Patents by Inventor Young Hwan Park

Young Hwan Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8907377
    Abstract: A higher electron mobility transistor (HEMT) and a method of manufacturing the same are disclosed. According to example embodiments, the HEMT may include a channel supply layer on a channel layer, a source electrode and a drain electrode that are on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a source pad and a drain pad. The source pad and a drain pad electrically contact the source electrode and the drain electrode, respectively. At least a portion of at least one of the source pad and the drain pad extends into a corresponding one of the source electrode and drain electrode that the at least one of the source pad and the drain pad is in electrical contact therewith.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: December 9, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-chul Jeon, Ki-yeol Park, Young-hwan Park, Jai-kwang Shin, Jae-joon Oh, Hyuk-soon Choi, Jong-bong Ha
  • Patent number: 8898213
    Abstract: An apparatus and method for processing a division of a binary polynomial are provided. The apparatus includes a plurality of exclusive OR (XOR) operators that may perform a selective XOR operation with respect to a conditional bit of a dividend polynomial. The plurality of XOR operators may perform selective XOR operations in parallel and accordingly, a division of a binary polynomial may be rapidly performed.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: November 25, 2014
    Assignees: Samsung Electronics Co., Ltd., Kwangwoon University Industry-Academic Collaboration Foundation
    Inventors: Ho Yang, Hyun Seok Lee, Ji Hoon Bang, Young Hwan Park, Ki Taek Bae, Kyeong Yeon Kim
  • Patent number: 8896026
    Abstract: Provided is a nitride semiconductor device including: a nitride semiconductor layer over a substrate wherein the nitride semiconductor has a two-dimensional electron gas (2DEG) channel inside; a drain electrode in ohmic contact with the nitride semiconductor layer; a source electrode in Schottky contact with the nitride semiconductor layer wherein the source electrode is spaced apart from the drain electrode; a dielectric layer formed on the nitride semiconductor layer between the drain electrode and the source electrode and on at least a portion of the source electrode; and a gate electrode disposed on the dielectric layer to be spaced apart from the drain electrode, wherein a portion of the gate electrode is formed over a drain-side edge portion of the source electrode with the dielectric layer interposed therebetween, and a manufacturing method thereof.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: November 25, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Woo Chul Jeon, Ki Yeol Park, Young Hwan Park
  • Patent number: 8890212
    Abstract: According to example embodiments, a normally-off high electron mobility transistor (HEMT) includes: a channel layer having a first nitride semiconductor, a channel supply layer on the channel layer, a source electrode and a drain electrode at sides of the channel supply layer, a depletion-forming layer on the channel supply layer, a gate insulating layer on the depletion-forming layer, and a gate electrode on the gate insulation layer. The channel supply layer includes a second nitride semiconductor and is configured to induce a two-dimensional electron gas (2DEG) in the channel layer. The depletion-forming layer is configured has at least two thicknesses and is configured to form a depletion region in at least a partial region of the 2DEG. The gate electrode contacts the depletion-forming layer.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-chul Jeon, Young-hwan Park, Jae-joon Oh, Kyoung-yeon Kim, Joon-yong Kim, Ki-yeol Park, Jai-kwang Shin, Sun-kyu Hwang
  • Publication number: 20140334967
    Abstract: Provided is a wear resistant steel including 2.6 wt % to 4.5 wt % of manganese (Mn), carbon (C) satisfying (6-Mn)/50?C?(10-Mn)/50, 0.05 wt % to 1.0 wt % of silicon (Si), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Brinell hardness of a surface portion is in a range of 360 to 440. The wear resistant steel further includes at least one component selected from the group consisting of 0.1 wt % or less (excluding 0 wt %) of niobium (Nb), 0.1 wt % or less (excluding 0 wt %) of vanadium (V), 0.1 wt % or less (excluding 0 wt %) of titanium (Ti), and 0.02 wt % or less (excluding 0 wt %) of boron (B) to complement the performance thereof. The wear resistant steel is characterized in that a microstructure includes martensite in an amount of 90% or more, and an average packet diameter of the martensite is 20 ?m or less.
    Type: Application
    Filed: December 27, 2012
    Publication date: November 13, 2014
    Inventors: Jong-Kyo Choi, Woo-Kil Jang, Young-Hwan Park, Hong-Ju Lee
  • Patent number: 8885065
    Abstract: A light leakage compensating unit image sensor in a back side illumination method includes a photodiode and a storage diode, in which light input to a back side of the unit image sensor is received only by an area forming an electrode of the photodiode, and an area for forming another electrode of the photodiode and an area for forming two electrodes of the storage diode are separated from each other by a well, thereby compensating light leakage.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-ho Lee, Jung-chak Ahn, Sang-joo Lee, Young-hwan Park, Dong-yoon Jang, Young-heub Jang
  • Patent number: 8883599
    Abstract: A method for manufacturing a semiconductor device includes preparing a base substrate; forming a semiconductor layer on the base substrate; forming an ohmic electrode part having ohmic electrode lines, on the semiconductor layer; and forming a Schottky electrode part, which is disposed on the semiconductor layer to be spaced apart from the ohmic electrode lines and has Schottky electrode lines parallel to the ohmic electrode lines, wherein forming the ohmic electrode part further comprises forming an ohmic electrode plate connected to one end of the ohmic electrode lines, forming the Schottky electrode part further comprises forming a Schottky electrode plate connected one end of the Schottky electrode lines, and one line of the Schottky electrode lines is disposed between two of the ohmic electrode lines to thereby achieve an interdigited configuration in which the ohmic electrode part and the Schottky electrode part are formed.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: November 11, 2014
    Assignee: Samsung Electro-Mechanics Co., Ld.
    Inventors: Woo Chul Jeon, Jung Hee Lee, Young Hwan Park, Ki Yeol Park
  • Patent number: 8860089
    Abstract: According to example embodiments, a higher electron mobility transistor (HEMT) may include a first channel layer, a second channel layer on the first channel layer, a channel supply on the second channel layer, a drain electrode spaced apart from the first channel layer, a source electrode contacting the first channel layer and contacting at least one of the second channel layer and the channel supply layer, and a gate electrode unit between the source electrode and the drain electrode. The gate electrode unit may have a normally-off structure. The first and second channel layer form a PN junction with each other. The drain electrode contacts at least one of the second channel layer and the channel supply layer.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: October 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-yeol Park, Woo-chul Jeon, Young-hwan Park, Jai-kwang Shin, Jong-bong Ha, Sun-kyu Hwang
  • Patent number: 8860087
    Abstract: The present invention relates to a nitride semiconductor device and a manufacturing method thereof. According to one aspect of the present invention, a nitride semiconductor device including: a nitride semiconductor layer having a 2DEG channel; a source electrode in ohmic contact with the nitride semiconductor layer; a drain electrode in ohmic contact with the nitride semiconductor layer; a plurality of p-type nitride semiconductor segments formed on the nitride semiconductor layer and each formed lengthways from a first sidewall thereof, which is spaced apart from the source electrode, to a drain side; and a gate electrode formed to be close to the source electrode and in contact with the nitride semiconductor layer between the plurality of p-type semiconductor segments and portions of the p-type semiconductor segments extending in the direction of a source-side sidewall of the gate electrode aligned with the first sidewalls of the p-type nitride semiconductor segments is provided.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: October 14, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Hwan Park, Woo Chul Jeon, Ki Yeol Park, Seok Yoon Hong
  • Patent number: 8841704
    Abstract: Disclosed herein is a nitride based semiconductor device, including: a substrate; a nitride based semiconductor layer having a lower nitride based semiconductor layer and an upper nitride based semiconductor layer on the substrate; an isolation area including an interface between the lower nitride based semiconductor layer and the upper nitride based semiconductor layer; and drain electrodes, source electrode, and gate electrodes formed on the upper nitride based semiconductor layer. According to preferred embodiments of the present invention, in the nitride based semiconductor device, by using the isolation area including the interface between the lower nitride based semiconductor layer and the upper nitride based semiconductor layer, problems of parasitic capacitance and leakage current are solved, and as a result, a switching speed can be improved through a gate pad.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: September 23, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Hwan Park, Woo Chul Jeon, Ki Yeol Park, Seok Yoon Hong
  • Publication number: 20140240026
    Abstract: According to example embodiments, a method for controlling a gate voltage applied to a gate electrode of a high electron mobility transistor (HEMT) may include measuring a voltage between a drain electrode and a source electrode of the HEMT, and adjusting a level of the gate voltage applied to the gate electrode of the HEMT according to the measured voltage. The level of the gate electrode may be adjusted if the voltage between the drain electrode and the source electrode is different than a set value.
    Type: Application
    Filed: December 16, 2013
    Publication date: August 28, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sun-kyu HWANG, Woo-chul JEON, Joon-yong KIM, Ki-yeol PARK, Young-hwan PARK, Jai-kwang SHIN, Jae-joon OH, Jong-bong HA
  • Patent number: 8772834
    Abstract: According to example embodiments, a HEMT includes a channel layer, a channel supply layer on the channel layer, a source electrode and a drain electrode spaced apart on the channel layer, a depletion-forming layer on the channel supply layer, and a plurality of gate electrodes on the depletion-forming layer between the source electrode and the drain electrode. The channel supply layer is configured to induce a two-dimensional electron gas (2DEG) in the channel layer. The depletion-forming layer is configured to form a depletion region in the 2DEG. The plurality of gate electrodes include a first gate electrode and a second gate electrode spaced apart from each other.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-chul Jeon, Jong-seob Kim, Ki-yeol Park, Young-hwan Park, Jae-joon Oh, Jong-bong Ha, Jai-kwang Shin
  • Publication number: 20140151749
    Abstract: According to example embodiments, a high electron mobility transistor (HEMT) includes a channel layer; a channel supply layer on the channel layer; a source electrode and a drain electrode spaced apart from each other on one of the channel layer and the channel supply layer; a gate electrode on a part of the channel supply layer between the source electrode and the drain electrode; a first depletion-forming layer between the gate electrode and the channel supply layer; and a at least one second depletion-forming layer on the channel supply layer between the gate electrode and the drain electrode. The at least one second depletion-forming layer is electrically connected to the source electrode.
    Type: Application
    Filed: November 27, 2013
    Publication date: June 5, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Woo-chul JEON, Jong-seob KIM, Ki-yeol PARK, Young-hwan PARK, Jai-kwang SHIN, Jae-joon OH, Hyuk-soon CHOI, In-jun HWANG
  • Publication number: 20140151747
    Abstract: According to example embodiments, a high electron mobility transistor includes: a channel layer including a first semiconductor material; a channel supply layer on the channel layer and configured to generate a 2-dimensional electron gas (2DEG) in the channel layer, the channel supply layer including a second semiconductor material; source and drain electrodes spaced apart from each other on the channel layer, and an upper surface of the channel supply layer defining a gate electrode receiving part; a first gate electrode; and at least one second gate electrode spaced apart from the first gate electrode and in the gate electrode receiving part. The first gate electrode may be in the gate electrode receiving part and between the source electrode and the drain electrode. The at least one second gate electrode may be between the source electrode and the first gate electrode.
    Type: Application
    Filed: September 5, 2013
    Publication date: June 5, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Woo-chul JEON, Young-hwan PARK, Ki-yeol PARK, Jai-kwang SHIN, Jae-joon OH, Jong-bong HA, Sun-kyu HWANG
  • Patent number: 8735940
    Abstract: There are provided a semiconductor device and a method for manufacturing the same.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: May 27, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Woo Chul Jeon, Ki Yeol Park, Young Hwan Park, Jung Hee Lee
  • Patent number: 8716754
    Abstract: The present invention relates to a nitride semiconductor device One aspect of the present invention provides a nitride semiconductor device including: a nitride semiconductor layer having a 2DEG channel; a source electrode in ohmic contact with the nitride semiconductor layer; a drain electrode in ohmic contact with the nitride semiconductor layer; a p-type nitride layer formed on the nitride semiconductor layer between the source and drain electrodes; an n-type nitride layer formed on the p-type nitride layer; and a gate electrode formed between the source and drain electrodes to be close to the source electrode and in contact with the n-type nitride layer so that a source-side sidewall thereof is aligned with source-side sidewalls of the p-type and n-type nitride layers.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: May 6, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Hwan Park, Woo Chul Jeon, Ki Yeol Park, Seok Yoon Hong
  • Publication number: 20140103969
    Abstract: According to example embodiments, a HEMT includes a channel layer, a channel supply layer on the channel layer, a source electrode and a drain electrode spaced apart on the channel layer, a depletion-forming layer on the channel supply layer, and a plurality of gate electrodes on the depletion-forming layer between the source electrode and the drain electrode. The channel supply layer is configured to induce a two-dimensional electron gas (2DEG) in the channel layer. The depletion-forming layer is configured to form a depletion region in the 2DEG. The plurality of gate electrodes include a first gate electrode and a second gate electrode spaced apart from each other.
    Type: Application
    Filed: April 23, 2013
    Publication date: April 17, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Woo-chul JEON, Jong-seob KIM, Ki-yeol PARK, Young-hwan PARK, Jae-joon OH, Jong-bong HA, Jai-kwang SHIN
  • Publication number: 20140096476
    Abstract: A concrete girder includes a pair of ultra high performance concrete (UHPC) side form members, each having a lower flange and a web perpendicular thereto, extending in the longitudinal direction and being prepared with UHPC by using a precast, the pair of UHPC side form members being disposed in parallel so that lateral side surfaces of the lower flanges are successively positioned; and concrete placed in a space between the pair of UHPC side form members so that the placed concrete is integrated with the pair of UHPC side form members to form both traverse side surfaces thereof and the lower flange forms a lower flange thereof.
    Type: Application
    Filed: September 19, 2013
    Publication date: April 10, 2014
    Applicant: KOREA INSTITUTE OF CONSTRUCTION TECHNOLOGY
    Inventors: Young Jin Kim, Jong Sup Park, Jeong Rae Cho, Young Hwan Park, Byung Suk Kim
  • Publication number: 20140091312
    Abstract: A power switching device includes a channel forming layer on a substrate which includes a 2-dimensional electron gas (2DEG), and a channel supply layer which corresponds to the 2DEG at the channel forming layer. A cathode is coupled to a first end of the channel supply layer and an anode is coupled to a second end of the channel supply layer. The channel forming layer further includes a plurality of depletion areas arranged in a pattern, and portions of the channel forming layer between the plurality of depletion areas are non-depletion areas.
    Type: Application
    Filed: June 26, 2013
    Publication date: April 3, 2014
    Inventors: Woo-chul JEON, Young-hwan PARK, Ki-yeol PARK, Jai-kwang SHIN, Jae-joon OH
  • Publication number: 20140091363
    Abstract: According to example embodiments, a normally-off high electron mobility transistor (HEMT) includes: a channel layer having a first nitride semiconductor, a channel supply layer on the channel layer, a source electrode and a drain electrode at sides of the channel supply layer, a depletion-forming layer on the channel supply layer, a gate insulating layer on the depletion-forming layer, and a gate electrode on the gate insulation layer. The channel supply layer includes a second nitride semiconductor and is configured to induce a two-dimensional electron gas (2DEG) in the channel layer. The depletion-forming layer is configured has at least two thicknesses and is configured to form a depletion region in at least a partial region of the 2DEG. The gate electrode contacts the depletion-forming layer.
    Type: Application
    Filed: May 1, 2013
    Publication date: April 3, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Woo-chul JEON, Young-hwan PARK, Jae-joon OH, Kyoung-yeon KIM, Joon-yong KIM, Ki-yeol PARK, Jai-kwang SHIN, Sun-kyu HWANG