the second direction and a fourth direction that is different than the third direction.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: June 16, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Cheng Lu, Chia-Hao Hsu, Shinn-Sheng Yu, Chia-Chen Chen, Jeng-Horng Chen, Anthony Yen
  • Patent number: 10520823
    Abstract: Lithography methods and corresponding lithography apparatuses are disclosed herein for improving throughput of lithography exposure processes. An exemplary lithography method includes generating a plurality of target material droplets and generating radiation from the plurality of target material droplets based on a dose margin to expose a wafer. The dose margin indicates how many of the plurality of target material droplets are reserved for dose control. In some implementations, the plurality of target material droplets are grouped into a plurality of bursts, and the lithography method further includes performing an inter-compensation operation that designates an excitation state of target material droplets in one of the plurality of bursts to compensate for an energy characteristic of another one of the plurality of bursts.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Cheng Lu, Jeng-Horng Chen, Shun-Der Wu, Anthony Yen
  • Publication number: 20190121241
    Abstract: Lithography methods and corresponding lithography apparatuses are disclosed herein for improving throughput of lithography exposure processes. An exemplary lithography method includes generating a plurality of target material droplets and generating radiation from the plurality of target material droplets based on a dose margin to expose a wafer. The dose margin indicates how many of the plurality of target material droplets are reserved for dose control. In some implementations, the plurality of target material droplets are grouped into a plurality of bursts, and the lithography method further includes performing an inter-compensation operation that designates an excitation state of target material droplets in one of the plurality of bursts to compensate for an energy characteristic of another one of the plurality of bursts.
    Type: Application
    Filed: December 13, 2018
    Publication date: April 25, 2019
    Inventors: Yen-Cheng Lu, Jeng-Horng Chen, Shun-Der Wu, Anthony Yen
  • Publication number: 20190121228
    Abstract: A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 25, 2019
    Inventors: Yen-Cheng Lu, Shinn-Sheng Yu, Jeng-Horng Chen, Anthony Yen
  • Patent number: 10162257
    Abstract: A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Cheng Lu, Shinn-Sheng Yu, Jeng-Horng Chen, Anthony Yen
  • Patent number: 10156790
    Abstract: Lithography methods and corresponding lithography apparatuses are disclosed herein for improving throughput of lithography exposure processes. An exemplary lithography method includes generating a plurality of target material droplets and generating radiation from the plurality of target material droplets based on a dose margin to expose a wafer. The dose margin indicates how many of the plurality of target material droplets are reserved for dose control. In some implementations, the plurality of target material droplets are grouped into a plurality of bursts, and the lithography method further includes performing an inter-compensation operation that designates an excitation state of target material droplets in one of the plurality of bursts to compensate for an energy characteristic of another one of the plurality of bursts.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Cheng Lu, Jeng-Horng Chen, Shun-Der Wu, Anthony Yen
  • Publication number: 20180253008
    Abstract: Various methods are disclosed herein for reducing (or eliminating) printability of mask defects during lithography processes. An exemplary method includes performing a first lithography exposing process and a second lithography exposing process using a mask to respectively image a first set of polygons oriented substantially along a first direction and a second set of polygons oriented substantially along a second direction on a target. During the first lithography exposing process, a phase distribution of light diffracted from the mask is dynamically modulated to defocus any mask defect oriented at least partially along both the first direction and a third direction that is different than the first direction. During the second lithography exposing process, the phase distribution of light diffracted from the mask is dynamically modulated to defocus any mask defect oriented at least partially along both the second direction and a fourth direction that is different than the third direction.
    Type: Application
    Filed: May 4, 2018
    Publication date: September 6, 2018
    Inventors: Yen-Cheng Lu, Chia-Hao Hsu, Shinn-Sheng Yu, Chia-Chen Chen, Jeng-Horng Chen, Anthony Yen
  • Publication number: 20180173089
    Abstract: A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 21, 2018
    Inventors: Yen-Cheng Lu, Shinn-Sheng Yu, Jeng-Horng Chen, Anthony Yen
  • Patent number: 9996013
    Abstract: An extreme ultraviolet lithography (EUVL) system is disclosed. The system includes an extreme ultraviolet (EUV) mask with three states having respective reflection coefficient is r1, r2 and r3, wherein r3 is a pre-specified value that is a function of r1 and r2. The system also includes a nearly on-axis illumination (ONI) with partial coherence ? less than 0.3 to expose the EUV mask to produce diffracted light and non-diffracted light. The system further includes a projection optics box (PUB) to remove a portion of the non-diffracted light and to collect and direct the diffracted light and the remaining non-diffracted light to expose a target.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: June 12, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Cheng Lu, Jeng-Horng Chen, Shinn-Sheng Yu, Anthony Yen
  • Patent number: 9964850
    Abstract: The present disclosure provides a method in accordance with some embodiments. The method includes loading a mask to a lithography system, wherein the mask includes an one-dimensional integrated circuit (1D IC) pattern; utilizing a pupil phase modulator in the lithography system to modulate phase of light diffracted from the mask; and performing a lithography exposing process to a target in the lithography system with the mask and the pupil phase modulator.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: May 8, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Cheng Lu, Chia-Hao Hsu, Shinn-Sheng Yu, Chia-Chen Chen, Jeng-Horng Chen, Anthony Yen