Patents by Inventor Yuichiro Shindo

Yuichiro Shindo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8449845
    Abstract: In light of the recent analytical technology demanded of fast and accurate measurement of high purity materials, a zirconium crucible is provided for melting an analytical sample and is capable of inhibiting the inclusion of impurities from the crucible by using a high-purity crucible, improving the durability of high-purity zirconium as an expensive crucible material, and increasing the number of times that the zirconium crucible can be used. With this zirconium crucible used for melting an analytical sample in the pretreatment of the analytical sample, the purity excluding gas components is 3N or higher, and the content of carbon as a gas component is 100 mass ppm or less.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: May 28, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Masahiro Sakaguchi, Mitsuru Yamaguchi
  • Patent number: 8308932
    Abstract: Provided are a method of recovering valuable metals from IZO scrap, wherein indium and zinc are recovered as hydroxides by using an IZO scrap as both an anode and a cathode, and performing electrolysis while periodically reversing polarity; and a method of recovering valuable metals from IZO scrap, wherein the hydroxides of indium and zinc obtained by the electrolysis are roasted and indium and zinc are recovered as oxides. Specifically, provided is a method which enables the efficient recovery of indium and zinc from IZO scrap such as a spent indium-zinc oxide (IZO) sputtering target and IZO mill ends arising during the manufacture of such a sputtering target.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: November 13, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 8308933
    Abstract: Provided are a method of recovering valuable metals from IZO scrap, wherein valuable metals are recovered as hydroxides of indium and zinc by using an insoluble electrode as an anode or a cathode and an IZO scrap as the other cathode or anode as the opposite electrode, and performing electrolysis while periodically reversing polarity; and a method of recovering valuable metals from IZO scrap, wherein the hydroxides of indium and zinc obtained by the electrolysis are roasted and valuable metals are recovered as oxides of indium and zinc. Specifically, provided is a method which enables the efficient recovery of indium and zinc from IZO scrap such as a spent indium-zinc oxide (IZO) sputtering target and IZO mill ends arising during the manufacture of such a sputtering target.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: November 13, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 8308934
    Abstract: Provided is a method of recovering valuable metals from IZO scrap in which valuable metals are recovered as indium and zinc metals or suboxides by performing electrolysis using an insoluble electrode as an anode and an IZO scrap as a cathode. Specifically, this method enables the efficient recovery of indium and zinc from IZO scrap such as an indium-zinc oxide (IZO) sputtering target or IZO mill ends that arise during the manufacture of such a sputtering target.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: November 13, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 8277723
    Abstract: Provided is a method of manufacturing high-purity hafnium by using a hafnium sponge with reduced zirconium as the raw material in which the impurity content of Fe, Cr, and Ni, the impurity content of Ca, Na, and K, the impurity content of Al, Co, Cu, Ti, W, and Zn, the alpha dose, the impurity content of U and Th, the impurity content of Pb and Bi, and the content of C as a gas component contained in the hafnium are reduced. Based on this efficient and stable manufacturing technology, additionally provided are a high-purity hafnium material obtained from the foregoing high-purity hafnium, as well as a sputtering target, a gate insulation film and a metal gate thin film, which are formed from this material. This high-purity hafnium has a purity 6N or higher except Zr and gas components, wherein Fe, Cr and Ni are respectively 0.2 ppm or less, Ca, Na and K are respectively 0.1 ppm or less, and Al, Co, Cu, Ti, W and Zn are respectively 0.1 ppm or less.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: October 2, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Yuichiro Shindo
  • Patent number: 8216442
    Abstract: A manufacturing method of ultrahigh purity copper is provided wherein, upon subjecting copper to high purification with the electrolytic method, an anode and a cathode are partitioned with an anion exchange membrane, anolyte is intermittently or continuously extracted and introduced into an active carbon treatment vessel, a chlorine-containing material is added to the active carbon treatment vessel so as to precipitate impurities as chloride, active carbon is subsequently poured in and agitated so as to adsorb the precipitated impurities, the adsorbed impurities are removed by filtration, and the obtained high purity copper electrolytic solution is intermittently or continuously introduced into the cathode side and electrolyzed. This technology enables the efficient manufacture of ultrahigh purity copper having a purity of 8N (99.999999 wt %) or higher from a copper raw material containing large amounts of impurities.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: July 10, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 8192596
    Abstract: Ultrahigh purity copper having a residual resistance ratio of 38,000 or greater and a purity of 8N or higher (excluding gas components), and in particular ultrahigh purity copper wherein the respective elements of O, C, N, H, S and P as gas components are 1 ppm or less. Further provided is a method of subjecting copper to high purification. An anode and a cathode are partitioned with an anion exchange membrane, an anolyte is intermittently or continuously extracted and introduced into an active carbon treatment vessel, a chlorine-containing material is added to the active carbon treatment vessel so as to precipitate impurities as chloride, active carbon is subsequently poured in and agitated so as to adsorb the precipitated impurities, the adsorbed impurities are removed by filtration, and the obtained high purity copper electrolytic solution is intermittently or continuously introduced into the cathode side and electrolyzed.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: June 5, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 8152864
    Abstract: High purity copper sulfate having a purity of 99.99% or higher and in which the content of transition metals such as Fe, Cr, Ni is 3 wtppm or less is provided. A method for producing such high purity copper sulfate includes the steps of dissolving copper sulfate crystals in purified water, performing evaporative concentration thereto, removing the crystals precipitated initially, performing further evaporative concentration to effect crystallization, and subjecting this to filtration to obtain high purity copper sulfate. This manufacturing method of high purity copper sulfate allows the efficient removal of impurities from commercially available copper sulfate crystals at a low cost through dissolution with purified water and thermal concentration.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: April 10, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20110300017
    Abstract: Provided are a method for manufacturing high-purity erbium, wherein crude erbium oxide is mixed with reducing metal, erbium is reduced and distilled by heating the mixture in a vacuum, and the distillate is melted in an inert atmosphere to obtain high-purity erbium; and high-purity erbium, wherein the purity excluding rare-earth elements and gas components is 4 N or higher and the oxygen content is 200 wtppm or less. An object of this invention is to provide a method of highly purifying erbium, which has a high vapor pressure and is difficult to be refined in a molten metal state, as well as technology for efficiently and stably providing high-purity erbium obtained with the foregoing method, a sputtering target composed of high-purity erbium, and a metal gate film having high-purity erbium as a main component.
    Type: Application
    Filed: January 13, 2010
    Publication date: December 8, 2011
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Yuichiro Shindo, Kazuto Yagi
  • Publication number: 20110243817
    Abstract: Provided is a zirconium crucible for analytical use, wherein the purity excluding gas components is 3N or higher and the content of oxygen as a gas component is 500 mass ppm or less. In light of the recent analytical technology for which a fast and accurate measurement of high-purity materials is required; an object of the present invention is to inhibit the incorporation of impurities from a crucible by using a high-purity crucible, and provide a zirconium crucible for analytical use, wherein a two-stage separation/decomposition process is not required in the analysis of samples in which various types of oxides and metals such as sludge, bottom sediment samples and soil coexist, and the number of times that the crucible can be used is increased by improving the durability of high-purity zirconium metal.
    Type: Application
    Filed: March 10, 2010
    Publication date: October 6, 2011
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Masahiro Sakaguchi, Ryosai Endo, Tomio Takahashi, Yuichiro Shindo
  • Patent number: 8012335
    Abstract: Proposed is a method for collecting valuable metal from an ITO scrap including a step of collecting tin by subjecting the ITO scrap to electrolysis. Further proposed is a method for collecting valuable metal from an ITO scrap including the steps of providing an ITO electrolytic bath and a tin collecting bath, dissolving the ITO scrap in the electrolytic bath, and thereafter collecting tin in the tin collecting bath. Additionally proposed is a method for collecting valuable metal from an ITO scrap including the steps of dissolving the ITO scrap by subjecting it to electrolysis as an anode in electrolyte, precipitating only tin contained in the solution as tin itself or a substance containing tin, extracting the precipitate, placing it in a collecting bath, re-dissolving this to obtain a solution of tin hydroxide, and performing electrolysis or neutralization thereto in order to collect tin.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: September 6, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 8012337
    Abstract: Proposed is a method for collecting valuable metal from an ITO scrap by subjecting the ITO scrap to electrolysis and collecting the result as metallic indium. Specifically, the present invention proposes a method for selectively collecting metallic indium including the steps of subjecting the ITO scrap to electrolysis in an electrolytic bath partitioned with a diaphragm or an ion-exchange membrane, subsequently extracting anolyte temporarily, eliminating tin contained in the anolyte by a neutralization method, a replacement method or other methods, placing a solution from which the tin was eliminated in a cathode side again and performing electrolysis thereto; or a method for collecting valuable metal from an ITO scrap including the steps of obtaining a solution of In or Sn in an ITO electrolytic bath, eliminating the Sn in the solution, and collecting In in the collecting bath.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: September 6, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 8012336
    Abstract: Proposed is a method for collecting valuable metal from an ITO scrap in which a mixture of indium hydroxide and tin hydroxide or metastannic acid is collected by subjecting the ITO scrap to electrolysis in pH-adjusted electrolyte, and roasting this mixture as needed to collect the result as a mixture of indium oxide and tin oxide. This method enables the efficient collection of indium hydroxide and tin hydroxide or metastannic acid, or indium oxide and tin oxide from an ITO scrap of an indium-tin oxide (ITO) sputtering target or an ITO scrap such as ITO mill ends arisen during the manufacture of such ITO sputtering target.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: September 6, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 8007652
    Abstract: Proposed is a method for collecting valuable metal from an ITO scrap including the steps of subjecting the ITO scrap to electrolysis and collecting the result as indium-tin alloy. Additionally provided is a method for collecting valuable metal from an ITO scrap including the steps of providing an ITO electrolytic bath and an indium-tin alloy collecting bath, dissolving the ITO in the electrolytic bath, and thereafter collecting indium-tin alloy in the indium-tin alloy collecting bath. These methods enable the efficient collection of indium-tin alloy from an ITO scrap of an indium-tin oxide (ITO) sputtering target or an ITO scrap such as ITO mill ends arisen during the manufacture of such ITO sputtering target.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: August 30, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 8003065
    Abstract: Proposed is a method for collecting valuable metal from an ITO scrap including the steps of subjecting the ITO scrap to electrolysis in pH-adjusted electrolyte, and collecting indium or tin as oxides. Additionally proposed is a method for collecting valuable metal from an ITO scrap including the steps of subjecting the ITO scrap to electrolysis in an electrolytic bath partitioned with a diaphragm or an ion-exchange membrane to precipitate hydroxide of tin, thereafter extracting anolyte temporarily, and precipitating and collecting indium contained in the anolyte as hydroxide. With the methods for collecting valuable metal from an ITO scrap described above, indium or tin may be collected as oxides by roasting the precipitate containing indium or tin. Consequently, provided is a method for efficiently collecting indium from an ITO scrap of an indium-tin oxide (ITO) sputtering target or an ITO scrap such as ITO mill ends arisen during the manufacture of such ITO sputtering target.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: August 23, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20110163447
    Abstract: Provided is a high-purity copper or high-purity copper alloy sputtering target of which the purity is 6N or higher and in which the content of the respective components of P, S, O and C is 1 ppm or less, wherein the number of nonmetal inclusions having a particle size of 0.5 ?m or more and 20 ?m or less is 30,000 inclusions/g or less. As a result of using high-purity copper or high-purity copper alloy from which harmful inclusions of P, S, C and O system have been reduced as the raw material and controlling the existence form of nonmetal inclusions, the present invention addresses a reduction in the percent defect of wirings of semiconductor device formed by sputtering a high-purity copper target so as to ensure favorable repeatability.
    Type: Application
    Filed: September 24, 2009
    Publication date: July 7, 2011
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Atsushi Fukushima, Yuichiro Shindo, Susumu Shimamoto
  • Patent number: 7964070
    Abstract: Provided is a manufacturing method of high purity hafnium including the steps of making aqueous solution of chloride of hafnium, thereafter removing zirconium therefrom via solvent extraction, performing neutralization treatment to obtain hafnium oxide, further performing chlorination to obtain hafnium chloride, obtaining hafnium sponge via reducing said hafnium chloride, and performing electron beam melting to the hafnium sponge in order to obtain a hafnium ingot, as well as a high purity hafnium material obtained thereby and a target and thin film formed from such material. The present invention relates to a high purity hafnium material with reduced zirconium content contained in the hafnium, a target and thin film formed from such material, and the manufacturing method thereof, and provides efficient and stable manufacturing technology, a high purity hafnium material obtained according to such manufacturing technology, and a target and high purity hafnium thin film formed from such material.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: June 21, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Yuichiro Shindo
  • Patent number: 7959782
    Abstract: A Ni—Pt alloy and target superior in workability containing 0.1 to 20 wt % Pt and having a Vickers hardness of 40 to 90. A method of manufacturing the Ni—Pt alloy comprises steps of subjecting a raw material Ni having a purity of 3N level to electrochemical dissolution, neutralizing the electrolytically leached solution with ammonia, removing impurities through filtration with activated carbon, blowing carbon dioxide into the resultant solution to form nickel carbonate, exposing the resultant product to a reducing atmosphere to prepare high purity Ni powder, leaching a raw material Pt having a purity of 3N level with acid, subjecting the leached solution to electrolysis to prepare high purity electrodeposited Pt, and dissolving the resultant high purity Ni powder and high purity electrodeposited Pt. The method enables rolling of the Ni—Pt alloy ingot upon reducing the hardness thereof, which results in the stable and efficient manufacture of a rolled target.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: June 14, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Yuichiro Shindo
  • Publication number: 20110123389
    Abstract: High purity copper having a purity of 6N or higher, wherein content of each of the respective components of P, S, 0, and C is 1 ppm or less, and nonmetal inclusions having a particle size of 0.5 ?m or more and 20 ?m or less contained in the copper are 10,000 inclusions/g or less. As a result of using high purity copper or high purity copper alloy as the raw material from which harmful P, S, C, 0-based inclusions have been reduced and controlling the existence form of nonmetal inclusions, it is possible to reduce the occurrence of rupture of a bonding wire and improve the reproducibility of mechanical properties, or reduce the percent defect of a semiconductor device wiring formed by sputtering a high purity copper target with favorable reproducibility.
    Type: Application
    Filed: September 24, 2009
    Publication date: May 26, 2011
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Yuichiro Shindo, Susumu Shimamoto, Atsushi Fukushima
  • Patent number: 7938918
    Abstract: A high purity Ni—V alloy, high purity Ni—V alloy target and high purity Ni—V alloy thin film wherein the purity of the Ni—V alloy excluding Ni, V and gas components is 99.9 wt % or higher, and the V content variation among ingots, targets or thin films is within 0.4%. With these high purity Ni—V alloy, high purity Ni—V alloy target and high purity Ni—V alloy thin film having a purity of 99.9 wt % or higher, the variation among ingots, targets or thin films is small, the etching property is improved, and isotopic elements such as U and Th that emit alpha particles having an adverse effect on microcircuits in a semiconductor device are reduced rigorously. Further provided is a method of manufacturing such high purity Ni—V alloys capable of effectively reducing the foregoing impurities.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: May 10, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Yasuhiro Yamakoshi