With Means For Measuring, Testing, Or Sensing Patents (Class 117/201)
  • Patent number: 7625446
    Abstract: A capsule for containing at least one reactant and a supercritical fluid in a substantially air-free environment under high pressure, high temperature processing conditions. The capsule includes a closed end, at least one wall adjoining the closed end and extending from the closed end; and a sealed end adjoining the at least one wall opposite the closed end. The at least one wall, closed end, and sealed end define a chamber therein for containing the reactant and a solvent that becomes a supercritical fluid at high temperatures and high pressures. The capsule is formed from a deformable material and is fluid impermeable and chemically inert with respect to the reactant and the supercritical fluid under processing conditions, which are generally above 5 kbar and 550° C. and, preferably, at pressures between 5 kbar and 80 kbar and temperatures between 550 ° C. and about 1500° C.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: December 1, 2009
    Assignee: Momentive Performance Materials Inc.
    Inventors: Mark Philip D'Evelyn, Kristi Jean Narang, Robert Arthur Giddings, Steven Alfred Tysoe, John William Lucek, Suresh Shankarappa Vagarali, Robert Vincent Leonelli, Jr., Joel Rice Dysart
  • Patent number: 7597758
    Abstract: Embodiments of the invention provide chemical precursor ampoules that may be used during vapor deposition processes. In one embodiment, an apparatus for generating a chemical precursor gas used in a vapor deposition processing system is provided which includes a canister having a sidewall, a top, and a bottom forming an interior volume and a solid precursor material at least partially contained within a lower region of the interior volume. The apparatus further contains an inlet port and an outlet port in fluid communication with the interior volume and an inlet tube connected to the inlet port and positioned to direct a carrier gas towards the sidewall and away form the outlet port. In one example, the solid precursor contains pentakis(dimethylamido) tantalum (PDMAT). In another example, the apparatus contains a plurality of baffles that form an extended mean flow path between the inlet port and the outlet port.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: October 6, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Vincent W. Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang
  • Publication number: 20090235861
    Abstract: A method of manufacturing a silicon single crystal with carbon doping in a chamber by using a Czochralski method is provided. In a step of placing a silicon raw material in a crucible, a carbon dopant is disposed at a distance of 5 cm or further away from the inner surface of the crucible, and in this state, a step of melting the silicon raw material is performed after the disposing step.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 24, 2009
    Applicant: SUMCO CORPORATION
    Inventors: Hideki FUJIWARA, Naoki IKEDA, Kazunari KURITA, Masataka HOURAI
  • Publication number: 20090224175
    Abstract: An apparatus for performing non-contact material characterization includes a wafer carrier adapted to hold a plurality of substrates and a material characterization device, such as a device for performing photoluminescence spectroscopy. The apparatus is adapted to perform non-contact material characterization on at least a portion of the wafer carrier, including the substrates disposed thereon.
    Type: Application
    Filed: February 12, 2009
    Publication date: September 10, 2009
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Dong Seung Lee, Mikhail Belousov, Eric A. Armour, William E. Quinn
  • Patent number: 7582162
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: September 1, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Mai Akiba
  • Patent number: 7572335
    Abstract: A crystallization apparatus includes an illumination system which illuminates a phase-shift mask and an image-forming optical system arranged in an optical path between the phase-shift mask and a semiconductor film. The semiconductor film is irradiated with a light beam having a light intensity distribution of inverted peak patterns whose light intensity is the lowest in portions corresponding to phase shift sections to form a crystallized semiconductor film. The image-forming optical system is located to optically conjugate the phase-shift mask and the semiconductor film and has an aberration corresponding to the given wavelength range to form a light intensity distribution of inverted peak patterns with no swell of intensity in the middle portion.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: August 11, 2009
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yukio Taniguchi, Masakiyo Matsumura, Hirotaka Yamaguchi, Mikihiko Nishitani, Susumu Tsujikawa, Yoshinobu Kimura, Masayuki Jyumonji
  • Publication number: 20090176081
    Abstract: The method of making uniform low-stress crystals includes immersing a seed crystal held at a temperature under its melting point in a melt in a crucible and drawing it from the melt. The crystal and/or melt are rotated relative to each other and a planar phase boundary surface is maintained between them by detecting a surface temperature of the melt and/or crystal and controlling temperature fluctuations by increasing or decreasing the rotation speed. The single crystals obtained by this method have a diameter ?50 mm and no visible growth strips in a fishtail pattern when a 2-mm thick sample is observed between crossed polarizers. These crystals have an index of refraction uniformity ?n of <1 ppm and a stress birefringence of <1 nm/cm at 193 nm, so that optical elements suitable for DUV lithography can be made from them.
    Type: Application
    Filed: December 5, 2008
    Publication date: July 9, 2009
    Inventors: Gunther Wehrhan, Lutz Parthier, Daniel Rytz, Klaus Dupre, Lothar Ackermann
  • Patent number: 7540921
    Abstract: A phase modulation element according to the present invention has a first area having a first phase value based on a phase modulation unit having a predetermined size and a second area having a second phase value based on the phase modulation unit having the predetermined size, and each phase distribution is defined by a change in area shares of the first area and the second area depending on each position.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: June 2, 2009
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Masakiyo Matsumura, Yukio Taniguchi
  • Patent number: 7537657
    Abstract: A process for producing a single-crystal silicon wafer, comprises the following steps: producing a layer on the front surface of the silicon wafer by epitaxial deposition or production of a layer whose electrical resistance differs from the electrical resistance of the remainder of the silicon wafer on the front surface of the silicon wafer, or production of an external getter layer on the back surface of the silicon wafer, and heat treating the silicon wafer at a temperature which is selected to be such that an inequality (1) [ Oi ] < [ Oi ] eq ? ( T ) ? exp ? 2 ? ? SiO ? ? 2 ? ? rkT is satisfied, where [Oi] is an oxygen concentration in the silicon wafer, [Oi]eq(T) is a limit solubility of oxygen in silicon at a temperature T, ?SiO2 is the surface energy of silicon dioxide, ? is a volume of a precipitated oxygen atom, r is a mean COP and k the Boltzmann constant, with the silicon wafer, during the heat treatment, at least part of the time being exposed to an oxygen-con
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: May 26, 2009
    Assignee: Siltronic AG
    Inventors: Christoph Seuring, Robert Hoelzl, Reinhold Wahlich, Wilfried Von Ammon
  • Patent number: 7524374
    Abstract: Embodiments of the present invention are directed to an apparatus for generating a precursor for a semiconductor processing system (320). The apparatus includes a canister (300) having a sidewall (402), a top portion and a bottom portion. The canister (300) defines an interior volume (438) having an upper region (418) and a lower region (434). In one embodiment, the apparatus further includes a heater (430) partially surrounding the canister (300). The heater (430) creates a temperature gradient between the upper region (418) and the lower region (434). Also claimed is a method of forming a barrier layer from purified pentakis (dimethylamido) tantalum, for example a tantalum nitride barrier layer by atomic layer deposition.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: April 28, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Vincent W. Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang
  • Publication number: 20090092536
    Abstract: To control the precipitation position of a crystal and increase the yield of the crystal by performing the crystal growth according to the solvothermal method while allowing a predetermined amount of a substance differing in the critical density from the solvent to be present in the reaction vessel; and to prevent mixing of an impurity into the crystal and improve the crystal purity.
    Type: Application
    Filed: June 29, 2006
    Publication date: April 9, 2009
    Applicants: TOHOKU UNIVERSITY, MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shinichiro Kawabata, Akira Yoshikawa, Yuji Kagamitani, Tsuguo Fukuda
  • Patent number: 7513949
    Abstract: An amorphous silicon film is formed on a flat glass substrate, and then crystallized by heating to obtain a crystalline silicon film. The glass substrate is placed on a stage having a convex U-shaped curved surface. The glass substrate is heated for a desired period of time at a temperature close to a strain point of the glass substrate, and then is cooled. Also, an amorphous silicon film formed on a glass substrate is crystallized into a crystalline silicon film by heating and then the glass substrate is mounted on a stage having a flat surface in such a manner that the lower surface of the glass substrate is in close contact with the flat surface of the stage by pressing the upper surface of the glass substrate. Then, a linear laser beam is irradiated on the crystalline silicon film in a scanning manner.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: April 7, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka
  • Patent number: 7501024
    Abstract: A plume (109) is generated by irradiating a side face of a graphite rod (101) with a laser beam (103) to vaporize carbon. The vaporized carbon is introduced to a carbon nanohorn recovery chamber (119) through a recovery pipe (155), and the vaporized carbon is recovered as a carbon nanohorn assembly (117). A cooling tank (150) including liquid nitrogen (151) is arranged in the recovery pipe (155). While the cooling tank (150) controls the plume (109) at a low temperature, the cooling tank (150) cools the carbon vapor when the carbon vapor passes through the recovery pipe (155). The cooled carbon vapor is recovered as the carbon nanohorn assembly (117) which is controlled in the desired shape and dimensions.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: March 10, 2009
    Assignee: NEC Corporation
    Inventors: Takeshi Azami, Daisuke Kasuya, Sumio Iijima, Tsutomu Yoshitake, Yoshimi Kubo, Masako Yudasaka
  • Patent number: 7470326
    Abstract: The apparatus for manufacturing a silicon single crystal includes: a crucible for storing molten silicon; a pulling-up device for pulling up a silicon single crystal from the molten silicon in the crucible to grow; a detecting device for detecting a position of the crucible in a vertical direction; and a control device for controlling a pulling rate for the silicon single crystal by the pulling-up device, based on the detected position of the crucible.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: December 30, 2008
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Youji Suzuki, Satoshi Sato
  • Patent number: 7462237
    Abstract: The present invention provides computer-implementable systems and methods for generating images of crystals. The systems each include (a) a light source; (b) a rotatable first polarizing material; (c) a rotatable second polarizing material; (d) a light-capturing device; and (e) a software program executable on the computer-implementable system for analyzing electrical signals from the light-capturing device.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: December 9, 2008
    Assignee: deCODE biostructures, Inc.
    Inventors: Peter Nollert-von Specht, Mark B. Mixon
  • Patent number: 7445674
    Abstract: A first optical modulation element irradiates a non-single-crystal substance with a light beam which is to have a first light intensity distribution on the non-single crystal substance by modulating an intensity of an incident first light beam, thereby melting the substance. A second optical modulation element irradiates the substance with a light beam which is to have a second light intensity distribution on the substance by modulating an intensity of an incident second light beam, thereby melting the substance. An illumination system causes the light beam having the second light intensity distribution to enter the molten part of the substance in a period that the substance is partially molten by irradiation of the light beam having the first light intensity distribution.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: November 4, 2008
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yukio Taniguchi, Masayuki Jyumonji, Hiroyuki Ogawa
  • Patent number: 7431768
    Abstract: A crystallization system is provided comprising: a screen replicator configured to transfer screen solutions from wells of a screen storage plate into well regions of multiple crystallization plates; a trial generation station configured to generate crystallization trials in the trial zones of a crystallization plate; a transport mechanism configured to transport crystallization plates from the screen replicator to the trial generation station; and a controller having logic for causing the screen replicator to transfer the screen solutions from the screen storage plate to multiple crystallization plates, logic for causing the transport mechanism to transport the crystallization plates from the screen replicator to the trial generation station and logic for causing the trial generation station to generate crystallization trials in the crystallization plates.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: October 7, 2008
    Assignee: Takeda San Diego, Inc.
    Inventors: Laurent Martin, John W. Palan
  • Publication number: 20080236477
    Abstract: A vapor phase growth apparatus and a vapor phase growth method improve the uniformity of film formed are provided. The vapor phase growth apparatus includes a chamber, a rotatable holder having a susceptor, an internal heater and an external heater which are arranged in the holder and heat the wafer from the bottom surface, an gas-pipe which is arranged to face the internal heater and sprays a cooling gas, and a temperature measuring unit which is arranged outside the chamber and measures the surface temperature of the wafer. In this manner, a position of a singular point of temperature which is an overheated portion generated on the wafer can be recognized. The singular point of temperature is locally cooled to make it possible to improve the uniformity of a temperature distribution in plane of the wafer.
    Type: Application
    Filed: March 24, 2008
    Publication date: October 2, 2008
    Inventors: Hideki ITO, Shinichi MITANI
  • Patent number: 7422634
    Abstract: A high quality single crystal wafer of SiC is disclosed. The wafer has a diameter of at least about 3 inches, a warp of less than about 5 ?m, a bow less than about 5 ?m, and a total thickness variation of less than about 2.0 ?m.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: September 9, 2008
    Assignee: Cree, Inc.
    Inventors: Adrian Powell, William H. Brixius, Robert Tyler Leonard, Davis Andrew McClure, Michael Laughner
  • Publication number: 20080197339
    Abstract: A nanoscale nanocrystal which may be used as a reciprocating motor is provided, comprising a substrate having an energy differential across it, e.g. an electrical connection to a voltage source at a proximal end; an atom reservoir on the substrate distal to the electrical connection; a nanoparticle ram on the substrate distal to the atom reservoir; a nanolever contacting the nanoparticle ram and having an electrical connection to a voltage source, whereby a voltage applied between the electrical connections on the substrate and the nanolever causes movement of atoms between the reservoir and the ram. Movement of the ram causes movement of the nanolever relative to the substrate. The substrate and nanolever preferably comprise multiwalled carbon nanotubes (MWNTs) and the atom reservoir and nanoparticle ram are preferably metal (e.g. indium) deposited as small particles on the MWNTs.
    Type: Application
    Filed: September 19, 2005
    Publication date: August 21, 2008
    Inventors: Brian Christopher Regan, Alexander K. Zettl, Shaul Aloni
  • Patent number: 7413605
    Abstract: By pulling up an ingot in consideration of deformation of a crucible, generation of the defective ingot is prevented and a plurality of ingots having equivalent quality with the first ingot are pulled up in a multiple pull-up. Firstly, a deformation amount of a crucible for experiment (34) upon melting a silicon raw material and a history of supply power to a heater for experiment (38) are measured to calculate deformation tendency of a crucible for mass production (14). Next, the size of the crucible for mass production is measured, the silicon raw material of the amount equivalent to the amount supplied to the crucible for experiment is melted with a heater for mass production (18), and an initial crucible external position with a predetermined gap (X) is measured before initiating pull-up.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: August 19, 2008
    Assignee: Sumco Corporation
    Inventor: Jun Furukawa
  • Patent number: 7402207
    Abstract: Methods and systems for permitting thickness control of the selective epitaxial growth (SEG) layer in a semiconductor manufacturing process, for example raised source/drain applications in CMOS technologies, are presented. These methods and systems provide the capability to measure the thickness of an SEG film in-situ utilizing optical ellipsometry equipment during or after SEG layer growth, prior to removing the wafer from the SEG growth tool. Optical ellipsometry equipment can be integrated into the SEG platform and control software, thus providing automated process control (APC) capability for SEG thickness. The integration of the ellipsometry equipment may be varied, dependent upon the needs of the fabrication facility, e.g., integration to provide ellipsometer monitoring of a single process tool, or multiple tool monitoring, among other configurations.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: July 22, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Paul R. Besser, Eric N. Paton, William G. En
  • Patent number: 7402208
    Abstract: The invention provides a crystallizing method and an apparatus for producing a biopolymer capable of simplifying operations for taking out a produced crystal and mounting the crystal onto a crystal structure analyzer, thereby improving efficiency in the operations as well as reducing a labor burden. A crystallizing apparatus for producing a biopolymer crystal from a solution containing a biopolymer includes a crystal-growing chip 10 made of a material allowing electromagnetic waves to permeate through the chip, and in which a circular frame 16 is formed to retain a droplet 20 of a solution containing a biopolymer and a biopolymer crystal 28 produced in the droplet.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: July 22, 2008
    Assignees: Protein Wave Corporation, Riken
    Inventors: Akira Sanjoh, Nobuo Kamiya, Takaaki Hikima
  • Publication number: 20080168942
    Abstract: A device for transporting liquids and supporting crystal growth comprises a hollow space (20) in a body (1) with a first side. The hollow space comprises at least a first orifice (9) and is being adapted for generating a directed capillary ascension effect towards the at least first orifice (9).
    Type: Application
    Filed: January 16, 2007
    Publication date: July 17, 2008
    Inventor: Bernhard Dehmer
  • Publication number: 20080156255
    Abstract: The present invention relates to an apparatus for vapour phase crystal growth to produce multiple single crystals in one growth cycle comprising one central source chamber, a plurality of growth chambers, a plurality of passage means adapted for transport of vapour from the source chamber to the growth chambers, wherein the source chamber is thermally decoupled from the growth chambers.
    Type: Application
    Filed: February 2, 2006
    Publication date: July 3, 2008
    Inventors: Arnab Basu, Max Robinson, Ben Cantwell, Andy Brinkman
  • Patent number: 7368011
    Abstract: The apparatus for manufacturing a silicon single crystal includes: a crucible for storing molten silicon; a pulling-up device for pulling up a silicon single crystal from the molten silicon in the crucible to grow; a detecting device for detecting a position of the crucible in a vertical direction; and a control device for controlling a pulling rate for the silicon single crystal by the pulling-up device, based on the detected position of the crucible.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: May 6, 2008
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Youji Suzuki, Satoshi Sato
  • Publication number: 20080098953
    Abstract: Apparatus and method for growing and observing the growth of epitaxial layers on a wafer. The apparatus includes: epitaxial growth apparatus; a source of light mounted to illuminate an entire surface of the wafer in the apparatus during growth of the epitaxial layer on the entire surface of the wafer; and apparatus for observing scattering of the light from the entire surface of the wafer during growth of the epitaxial layer on the entire surface of the wafer. The method includes growing the epitaxial layer on a surface of the wafer and observing scattering of the light from the entire surface of the wafer during growth of the epitaxial layer on the entire surface of the wafer. The growing process is varied in accordance with the observation. With an epitaxial layer of gallium nitride (GaN) the entire surface of the wafer is observed for balls of gallium.
    Type: Application
    Filed: November 1, 2006
    Publication date: May 1, 2008
    Inventors: William E. Hoke, Theodore D. Kennedy
  • Patent number: 7361221
    Abstract: A light irradiation apparatus includes a light modulation element which has a phase modulation area having at least one basic pattern for modulating a light beam, an illumination system which illuminates the phase modulation area of the light modulation element with a light beam, and an image formation optical system which causes a light beam on an irradiation target surface a light intensity distribution having an inverse-peak-shaped pattern formed based on the light beam phase-modulated by the phase modulation element to fall on an irradiation target object. Dimensions of the basic pattern are not greater than a point spread function range of the image formation optical system converted in terms of the light modulation element. The phase modulation area is configured in such a manner that a phase distribution in a light complex amplitude distribution on the irradiation target surface becomes a saw-tooth-like distribution along a line segment in a lateral direction.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: April 22, 2008
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Masakiyo Matsumura, Yukio Taniguchi
  • Patent number: 7347897
    Abstract: A crystallization apparatus of the present invention irradiates a non-single-crystal semiconductor film with a luminous flux having a predetermined light intensity distribution to crystallize the film, and comprises a phase modulation device comprising a plurality of unit areas which are arranged in a certain period and which mutually have substantially the same pattern, and an optical image forming system disposed between the phase modulation device and the non-single-crystal semiconductor film. The unit area of the phase modulation device has a reference face having a certain phase, a first area disposed in the vicinity of a center of each unit area and having a first phase difference with respect to the reference face, and a second area disposed in the vicinity of the first area and having substantially the same phase difference as that of the first phase difference with respect to the reference face.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: March 25, 2008
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Tomoya Kato, Masakiyo Matsumura, Yukio Taniguchi
  • Patent number: 7344596
    Abstract: To reduce the heat input to the bottom of the crucible and to control heat extraction independently of heat input, a shield can be raised between a heating element and a crucible at a controlled speed as the crystal grows. Other steps could include moving the crucible, but this process can avoid having to move the crucible. A temperature gradient is produced by shielding only a portion of the heating element; for example, the bottom portion of a cylindrical element can be shielded to cause heat transfer to be less in the bottom of the crucible than at the top, thereby causing a stabilizing temperature gradient in the crucible.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: March 18, 2008
    Assignee: Crystal Systems, Inc.
    Inventors: Frederick Schmid, Chandra P. Khattak, David B. Joyce
  • Patent number: 7335261
    Abstract: Disclosed are apparatus for forming a semiconductor film having an excellent crystallinity from a non-single crystal semiconducting layer formed on a base layer made of an insulating material. The apparatus includes a light source, a homogenizer for homogenizing an intensity distribution of the emitted light, an amplitude-modulation means for performing the amplitude-modulation such that the amplitude of the light, of which the intensity distribution is homogenized, is increased in the direction of the relative motion of the light to the base layer, an optional light projection optical system for projecting the amplitude-modulated light onto the surface of the non-single crystal semiconductor such that a predetermined irradiation energy can be obtained, a phase shifter for providing a low temperature point in the surface irradiated by the light, and a substrate stage to move the light relative to the substrate thereby enabling scanning in the X and Y axis.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: February 26, 2008
    Assignee: Kabushiki Kaisha Ekisho Sentan Gijutsu Kaihatsu Center
    Inventors: Masakiyo Matsumura, Mikihiko Nishitani, Yoshinobu Kimura, Masayuki Jyumonji, Yukio Taniguchi, Masato Hiramatsu, Fumiki Nakano
  • Patent number: 7332032
    Abstract: Methods of forming a layer on a substrate using complexes of Formula I. The complexes and methods are particularly suitable for the preparation of semiconductor structures. The complexes are of the formula LyMYz (Formula I) wherein: M is a metal; each L group is independently a neutral ligand containing one or more Lewis-base donor atoms; each Y group is independently an anionic ligand; y=a nonzero integer; and z=a nonzero integer corresponding to the valence state of the metal.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: February 19, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Brian A. Vaartstra
  • Patent number: 7326292
    Abstract: The inventive quality evaluation method for a single crystal ingot generally includes a step of determining cropping and sampling positions and a step of evaluating a sample. The step of determining cropping and sampling positions includes: (a) inputting basic information on the decision of cropping, sampling and prime positions according to equipments and products, (b) predetermining the cropping, sampling and prime positions according to the basic information, (c) monitoring a growing process of a growing ingot and analyzing/storing X factors related with the growing process of the growing ingot, and (d) determining the cropping and sampling positions based on the X factors related with the growing process.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: February 5, 2008
    Assignee: Siltron Inc.
    Inventors: Jin Geun Kim, Hyon Jong Cho
  • Patent number: 7318866
    Abstract: The present invention is directed to systems and methods for irradiating regions of a thin film sample(s) with laser beam pulses having different energy beam characteristics that are generated and delivered via different optical paths.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: January 15, 2008
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James Im
  • Publication number: 20080000414
    Abstract: A method for configuring J electromagnetic radiation sources (J?2) to simultaneously irradiate a substrate. Each source has a different function of wavelength and angular distribution of emitted radiation. The substrate includes a base layer and I stacks (I?2) thereon. Pj denotes a same source-specific normally incident energy flux on each stack from source j. For simultaneous exposure of the I stacks to radiation from the J sources, Pj is computed such that an error E being a function of |W1?S1|, |W2?S2 , . . . , |W1?S1| is about minimized with respect to Pj=1, . . . , J). Wi and Si respectively denote an actual and target energy flux transmitted into the substrate via stack i (i=1, . . . , I). The stacks are exposed to the radiation from the sources characterized by the computed Pj=1, . . . , J).
    Type: Application
    Filed: June 29, 2006
    Publication date: January 3, 2008
    Inventors: Brent Allan Anderson, Edward Joseph Nowak
  • Patent number: 7314519
    Abstract: A vapor-phase growth apparatus including a reaction furnace, a wafer container disposed in said furnace, a gas supply member, and a heating member, wherein the apparatus is designed to form a grown film on a front surface of the wafer by supplying a source gas in a high temperature state while the heating member heats the wafer in the reaction furnace through the wafer container. The wafer container includes a heat flow control section having a space for disposing a wafer; and a heat flow transmitting section joined to the heat flow control section. The contact heat resistance Rg between the heat flow control section and the heat flow transmitting section is not less than 1.0×10?6 m2K/W to not more than 5.0×10?3 m2K/W. The heat flow control section is made of a material having a coefficient of thermal conductivity 5 to 20 times that of the wafer.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: January 1, 2008
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Eiichi Shimizu, Nobuhito Makino
  • Patent number: 7314523
    Abstract: A method for manufacturing a SiC single crystal from a SiC seed crystal is provided. The method includes the steps of: measuring a diameter of the SiC single crystal during a crystal growth of the SiC single crystal; and controlling the diameter of the SiC single crystal to be a predetermined diameter on the basis of the measured diameter. The method provides the SiC single crystal with high quality and large size.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: January 1, 2008
    Assignee: DENSO CORPORATION
    Inventors: Kouki Futatsuyama, Yasuo Kitou
  • Patent number: 7311773
    Abstract: The invention provides a biopolymer crystal mounting device with which a biopolymer crystal having been grown in a solution containing a biopolymer can be taken out of the solution. The device can be manufactured efficiently without requiring labors and can be mass-produced with high yield. A biopolymer crystal mounting device comprises: a film member 12, which is made of a material possessing permeability to an electromagnetic wave, and which is integrally formed of a loop portion 16 holding a drop of solution containing a biopolymer crystal, a neck portion 18 and a body portion 20; and a tubular member 14 including a bearing hole 22 in which the body portion of the film member is inserted and supported. Further, the film member is inserted into and secured to the tubular member.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: December 25, 2007
    Assignee: Protein Wave Corporation
    Inventor: Akira Sanjoh
  • Patent number: 7300520
    Abstract: This invention provides methods, kits and automated systems for identifying a reagent in which a compound crystallizes, and methods for crystallizing a compound.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: November 27, 2007
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Peter D. Kwong, Shahzad Majeed
  • Patent number: 7294197
    Abstract: Metallurgical grade silicon or high purity silicon beads developed from a fluidized bed process are melted in a cooled aluminum crucible, such that a non wetted interface is created between the molten silicon and a cooled supporting substrate that includes a surface layer of substantially inert aluminum oxide. It is believed that the molten silicon does not wet the surface of the supporting substrate and the surface of the supporting substrate does not chemically interact with the silicon. It is shown that, in spite of the enormous temperature difference, molten silicon (ca. 1450° C.) can be stabilized, by appropriate energy control, in direct (but non-wetted) contact with cold (ca. 40° C.) material such as aluminum.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: November 13, 2007
    Inventor: Nicholas Gralenski
  • Patent number: 7285168
    Abstract: For the measurement, orientation and fixation of at least one single crystal, it is the object of the invention to ensure increased accuracy in the determination of crystallographic orientation and oriented fixation regardless of the outer geometry of the single crystals, and the fixation should guarantee a highly accurate cutting also with very hard materials such as sapphire or silicon carbide. The single crystal is adjustably positioned on a revolving table for determining the crystal lattice orientation, wherein the crystal lattice orientation is determined during at least one revolution of the revolving table based on a plurality of x-ray reflections. The orientation of the crystal lattice is carried out with reference to the determined angles of the normal of the lattice plane relative to the axis (X-X) of the revolving table as reference direction before carrying out the fixation of the single crystal and the fastening on a support oriented in reference direction.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: October 23, 2007
    Assignee: EFG Elektrotechnische Fabrikations-und Grosshandelsgesellschaft mnB
    Inventors: Hans Bradaczek, Hans Berger, Hartmut Schwabe
  • Patent number: 7270709
    Abstract: A precursor and method for filling a feature in a substrate. The method generally includes depositing a barrier layer, the barrier layer being formed from pentakis(dimethylamido)tantalum having less than about 5 ppm of impurities. The method additionally may include depositing a seed layer over the barrier layer and depositing a conductive layer over the seed layer. The precursor generally includes pentakis(dimethylamido)tantalum having less than about 5 ppm of impurities. The precursor is generated in a canister coupled to a heating element configured to reduce formation of impurities.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: September 18, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Vincent W. Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang
  • Patent number: 7235128
    Abstract: A process for producing a single-crystal semiconductor and an apparatus therefor. A single-crystal semiconductor of large diameter and large weight can be lifted with the use of existing equipment not having any substantial change thereto while not influencing the oxygen concentration of single-crystal semiconductor and the temperature of melt and while not unduly raising the temperature of seed crystal. In particular, the relationship (L1, L2, L3) between the allowable temperature difference (?T) and the diameter (D) of seed crystal (14) is preset so that the temperature difference between the seed crystal (14) at the time the seed crystal (14) is immersed in the melt and the melt (5) falls within the allowable temperature difference (?T) at which dislocations are not introduced into the seed crystal (14). In accordance with the relationship (L1, L2, L3), the allowable temperature difference (?T) corresponding to the diameter (D) of seed crystal (14) to be immersed in the melt is determined.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: June 26, 2007
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Susumu Maeda, Hiroshi Inagaki, Shigeki Kawashima, Shoei Kurosaka, Kozo Nakamura
  • Patent number: 7217319
    Abstract: A crystallization apparatus includes an illumination system which illuminates a phase shifter having a phase shift portion, and irradiates a polycrystal semiconductor film or an amorphous semiconductor film with a light beam having a predetermined light intensity distribution in which a light intensity is minimum in a point area corresponding to the phase shift portion of the phase shifter, thereby forming a crystallized semiconductor film, the phase shifter has four or more even-numbered phase shift lines which intersect at a point constituting the phase shift portion. An area on one side and an area on the other side of each phase shift line have a phase difference of approximately 180 degrees.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: May 15, 2007
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Masakiyo Matsumura, Yukio Taniguchi
  • Patent number: 7214270
    Abstract: The present invention comprises a light modulation optical system having a first element which forms a desired light intensity gradient distribution to an incident light beam and a second element which forms a desired light intensity minimum distribution with an inverse peak shape to the same, and an image formation optical system which is provided between the light modulation optical system and a substrate having a polycrystal semiconductor film or an amorphous semiconductor film, wherein the incident light beam to which the light intensity gradient distribution and the light intensity minimum distribution are formed is applied to the polycrystal semiconductor film or the amorphous semiconductor film through the image formation optical system, thereby crystallizing a non-crystal semiconductor film. The pattern of the first element is opposed to the pattern of the second element.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: May 8, 2007
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yukio Taniguchi, Masakiyo Matsumura, Noritaka Akita
  • Patent number: 7211145
    Abstract: A substrate processing apparatus include a spin chuck capable of holding a semiconductor wafer in a horizontal position, a drive motor for driving the spin chuck for rotation, and a processing vessel accommodating the spin chuck and the drive motor 50 therein and capable of sealing a supercritical fluid, such as supercritical carbon dioxide, therein. The supercritical fluid flows along the upper and the lower surface of the semiconductor wafer at velocities relative to the upper and the lower surface of the semiconductor wafer as the spin chuck holding the semiconductor wafer in a horizontal position rotates to remove contaminants including particles and adhering to the semiconductor wafer from the semiconductor wafer.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: May 1, 2007
    Assignee: Tokyo Electron Limited
    Inventor: Gentaro Goshi
  • Patent number: 7195670
    Abstract: High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: March 27, 2007
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 7125452
    Abstract: A process for calibrating the temperature control unit of a vertical gradient freeze crystal growth oven, instead of the fused material a test body (3) is used in the oven (1) that does not melt at the oven temperature, that has a heat conductivity comparable to the fused material and a central bore (4). After turning on the resistance heaters (8, 9, 10) of the oven (1) the temperature at the level of the individual control temperature indicators (11, 12, 13) of the oven (1) is measured via a reference temperature indicator (5) that can be fully inserted into the bore (4) and subsequently the output of the respective resistance heaters (8, 9, 10) is set to a desired temperature value.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: October 24, 2006
    Assignee: Crystal Growing Systems GmbH
    Inventor: Andreas Mühe
  • Patent number: 7105048
    Abstract: Each region, which should be left on a substrate after patterning, of a semiconductor film is grasped in accordance with a mask. Then, each region to be scanned with laser light is determined so that at least the region to be obtained through the patterning is crystallized, and a beam spot is made to hit the region to be scanned, thereby partially crystallizing the semiconductor film. Each portion with low output energy of the beam spot is shielded by a slit. In the present invention, the laser light is not scanned and irradiated onto the entire surface of the semiconductor film but is scanned such that at least each indispensable portion is crystallized to a minimum. With the construction described above, it becomes possible to save time taken to irradiate the laser light onto each portion to be removed through the patterning after the crystallization of the semiconductor film.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: September 12, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Satoshi Murakami, Mai Akiba
  • Patent number: RE40871
    Abstract: The first object of the present invention is to provide a PDP with improved panel brightness which is achieved by improving the efficiency in conversion from discharge energy to visible rays. The second object of the present invention is to provide a PDP with improved panel life which is achieved by improving the protecting layer protecting the dielectrics glass layer. To achieve the first object, the present invention sets the amount of xenon in the discharge gas to the range of 10% by volume to less than 100% by volume, and sets the charging pressure for the discharge gas to the range of 500 to 760 Torr which is higher than conventional charging pressures. With such construction, the panel brightness increases. Also, to achieve the second object, the present invention has, on the surface of the dielectric glass layer, a protecting layer consisting of an alkaline earth oxide with (100)-face or (110)-face orientation.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: August 18, 2009
    Assignee: Panasonic Corporation
    Inventors: Masaki Aoki, Hideo Torii, Eiji Fujii, Mitsuhiro Ohtani, Takashi Inami, Hiroyuki Kawamura, Hiroyoshi Tanaka, Ryuichi Murai, Yasuhisa Ishikura, Yutaka Nishimura, Katsuyoshi Yamashita