Patents by Inventor Yu-Hung Chen

Yu-Hung Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180183014
    Abstract: A mask is designed for patterning organic light emitting material on a surface. The mask includes a substrate having a first surface and a second surface opposite to the first surface. The mask further includes a plurality of holes extended though the substrate with a pitch not greater than 150 um, and each hole having a first exit at the first surface and a second surface at the second surface. At least one of the plurality of holes has a smallest dimension being not greater than about 15 um.
    Type: Application
    Filed: September 14, 2017
    Publication date: June 28, 2018
    Inventors: PING-I SHIH, YU-HUNG CHEN, HSIN-CHE HUANG, CHIEN-YU CHEN
  • Publication number: 20180130977
    Abstract: A light emitting device includes a first type carrier transportation layer and an organic light emitting unit over the first type carrier transportation layer. The light emitting device further includes a second type carrier transportation layer over the organic light emitting unit, wherein the second type is opposite to the first type. At least one of the first type carrier transportation layer and the second type carrier transportation layer includes a metal element.
    Type: Application
    Filed: September 5, 2017
    Publication date: May 10, 2018
    Inventors: YU-HUNG CHEN, MENG-HUNG HSIN, CHENG-HSIN CHEN
  • Publication number: 20180074692
    Abstract: A portable electronic device, an operating method for the same, and a non-transitory computer readable recording medium are provided. The portable electronic device includes a body and an edge sensor disposed adjacent to an edge of the body. The operating method includes the following step. When a plugging-in event or a plugging-out event of a peripheral device is detected by the portable electronic device, a squeezing event sensed by the edge sensor is ignored. The squeezing event may be generated when a squeeze action sensed by the edge sensor occurs during a first time period. The plugging-in event or the plugging-out event may occur during the first time period. Alternatively, the squeeze action may begin within a second time period after the plugging-in event or the plugging-out event occurs.
    Type: Application
    Filed: May 15, 2017
    Publication date: March 15, 2018
    Applicant: HTC Corporation
    Inventors: Chia-Yao LIN, Yen-Hung LIN, Shih-Lung LIN, Chia-Chu HO, Hsuan-Yi LEE, Kuan-Wei LI, Jian-Shuen CHEN, Yu-Hung CHEN, Chun-Hung HSIEH, Pin-Yu HUANG
  • Publication number: 20180074645
    Abstract: A portable electronic device, an operating method for the same, and a non-transitory computer readable recording medium are provided. The portable electronic device includes a body, a touch display screen and an edge sensor. The touch display screen is disposed on the body. The edge sensor is disposed adjacent to an edge of the body. The operating method includes the following step. When an event is generated according to a first action sensed by the edge sensor, a touch function of a region of the touch display screen or the whole touch display screen is disabled.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Applicant: HTC Corporation
    Inventors: Chia-Yao LIN, Yen-Hung LIN, Shih-Lung LIN, Chia-Chu HO, Hsuan-Yi LEE, Kuan-Wei LI, Jian-Shuen CHEN, Yu-Hung CHEN, Chun-Hung HSIEH, Pin-Yu HUANG
  • Publication number: 20170294499
    Abstract: A component such as a display may have a substrate and thin-film circuitry on the substrate. The thin-film circuitry may be used to form an array of pixels for a display or other circuit structures. Metal traces may be formed among dielectric layers in the thin-film circuitry. Metal traces may be provided with insulating protective sidewall structures. The protective sidewall structures may be formed by treating exposed edge surfaces of the metal traces. A metal trace may have multiple layers such as a core metal layer sandwiched between barrier metal layers. The core metal layer may be formed from a metal that is subject to corrosion. The protective sidewall structures may help prevent corrosion in the core metal layer. Surface treatments such as oxidation, nitridation, and other processes may be used in forming the protective sidewall structures.
    Type: Application
    Filed: September 16, 2016
    Publication date: October 12, 2017
    Inventors: Chang Ming Lu, Chia-Yu Chen, Chih Pang Chang, Ching-Sang Chuang, Hung-Che Ting, Jung Yen Huang, Sheng Hui Shen, Shih Chang Chang, Tsung-Hsiang Shih, Yu-Wen Liu, Yu Hung Chen, Kai-Chieh Wu, Lun Tsai, Takahide Ishii, Chung-Wang Lee, Hsing-Chuan Wang, Chin Wei Hsu, Fu-Yu Teng
  • Publication number: 20170128593
    Abstract: The present invention relates to an immunostimulatory nanocomplex. The immunostimulatory nanocomplex comprises polyglutamic acid (PGA), a first positively charged substance, a second positively charged substance and a dengue viral protein for holding the dengue viral protein inside. The immunostimulatory nanocomplex is characterized by having a nonuniformally and positively charge distribution along a radial direction thereof. The nonuniformally and positively charge distribution comprises a first electrically charged portion having substantially electrical neutrality, a second electrically charged portion surrounding the first electrically charged portion, and a third electrically charged portion surrounding the second electrically charged portion.
    Type: Application
    Filed: July 11, 2016
    Publication date: May 11, 2017
    Inventors: Yee-Shin LIN, Yu-Hung CHEN
  • Publication number: 20170063471
    Abstract: An audio signal transmission system includes a first device and a second device. The first device transmits audio signals to the second device for the second device to process the audio signals and recognize data in the audio signals. After converting a piece of information read by the first device into digital data, the first device performs data state conversion algorithm to generate a time-based byte sequence, modulates the byte sequence to a set of audio signals, and transmits the set of audio signals. When receiving the set of audio signals, the second device filters and demodulates the set of audio signals to acquire the byte sequence, and converts the byte sequence into readable information. As the byte sequence has time-based characteristics, multiple independent pulse signals can be constantly provided to enhance audio signal recognition and ensure accuracy and stability of the audio signal transmission system.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventor: Yu-Hung Chen
  • Publication number: 20170063495
    Abstract: An audio signal transmission system includes a first device and a second device. The first device transmits audio signals to the second device for the second device to receive and process. After converting a piece of information read by the first device into digital data, the first device arranges the digital data to acquire a matrix, performs error control coding algorithm to rearrange and code continuous data in the matrix to generate a byte sequence, and modulates the byte sequence to generate a set of audio signals for transmission. The second device receives and modulates the set of audio signals to acquire the byte sequence, and performs an error control decoding algorithm to correctly acquire the piece of information. Accordingly, data accuracy through the audio signal transmission can be ensured, and the issue of massive uncorrectable continuous data upon audio signal transmission over the air can be tackled.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventor: Yu-Hung CHEN
  • Publication number: 20170043007
    Abstract: The present invention relates to a biodegradable nanocomplex. The biodegradable nanocomplex comprises a first electrically charged substance, a charge-redistribution substance, a second electrically charged substance and a carried substance, for holding the carried substance inside. The first electrically charged substance and the carried substance have the same electrical polarity, and the biodegradable nanocomplex has a nonuniformally and positively charge distribution along a radial direction thereof.
    Type: Application
    Filed: August 22, 2016
    Publication date: February 16, 2017
    Inventors: Yee-Shin LIN, Yu-Hung CHEN
  • Publication number: 20160176940
    Abstract: A recombinant protein is provided. The recombinant protein of the invention comprises an erythropoietin and a highly glycosylated peptide, and has a longer half-life. Further, the recombinant protein of the invention may also comprise a carboxyl-terminal peptide of human chorionic gonadotropin and a carboxyl-terminal peptide of thrombopoietin.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 23, 2016
    Inventors: Wen-Jiun PENG, Shu-Ping YANG, Hung-Chih PENG, Yu-Hung CHEN
  • Patent number: 9343352
    Abstract: An embodiment radio frequency area of an integrated circuit is disclosed. The radio frequency area includes a substrate having an implant region. The substrate has a first resistance. A buried oxide layer is disposed over the substrate and an interface layer is disposed between the substrate and the buried oxide layer. The interface layer has a second resistance lower than the first resistance. A silicon layer is disposed over the buried oxide layer and an interlevel dielectric is disposed in a deep trench. The deep trench extends through the silicon layer, the buried oxide layer, and the interface layer over the implant region. The deep trench may also extend through a polysilicon layer disposed over the silicon layer.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: May 17, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Yu Cheng, Wei-Kung Tsai, Kuan-Chi Tsai, Tsung-Yu Yang, Chung-Long Chang, Chun-Hong Chen, Chih-Ping Chao, Chen-Yao Tang, Yu Hung Chen
  • Patent number: 9263481
    Abstract: The array substrate includes a substrate, a thin film transistor (TFT) and a pixel electrode. The TFT is disposed on the substrate and includes a gate electrode, a gate insulating layer, a patterned semiconductor layer, a patterned etching stop layer, a patterned hard mask layer, a source electrode and a drain electrode. The patterned gate insulating layer is disposed on the gate electrode. The patterned semiconductor layer is disposed on the patterned gate insulating layer. The patterned etching stop layer is disposed on the patterned semiconductor layer. The source and the drain electrodes are disposed on the patterned etching stop layer and the patterned semiconductor layer. The patterned hard mask layer is disposed between the source electrode and the patterned etching stop layer and disposed between the drain electrode and the patterned etching stop layer. The pixel electrode is disposed on the substrate and electrically connected to the TFT.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: February 16, 2016
    Assignee: AU Optronics Corp.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 9147700
    Abstract: A manufacturing method of an array substrate includes following steps. A first photolithography process is performed to form a gate electrode on a substrate. A gate insulating layer is formed to cover the substrate and the gate electrode. A second photolithography process is performed to form a patterned semiconductor layer and a patterned etching stop layer. A semiconductor layer and an etching stop layer are successively formed on the gate insulating layer, and a second patterned photoresist is formed on the etching stop layer. The etching stop layer uncovered by the second patterned photoresist is removed. The semiconductor layer uncovered by the second patterned photoresist is removed for forming the patterned semiconductor on the gate insulating layer. A patterned etching stop layer is formed on the patterned semiconductor layer by etching the second patterned photoresist and the etching stop layer.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: September 29, 2015
    Assignee: AU Optronics Corp.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Publication number: 20150129025
    Abstract: A HIT solar cell is provided, including a p-type crystalline silicon substrate having a light-receiving surface, a first intrinsic amorphous silicon thin-film layer formed on the light-receiving surface of the p-type crystalline silicon substrate, an n-type amorphous oxide layer formed on the first intrinsic amorphous silicon thin-film layer, and a first transparent conductive layer formed on the n-type amorphous oxide layer. In the HIT solar cell, the n-type amorphous oxide layer can be directly formed, without forming the first intrinsic amorphous silicon thin-film layer, and the n-type amorphous oxide layer can be divided into an n?-type amorphous oxide layer and an n+-type amorphous oxide layer that are formed sequentially.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 14, 2015
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu-Hung CHEN, Jun-Chin LIU, Yung-Tsung LIU, Chen-Cheng LIN
  • Publication number: 20150132918
    Abstract: An embodiment radio frequency area of an integrated circuit is disclosed. The radio frequency area includes a substrate having an implant region. The substrate has a first resistance. A buried oxide layer is disposed over the substrate and an interface layer is disposed between the substrate and the buried oxide layer. The interface layer has a second resistance lower than the first resistance. A silicon layer is disposed over the buried oxide layer and an interlevel dielectric is disposed in a deep trench. The deep trench extends through the silicon layer, the buried oxide layer, and the interface layer over the implant region. The deep trench may also extend through a polysilicon layer disposed over the silicon layer.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 14, 2015
    Inventors: Kuo-Yu Cheng, Wei-Kung Tsai, Kuan-Chi Tsai, Tsung-Yu Yang, Chung-Long Chang, Chun-Hong Chen, Chih-Ping Chao, Chen-Yao Tang, Yu Hung Chen
  • Publication number: 20150123128
    Abstract: The array substrate includes a substrate, a thin film transistor (TFT) and a pixel electrode. The TFT is disposed on the substrate and includes a gate electrode, a gate insulating layer, a patterned semiconductor layer, a patterned etching stop layer, a patterned hard mask layer, a source electrode and a drain electrode. The patterned gate insulating layer is disposed on the gate electrode. The patterned semiconductor layer is disposed on the patterned gate insulating layer. The patterned etching stop layer is disposed on the patterned semiconductor layer. The source and the drain electrodes are disposed on the patterned etching stop layer and the patterned semiconductor layer. The patterned hard mask layer is disposed between the source electrode and the patterned etching stop layer and disposed between the drain electrode and the patterned etching stop layer. The pixel electrode is disposed on the substrate and electrically connected to the TFT.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 7, 2015
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Publication number: 20150126006
    Abstract: A manufacturing method of an array substrate includes following steps. A first photolithography process is performed to form a gate electrode on a substrate. A gate insulating layer is formed to cover the substrate and the gate electrode. A second photolithography process is performed to form a patterned semiconductor layer and a patterned etching stop layer. A semiconductor layer and an etching stop layer are successively formed on the gate insulating layer, and a second patterned photoresist is formed on the etching stop layer. The etching stop layer uncovered by the second patterned photoresist is removed. The semiconductor layer uncovered by the second patterned photoresist is removed for forming the patterned semiconductor on the gate insulating layer. A patterned etching stop layer is formed on the patterned semiconductor layer by etching the second patterned photoresist and the etching stop layer.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 8969146
    Abstract: A manufacturing method of an array substrate includes the following steps. A gate electrode and a gate insulator layer are successively formed on a substrate. A semiconductor layer, an etching stop layer, a hard mask layer, and a second patterned photoresist are successively formed on the gate insulator layer. The second patterned photoresist is employed for performing an over etching process to the hard mask layer to form a patterned hard mask layer. The second patterned photoresist is employed for performing a first etching process to the etching stop layer. The second patterned photoresist is then employed for performing a second etching process to the semiconductor layer to form a patterned semiconductor layer. The etching stop layer uncovered by the patterned hard mask layer is then removed for forming a patterned etching stop layer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 3, 2015
    Assignee: AU Optronics Corp.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 8941211
    Abstract: An embodiment radio frequency area of an integrated circuit is disclosed. The radio frequency area includes a substrate having an implant region. The substrate has a first resistance. A buried oxide layer is disposed over the substrate and an interface layer is disposed between the substrate and the buried oxide layer. The interface layer has a second resistance lower than the first resistance. A silicon layer is disposed over the buried oxide layer and an interlevel dielectric is disposed in a deep trench. The deep trench extends through the silicon layer, the buried oxide layer, and the interface layer over the implant region. The deep trench may also extend through a polysilicon layer disposed over the silicon layer.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: January 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Yu Cheng, Wei-Kung Tsai, Kuan-Chi Tsai, Tsung-Yu Yang, Chung-Long Chang, Chun-Hong Chen, Chih-Ping Chao, Chen-Yao Tang, Yu Hung Chen
  • Publication number: 20140193505
    Abstract: The present invention is related to a biodegradable carrier with adjustable zeta potentials and particle sizes, a method for making the same, and a pharmaceutical composition comprising the same. In such a method, a first solution comprising a first biodegradable macromolecule is prepared, and a second solution comprising a second biodegradable macromolecule is also prepared according to a desired zeta potential of a biodegradable carrier and further added into the first solution to form a mixture solution. The biodegradable carrier with the desired zeta potentials is formed by the attraction force between the different electric properties. Then, the mole number of the first biodegradable macromolecule and the second biodegradable macromolecule in the mixture solution are proportionally adjusted according to a desired particle size of the biodegradable carrier. Therefore, the zeta potential and the particle size of the biodegradable carrier are adjustable artificially.
    Type: Application
    Filed: June 21, 2013
    Publication date: July 10, 2014
    Inventors: YEE-SHIN LIN, YU-HUNG CHEN