With Pretreatment Or Preparation Of A Base (e.g., Annealing) Patents (Class 117/106)
  • Publication number: 20120174855
    Abstract: A method for making an epitaxial structure is provided. The method includes following steps. A substrate having an epitaxial growth surface is provided. A buffer layer is formed on the epitaxial growth surface. A carbon nanotube layer is placed on the buffer layer. An epitaxial layer is epitaxially grown on the buffer layer. The substrate is removed.
    Type: Application
    Filed: October 18, 2011
    Publication date: July 12, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Publication number: 20120174856
    Abstract: A method for making an epitaxial structure is provided. The method includes the following steps. A substrate is provided. The substrate has an epitaxial growth surface for growing epitaxial layer. A carbon nanotube layer is placed on the epitaxial growth surface. An epitaxial layer is epitaxially grown on the epitaxial growth surface. The carbon nanotube layer is removed. The carbon nanotube layer can be removed by heating.
    Type: Application
    Filed: October 18, 2011
    Publication date: July 12, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Patent number: 8216368
    Abstract: A method of forming an epitaxially grown layer, preferably by providing a region of weakness in a support substrate and transferring a nucleation portion to the support substrate by bonding. A remainder portion of the support substrate is detached at the region of weakness and an epitaxial layer is grown on the nucleation portion. The remainder portion is separated or otherwise removed from the support portion.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: July 10, 2012
    Assignee: Soitec
    Inventors: Bruce Faure, Fabrice Letertre
  • Patent number: 8216367
    Abstract: A method for producing a silicon carbide layer on a surface of a silicon substrate includes the step of irradiating the surface of the silicon substrate heated in a high vacuum at a temperature in a range of from 500° C. to 1050° C. with a hydrocarbon-based gas as well as an electron beam to form a cubic silicon carbide layer on the silicon substrate surface.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: July 10, 2012
    Assignee: Showa Denko K.K.
    Inventor: Takashi Udagawa
  • Patent number: 8216364
    Abstract: Direct resistive heating is used to grow nanotubes out of carbon and other materials. A growth-initiated array of nanotubes is provided using a CVD or ion implantation process. These processes use indirect heating to heat the catalysts to initiate growth. Once growth is initiated, an electrical source is connected between the substrate and a plate above the nanotubes to source electrical current through and resistively heat the nanotubes and their catalysts. A material source supplies the heated catalysts with carbon or another material to continue growth of the array of nanotubes. Once direct heating has commenced, the source of indirect heating can be removed or at least reduced. Because direct resistive heating is more efficient than indirect heating the total power consumption is reduced significantly.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: July 10, 2012
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, Mead M. Jordan, William R. Owens
  • Publication number: 20120161155
    Abstract: A main surface of a silicon carbide substrate is inclined by an off angle in an off direction from {0001} plane of a hexagonal crystal. The main surface has such a characteristic that, among emitting regions emitting photoluminescent light having a wavelength exceeding 650 nm of the main surface caused by excitation light having higher energy than band-gap of the hexagonal silicon carbide, the number of those having a dimension of at most 15 ?m in a direction perpendicular to the off direction and a dimension in a direction parallel to the off direction not larger than a value obtained by dividing penetration length of the excitation light in the hexagonal silicon carbide by a tangent of the off angle is at most 1×104 per 1 cm2. Accordingly, reverse leakage current can be reduced.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 28, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shin HARADA, Tsubasa Honke
  • Publication number: 20120164058
    Abstract: There is provided a method for fabricating a gallium nitride crystal with low dislocation density, high crystallinity, and resistance to cracking during polishing of sliced pieces by growing the gallium nitride crystal using a gallium nitride substrate including dislocation-concentrated regions or inverted-polarity regions as a seed crystal substrate. Growing a gallium nitride crystal 79 at a growth temperature higher than 1,100° C. and equal to or lower than 1,300° C. so as to bury dislocation-concentrated regions or inverted-polarity regions 17a reduces dislocations inherited from the dislocation-concentrated regions or inverted regions 17a, thus preventing new dislocations from occurring over the dislocation-concentrated regions or inverted-polarity regions 17a. This also increases the crystallinity of the gallium nitride crystal 79 and its resistance to cracking during the polishing.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 28, 2012
    Inventors: Tomoki UEMURA, Takashi SAKURADA, Shinsuke FUJIWARA, Takuji OKAHISA, Koji UEMATSU, Hideaki NAKAHATA
  • Publication number: 20120162766
    Abstract: A polarizer is provided comprising: a transparent substrate, on a main surface of which a plurality of grooves in parallel with each other are provided at an interval; a birefringence crystal layer with a single orientation formed on the main surface of the transparent substrate where the grooves are provided, wherein the birefringence crystal layer is at least filled in the grooves so that linearly polarized light incident on a location corresponding to the grooves and passing through the polarizer is converted into first polarized light, and linearly polarized light incident on a location between the grooves and passing through the polarizer is converted into second polarized light, the polarization directions of the first and the second polarized light are different from each other.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 28, 2012
    Applicants: HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Yun Bok LEE, Ku Hyun PARK
  • Publication number: 20120152165
    Abstract: An apparatus for manufacturing a silicon carbide single crystal grows the silicon carbide single crystal on a surface of a seed crystal made from a silicon carbide single crystal substrate by supplying a material gas for silicon carbide from below the seed crystal. The apparatus includes a base having a first side and a second side opposite to the first side. The seed crystal is mounded on the first side of the base. The apparatus further includes a purge gas introduction mechanism for supporting the base and for supplying a purge gas to the base from the second side of the base. The base has a purge gas introduction path for discharging the supplied purge gas from the base toward an outer edge of the seed crystal.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: DENSO CORPORATION
    Inventors: Kazukuni HARA, Yuuichirou Tokuda
  • Patent number: 8197598
    Abstract: A method for making iron silicide nano-wires comprises the following steps. Firstly, providing a growing substrate and a growing device, the growing device comprising a heating apparatus and a reacting room. Secondly, placing the growing substrate and a quantity of iron powder into the reacting room. Thirdly, introducing a silicon-containing gas into the reacting room. Finally, heating the reacting room to a temperature of 600˜1200° C.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: June 12, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Hai-Lin Sun, Kai-Li Jiang, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20120132132
    Abstract: A manufacturing method of a SiC single crystal includes a first growth process and a re-growth process. In the first growth process, a first seed crystal made of SiC is used to grow a first SiC single crystal. In the re-growth process, a plurality of growth steps is performed for (n?1) times. In a k-th growth step, a k-th seed crystal is cut out from a grown (k?1)-th SiC single crystal, and the k-th seed crystal is used to grow a k-th SiC single crystal (n?2 and 2?k?n). When an offset angle of a growth surface of the k-th seed crystal is defined as ?k, at least in one of the plurality of growth steps, the offset angle ?k is smaller than the offset angle ?k?1.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 31, 2012
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Yasushi Urakami, Ayumu Adachi, Itaru Gunjishima
  • Patent number: 8187380
    Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described, as well as a system for use in performing such a method, and articles incorporating such a composition.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 29, 2012
    Assignee: Apollo Diamond, Inc
    Inventors: Robert C. Linares, Patrick J. Doering
  • Publication number: 20120118222
    Abstract: A method of manufacturing a GaN-based film includes the steps of preparing a composite substrate, the composite substrate including a support substrate in which a coefficient of thermal expansion in its main surface is more than 1.0 time and less than 1.2 times as high as a coefficient of thermal expansion of GaN crystal in a direction of a axis and a single crystal film arranged on a main surface side of the support substrate, the single crystal film having threefold symmetry with respect to an axis perpendicular to a main surface of the single crystal film, and forming a GaN-based film on the main surface of the single crystal film in the composite substrate, the single crystal film in the composite substrate being an SiC film. Thus, a method of manufacturing a GaN-based film capable of manufacturing a GaN-based film having a large main surface area and less warpage is provided.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 17, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shinsuke FUJIWARA, Koji Uematsu, Yoshiyuki Yamamoto, Issei Satoh
  • Publication number: 20120112320
    Abstract: A production process for a nitride semiconductor crystal, comprising growing a semiconductor layer on a seed substrate to obtain a nitride semiconductor crystal, wherein the seed substrate comprises a plurality of seed substrates made of the same material, at least one of the plurality of seed substrates differs in the off-angle from the other seed substrates, and a single semiconductor layer is grown by disposing the plurality of seed substrates in a semiconductor crystal production apparatus, such that when the single semiconductor layer is grown on the plurality of seed substrates, the off-angle distribution in the single semiconductor layer becomes smaller than the off-angle distribution in the plurality of seed substrates.
    Type: Application
    Filed: December 1, 2011
    Publication date: May 10, 2012
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shuichi KUBO, Kenji Shimoyama, Kazumasa Kiyomi, Kenji Fujito, Yutaka Mikawa
  • Publication number: 20120108436
    Abstract: A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.
    Type: Application
    Filed: July 7, 2010
    Publication date: May 3, 2012
    Applicants: TOYO KOHAN CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi Yamaguchi, Masaya Konishi, Hajime Ota
  • Patent number: 8168000
    Abstract: A method of fabricating a III-nitride power semiconductor device which includes selective prevention of the growth of III-nitride semiconductor bodies to selected areas on a substrate in order to reduce stresses and prevent cracking.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: May 1, 2012
    Assignee: International Rectifier Corporation
    Inventors: Mike Briere, Robert Beach
  • Publication number: 20120088107
    Abstract: The present invention provides a method of forming a self-assembly fullerene array on the surface of a substrate, comprising the following steps: (1) providing a substrate; (2) pre-annealing the substrate at a temperature ranging from 200° C. to 1200° C. in a vacuum system; and (3) providing powdered fullerene nanoparticles and depositing them on the surface of the substrate by means of physical vapor deposition technology in the vacuum system, so as to form a self-assembly fullerene array on the surface of the substrate. The present invention also provides a fullerene embedded substrate prepared therefrom, which has excellent field emission properties and can be used as a field emitter for any field emission displays. Finally, the present invention provides a fullerene embedded substrate prepared therefrom, which can be used to substitute for semiconductor carbides as optoelectronic devices and high-temperature, high-power, or high-frequency electric devices.
    Type: Application
    Filed: December 16, 2011
    Publication date: April 12, 2012
    Inventors: Mon-Shu HO, Chih-Pong HUANG
  • Publication number: 20120073495
    Abstract: In a manufacturing method of a silicon carbide single crystal, a seed crystal made of silicon carbide is prepared. The seed crystal has a growth surface and a stacking fault generation region and includes a threading dislocation that reaches the growth surface. The growth surface is inclined at a predetermined angle from a (0001) plane. The stacking fault generation region is configured to cause a stacking fault in the silicon carbide single crystal when the silicon carbide single crystal is grown. The stacking fault generation region is located at an end portion of the growth surface in an offset direction that is a direction of a vector defined by projecting a normal vector of the (0001) plane onto the growth surface. The seed crystal is joined to a pedestal, and the silicon carbide single crystal is grown on the growth surface of the seed crystal.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 29, 2012
    Applicant: DENSO CORPORATION
    Inventors: Yasushi URAKAMI, Ayumu Adachi, Itaru Gunjishima
  • Publication number: 20120074403
    Abstract: The present invention is to provide GaN crystal growing method for growing a GaN crystal with few stacking faults on a GaN seed crystal substrate having a main surface inclined at an angle of 20° to 90° from the (0001) plane, and also to provide a GaN crystal substrate with few stacking faults. A method for growing a GaN crystal includes the steps of preparing a GaN seed crystal substrate 10 having a main surface 10m inclined at an angle of 20° to 90° from a (0001) plane 10c and growing a GaN crystal 20 on the GaN seed crystal substrate 10. The GaN seed crystal substrate 10 and the GaN crystal 20 have a difference in impurity concentration of 3×1018 cm?3 or less.
    Type: Application
    Filed: May 19, 2011
    Publication date: March 29, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shinsuke Fujiwara, Koji Uematsu, Hideki Osada
  • Publication number: 20120060751
    Abstract: A manufacturing method of a SiC single crystal includes growing a SiC single crystal on a surface of a SiC seed crystal, which satisfies following conditions: (i) the SiC seed crystal includes a main growth surface composed of a plurality of sub-growth surfaces; (ii) among directions from an uppermost portion of a {0001} plane on the main growth surface to portions on a periphery of the main growth surface, the SiC seed crystal has a main direction in which a plurality of sub-growth surfaces is arranged; and (iii) an offset angle ?k of a k-th sub-growth surface and an offset angle ?k+1 of a (k+1)-th sub-growth surface satisfy a relationship of ?k<?k+1.
    Type: Application
    Filed: August 16, 2011
    Publication date: March 15, 2012
    Applicant: DENSO CORPORATION
    Inventors: Yasushi URAKAMI, Itaru GUNJISHIMA, Ayumu ADACHI
  • Patent number: 8133321
    Abstract: A process for producing a silicon carbide single crystal in which a silicon carbide single crystal layer is homo-epitaxially or hetero-epitaxially grown on a surface of a single crystal substrate, wherein a plurality of substantially parallel undulation ridges that extend in a first direction on the single crystal substrate surface is formed on said single crystal substrate surface; each of the undulation ridges on said single crystal substrate surface has a height that undulates as each of the undulation ridges extends in the first direction; and the undulation ridges are disposed so that planar defects composed of anti-phase boundaries and/or twin bands that propagate together with the epitaxial growth of the silicon carbide single crystal merge with each other.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: March 13, 2012
    Assignee: Hoya Corporation
    Inventors: Takamitsu Kawahara, Kuniaki Yagi, Naoki Hatta, Hiroyuki Nagasawa
  • Publication number: 20120052656
    Abstract: Methods of fabricating dimensional silica-based substrates or structures comprising a porous silicon layers are contemplated. According to one embodiment, oxygen is extracted from the atomic elemental composition of a silica glass substrate by reacting a metallic gas with the substrate in a heated inert atmosphere to form a metal-oxygen complex along a surface of the substrate. The metal-oxygen complex is removed from the surface of the silica glass substrate to yield a crystalline porous silicon surface portion and one or more additional layers are formed over the crystalline porous silicon surface portion of the silica glass substrate to yield a dimensional silica-based substrate or structure comprising the porous silicon layer. Embodiments are also contemplated where the substrate is glass-based, but is not necessarily a silica-based glass substrate. Additional embodiments are disclosed and claimed.
    Type: Application
    Filed: May 4, 2011
    Publication date: March 1, 2012
    Inventors: Robert A. Bellman, Nicholas F. Borrelli, David A. Deneka, Shawn M. O'Malley, Vitor M. Schneider
  • Publication number: 20120043644
    Abstract: A method of manufacturing a silicon wafer provides a silicon wafer which can reduce the precipitation of oxygen to prevent a wafer deformation from being generated and can prevent a slip extension due to boat scratches and transfer scratches serving as a reason for a decrease in wafer strength, even when the wafer is provided to a rapid temperature-rising-and-falling thermal treatment process.
    Type: Application
    Filed: March 25, 2010
    Publication date: February 23, 2012
    Applicant: SUMCO CORPORATION
    Inventors: Toshiaki Ono, Wataru Ito, Jun Fujise
  • Publication number: 20120017826
    Abstract: A supporting portion (30c) made of silicon carbide has irregularities at at least a portion of a main surface (FO). The supporting portion (30c) and at least one single crystal substrate (11) made of silicon carbide are stacked such that the backside surface (B1) of each at least one single crystal substrate (11) and the main surface (FO) of the supporting portion (30c) having irregularities formed contact each other. In order to connect the backside surface (B1) of each at least one single crystal substrate (11) to the supporting portion (30c), the supporting portion (30c) and at least one single crystal substrate (11) are heated such that the temperature of the supporting portion (30c) exceeds the sublimation temperature of silicon carbide, and the temperature of each at least one single crystal substrate (11) is below the temperature of the supporting portion (30c).
    Type: Application
    Filed: September 28, 2010
    Publication date: January 26, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Taro Nishiguchi, Makoto Sasaki, Shin Harada, Kyoko Okita, Hiroki Inoue, Yasuo Namikawa
  • Publication number: 20120006255
    Abstract: A seed crystal having a frontside surface and a backside surface is prepared. Surface roughness of the backside surface of the seed crystal is increased. A coating film including carbon is formed on the backside surface of the seed crystal. The coating film and a pedestal are brought into contact with each other with an adhesive interposed therebetween. The adhesive is cured to fix the seed crystal to the pedestal. A single crystal is grown on the seed crystal. Before the growth is performed, a carbon film is formed by carbonizing the coating film.
    Type: Application
    Filed: November 12, 2010
    Publication date: January 12, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD
    Inventors: Taro Nishiguchi, Makoto Sasaki, Shin Harada
  • Patent number: 8092597
    Abstract: Method for producing a III-N (AlN, GaN, AlxGa(1-x)N) crystal by Vapor Phase Epitaxy (VPE), the method comprising: providing a reactor having: a growth zone for growing a III-N crystal; a substrate holder located in the growth zone that supports at least one substrate on which to grow the III-N crystal; a gas supply system that delivers growth material for growing the III-N crystal to the growth zone from an outlet of the gas supply system; and a heating element that controls temperature in the reactor; determining three growth sub-zones in the growth zone for which a crystal grown in the growth sub-zones has respectively a concave, flat or convex curvature; growing the III-N crystal on a substrate in a growth region for which the crystal has a by desired curvature.
    Type: Grant
    Filed: January 22, 2011
    Date of Patent: January 10, 2012
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Vladimir A. Dmitriev, Yuri V. Melnik
  • Publication number: 20120000415
    Abstract: Techniques for processing materials in supercritical fluids include processing in a capsule disposed within a high-pressure apparatus enclosure. The invention is useful for growing crystals of: GaN; AN; InN; and their alloys, namely: InGaN; AlGaN; and AlInGaN; for manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors.
    Type: Application
    Filed: June 14, 2011
    Publication date: January 5, 2012
    Applicant: Soraa, Inc.
    Inventors: Mark P. D'Evelyn, James S. Speck
  • Publication number: 20110300354
    Abstract: A base portion is prepared which has a supporting layer made of a material different from silicon carbide, and a silicon carbide layer formed on the supporting layer. Each of first and second silicon carbide single-crystals is connected onto the silicon carbide layer of the base portion. In this way, a combined substrate having such a plurality of silicon carbide single-crystals can be provided at low cost.
    Type: Application
    Filed: May 27, 2011
    Publication date: December 8, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Taro NISHIGUCHI
  • Publication number: 20110278593
    Abstract: A method for manufacturing a silicon carbide substrate includes the steps of: preparing a SiC substrate made of single-crystal silicon carbide; disposing a base substrate in a crucible so as to face a main surface of the SiC substrate; and forming a base layer made of silicon carbide in contact with the main surface of the SiC substrate, by heating the base substrate in the crucible to fall within a range of temperature higher than a sublimation temperature of silicon carbide constituting the base substrate. In the step of forming the base layer, a gas containing silicon is introduced into the crucible.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 17, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Taro Nishiguchi, Makoto Sasaki, Shin Harada, Kyoko Okita, Hiroki Inoue, Yasuo Namikawa
  • Publication number: 20110278594
    Abstract: A method for manufacturing a silicon carbide substrate includes the steps of: preparing a SiC substrate made of single-crystal silicon carbide; disposing a base substrate in a crucible so as to face a main surface of the SiC substrate; and forming a base layer made of silicon carbide in contact with the main surface of the SiC substrate by heating the base substrate in the crucible to fall within a range of temperature equal to or higher than a sublimation temperature of silicon carbide constituting the base substrate. The crucible has an inner wall at least a portion of which is provided with a coating layer made of silicon carbide.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 17, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Taro NISHIGUCHI, Makoto SASAKI, Shin HARADA, Kyoko OKITA, Hiroki INOUE, Yasuo NAMIKAWA
  • Publication number: 20110278595
    Abstract: A method for manufacturing a silicon carbide substrate includes the steps of: preparing a base substrate made of silicon carbide and a SiC substrate made of single-crystal silicon carbide; fabricating a stacked substrate by placing said SiC substrate on and in contact with a main surface of said base substrate; and connecting said base substrate and said SiC substrate to each other by heating said stacked substrate in a container to fall within a range of temperature equal to or greater than a sublimation temperature of silicon carbide constituting said base substrate. In the step of connecting said base substrate and said SiC substrate, a silicon carbide body made of silicon carbide and different from said base substrate and said SiC substrate is disposed in said container.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 17, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Taro Nishiguchi, Makoto Sasaki, Shin Harada, Kyoko Okita, Hiroki Inoue, Yasuo Namikawa
  • Publication number: 20110265708
    Abstract: Epitaxy is carried out by immersing a single crystal substrate having a first principal surface, a second principal surface and a dislocation exposed on the first principal surface into an electrolytic solution including a cation of a metal having a melting point; carrying out electrolytic plating on the first principal surface to deposit the metal on the dislocation so as to cover the dislocation with the metal but leave a portion of the first principal surface where the dislocation is exposed uncovered with the metal; and causing epitaxy of a semiconductor layer on both the portion of the first principal surface and the metal covering the dislocation at a temperature below the melting point.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 3, 2011
    Applicant: Sanken Electric Co., Ltd.
    Inventor: Ken SATO
  • Publication number: 20110262680
    Abstract: A sublimation preventing layer is formed to cover a first region of a main surface of a material substrate. First and second single-crystal layers are arranged on the material substrate such that a gap between first and second side surfaces is located over the sublimation preventing layer. The material substrate and the first and second single-crystal layers are heated to sublimate silicon carbide from a second region of the main surface and recrystallize the sublimated silicon carbide on the first backside surface of the first single-crystal layer and the second backside surface of the second single-crystal layer, thereby forming a base substrate connected to each of the first and second backside surfaces. This can prevent formation of voids in a silicon carbide substrate having such a plurality of single-crystal layers.
    Type: Application
    Filed: April 25, 2011
    Publication date: October 27, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Taro Nishiguchi, Shin Harada, Hiroki Inoue, Makoto Sasaki
  • Publication number: 20110262681
    Abstract: A carbon layer is formed on a first region of a main surface of a material substrate. On the material substrate, first and second single-crystal layers are arranged such that each of a first backside surface of the first single-crystal layer and a second backside surface of the second single-crystal layer has a portion facing a second region of the main surface of the material substrate and such that a gap between a first side surface of the first single-crystal layer and a second side surface of the second single-crystal layer is located over the carbon layer. By heating the material substrate and the first and second single-crystal layers, a base substrate connected to each of the first and second backside surfaces is formed. In this way, voids can be prevented from being formed in the silicon carbide substrate having such a plurality of single-crystal layers.
    Type: Application
    Filed: April 25, 2011
    Publication date: October 27, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Taro Nishiguchi, Shin Harada, Hiroki Inoue, Makoto Sasaki
  • Patent number: 8043687
    Abstract: A method for forming a graphene layer is disclosed herein. The method includes establishing an insulating layer on a substrate such that at least one seed region, which exposes a surface of the substrate, is formed. A seed material in the seed region is exposed to a carbon-containing precursor gas, thereby initiating nucleation of the graphene layer on the seed material and enabling lateral growth of the graphene layer along at least a portion of a surface of the insulating layer.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: October 25, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Theodore I. Kamins, R. Stanley Williams, Nathaniel Quitoriano
  • Publication number: 20110254017
    Abstract: A manufacturing method for a crystal, a crystal, and a semiconductor device capable of growing a high-quality crystal are provided. The manufacturing method for a crystal of the present invention includes the steps of: preparing a seed crystal having a frontside surface and a backside surface opposite to the frontside surface; fixing the backside surface of the seed crystal to a pedestal; and growing the crystal on the frontside surface of the seed crystal. In the step of fixing, the seed crystal is fixed to the pedestal by coating the backside surface of the seed crystal with a Si layer or disposing a Si layer on the backside surface of the seed crystal, and carbonizing the Si layer.
    Type: Application
    Filed: April 13, 2011
    Publication date: October 20, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Taro Nishiguchi, Shin Harada
  • Patent number: 8038795
    Abstract: A precursor chiral nanotube with a specified chirality is grown using an epitaxial process and then cloned. A substrate is provided of crystal material having sheet lattice properties complementary to the lattice properties of the selected material for the nanotube. A cylindrical surface(s) having a diameter of 1 to 100 nanometers are formed as a void in the substrate or as crystal material projecting from the substrate with an orientation with respect to the axes of the crystal substrate corresponding to the selected chirality. A monocrystalline film of the selected material is epitaxially grown on the cylindrical surface that takes on the sheet lattice properties and orientation of the crystal substrate to form a precursor chiral nanotube. A catalytic particle is placed on the precursor chiral nanotube and atoms of the selected material are dissolved into the catalytic particle to clone a chiral nanotube from the precursor chiral nanotube.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: October 18, 2011
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, William R. Owens
  • Patent number: 8034165
    Abstract: A large single crystal of a complex such as an organic carboxylic acid metal complex, which crystal is useful as an adsorbent of various gases and vapors of organic solvents and as a hydrogen-absorbing material, as well as a process for producing the crystal, is disclosed. Two layers wherein an upper layer thereof is constituted by a solution containing a metal salt and an organic carboxylic acid having a conjugated system, or a solution containing a metal salt of the organic carboxylic acid having a conjugated system, and wherein a lower layer of the two layers is constituted by a solvent which is not miscible with the solvent of the solution, is formed. Vapor of pyrazine or a substituted pyrazine from a solution of pyrazine or the substituted pyrazine is introduced into the upper layer to allow reaction, thereby forming a large single crystal(s) of the organic carboxylic acid metal complex at the interface between the two layers, which crystal(s) has(have) a longer side with a size of not less than 0.8 mm.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: October 11, 2011
    Assignee: Yokohama City University
    Inventor: Satoshi Takamizawa
  • Publication number: 20110232564
    Abstract: In a method of growing GaN crystal in one aspect, the following steps are performed. An underlying substrate is prepared. Then, a mask layer having an opening portion and composed of SiO2 is formed on the underlying substrate. Then, GaN crystal is grown on the underlying substrate and the mask layer. The mask layer has surface roughness Rms not greater than 2 nm or a radius of curvature not smaller than 8 m. In a method of growing GaN crystal in one aspect, the following steps are performed. An underlying substrate is prepared. Then, using a resist, a mask layer having an opening portion is formed on the underlying substrate. Then, the underlying substrate and the mask layer are cleaned with an acid solution. Then, after of cleaning with an acid solution, the underlying substrate and the mask layer are cleaned with an organic solvent. Then, GaN crystal is grown on the underlying substrate and the mask layer.
    Type: Application
    Filed: November 26, 2009
    Publication date: September 29, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Tomoharu Takeyama
  • Publication number: 20110237441
    Abstract: A method is proposed for producing a biaxially textured metal substrate having a metal surface, wherein the substrate is modified in order to produce a high-temperature superconductor coating arrangement and wherein the metal surface is modified in order to deposit a buffer layer or another intermediate layer epitaxially thereon and/or to deposit an oriented high-temperature superconductor (HTS) layer thereon. The method includes producing a biaxially textured metal substrate, subjecting the metal substrate surface to a polishing treatment, in particular an electropolishing treatment, and subjecting the metal substrate to a post-annealing after the surface polishing treatment and before a subsequent coating is performed involving epitaxial deposition of a layer of the HTS coating arrangement. This method results in smooth metal substrates with high textural overcoats and thereby improved HTS layers.
    Type: Application
    Filed: November 24, 2009
    Publication date: September 29, 2011
    Applicant: ZENERGY POWER GMBH
    Inventors: Michael Baecker, Martina Falter, Jan Kunert
  • Publication number: 20110229719
    Abstract: A manufacturing method for a crystal, a manufacturing apparatus for a crystal, and a stacked film capable of growing a high-quality crystal are provided. The manufacturing method for a crystal includes the steps of: preparing a seed crystal having a frontside surface and a backside surface opposite to the frontside surface; forming at least one film selected from the group consisting of a hard carbon film, a diamond film, a tantalum film, and a tantalum carbide film on the backside surface of the seed crystal; and growing the crystal on the frontside surface of the seed crystal.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 22, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Taro NISHIGUCHI, Shin Harada
  • Patent number: 8003192
    Abstract: A nanodevice including a nanorod and a method for manufacturing the same is provided. The nanodevice according to an embodiment of the present invention includes i) a substrate; ii) at least one crystal that is located on the substrate and includes a plurality of side surfaces forming an angle with each other; and iii) at least one nanorod that is located on the crystal and extends along a direction that is substantially perpendicular to a surface of the substrate.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: August 23, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Young-Joon Hong, Gyu-Chul Yi
  • Publication number: 20110192343
    Abstract: A method for manufacturing an electronic, optic, optoelectronic or photovoltaic structure of a substrate having a thin layer on one face thereof, by forming an embrittled substrate having first and second faces and an embrittlement zone therebetween, the embrittlement zone defining the substrate and a remainder; depositing a thin layer of material on both the first and second faces of the embrittled substrate; and cleaving the embrittled substrate at the embrittlement zone to obtain the structure having the thin layer of deposited material on one face and one face that is exposed.
    Type: Application
    Filed: September 23, 2008
    Publication date: August 11, 2011
    Inventors: Hocine Abir, Robert Langer
  • Publication number: 20110193196
    Abstract: Affords methods of manufacturing InP substrates, methods of manufacturing epitaxial wafers, InP substrates, and eptiaxial wafers whereby deterioration of the electrical characteristics can be kept under control, and at the same time, deterioration of the PL characteristics can be kept under control. An InP substrate manufacturing method of the present invention is provided with the following steps. An InP substrate is prepared (Steps S1 through S3). The InP substrate is washed with sulfuric acid/hydrogen peroxide (Step S5). After the step of washing with sulfuric acid/hydrogen peroxide (Step S5), the InP substrate is washed with phosphoric acid (Step S6).
    Type: Application
    Filed: January 12, 2010
    Publication date: August 11, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Kyoko Okita
  • Patent number: 7993453
    Abstract: A method for the production of an SiC single crystal includes the steps of growing a first SiC single crystal in a first direction of growth on a first seed crystal formed of an SiC single crystal, disposing the first SiC single crystal grown on the first seed crystal in a direction parallel or oblique to the first direction of growth and cutting the disposed first SiC single crystal in a direction of a major axis in a cross section perpendicular to the first direction of growth to obtain a second seed crystal, using the second seed crystal to grow thereon in a second direction of growth a second SiC single crystal to a thickness greater than a length of the major axis in the cross section, disposing the second SiC single crystal grown on the second seed crystal in a direction parallel or oblique to the second direction of growth and cutting the disposed second SiC single crystal in a direction of a major axis in a cross section perpendicular to the second direction of growth to obtain a third seed crystal, u
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: August 9, 2011
    Assignee: Showa Denko K.K.
    Inventors: Naoki Oyanagi, Tomohiro Syounai, Yasuyuki Sakaguchi
  • Publication number: 20110171462
    Abstract: Affords nitride semiconductor crystal manufacturing apparatuses that are durable and that are for manufacturing nitride semiconductor crystal in which the immixing of impurities from outside the crucible is kept under control, and makes methods for manufacturing such nitride semiconductor crystal, and the nitride semiconductor crystal itself, available. A nitride semiconductor crystal manufacturing apparatus (100) is furnished with a crucible (101), a heating unit (125), and a covering component (110). The crucible (101) is where, interiorly, source material (17) is disposed. The heating unit (125) is disposed about the outer periphery of the crucible (101), where it heats the crucible (101) interior. The covering component (110) is arranged in between the crucible (101) and the heating unit (125).
    Type: Application
    Filed: January 20, 2010
    Publication date: July 14, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Issei Satoh, Michimasa Miyanaga, Yoshiyuki Yamamoto, Hideaki Nakahata
  • Publication number: 20110155050
    Abstract: A method for manufacturing a oriented substrate for forming an epitaxial thin film thereon, having a more excellent orientation than that of a conventional one and a high strength, and a method for manufacturing the same. The clad textured metal substrate includes a metallic layer and a copper layer bonded to at least one face of the above described metallic layer, wherein the above described copper layer has a {100}<001> cube texture in which a deviating angle ?? of crystal axes satisfies ???6 degree. The substrate has an intermediate layer on the surface of the copper layer, to form the epitaxial thin film thereon.
    Type: Application
    Filed: February 18, 2011
    Publication date: June 30, 2011
    Inventors: NAOJI KASHIMA, Shigeo Nagaya, Kunihiro Shima, Hirofumi Hoshino
  • Patent number: 7963201
    Abstract: A method and apparatus for dispensing prepackaged medication packages includes an apparatus having a body with an internal cavity and an opening. A central processing unit operably communicates with an actuator within the cavity to regulate and monitor the dispensation of the packages, while the actuator operably communicates with a feed mechanism within the cavity to dispense the packages.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: June 21, 2011
    Assignee: Concept Medical Technologies, Inc.
    Inventors: Christopher Wallace Willoughby, David Walter Wright, Lee William Travis, Jeffrey Clyne Garland
  • Publication number: 20110132255
    Abstract: Since vapor-phase growth of an epitaxial film is performed on the surface of a mirror surface silicon wafer which is not subjected to final polishing, and the surface of the epitaxial film is thereafter subjected to HCl gas etching, the mirror polishing step is simplified, and the productivity is improved, that enables a reduction in cost, and it is possible to suppress the surface roughness of the epitaxial film as well.
    Type: Application
    Filed: September 22, 2010
    Publication date: June 9, 2011
    Applicant: SUMCO CORPORATION
    Inventors: Hideaki KINBARA, Naoyuki WADA, Toshihiro OHUCHI, Shinichi OGATA, Hironori NISHIMURA
  • Publication number: 20110134509
    Abstract: A wavelength conversion element having an improved property-maintaining life and a method for manufacturing the wavelength conversion element are provided. A wavelength conversion element 10a has an optical waveguide 13. The wavelength of incoming light 101 input from one end 13a of the optical waveguide 13 is converted and outgoing light 102 is output from the other end 13b of the optical waveguide 13. The wavelength conversion element includes a first crystal 11 composed of AlxGa(1-x)N (0.5?x?1); and a second crystal 12 having the same composition as that of the first crystal. The first and second crystals 11 and 12 form a domain-inverted structure in which a polarization direction is periodically reversed along the optical waveguide 13, and the domain-inverted structure satisfies quasi phase matching conditions with respect to the incoming light 101. At least one of the first and second crystals has a dislocation density of 1×103 cm?2 or more and less than 1×107 cm?2.
    Type: Application
    Filed: July 28, 2009
    Publication date: June 9, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES ,LTD.
    Inventors: Issei Satoh, Michimasa Miyanaga, Yoshiyuki Yamamoto, Hideaki Nakahata