Aluminum Base Patents (Class 148/437)
  • Patent number: 6638375
    Abstract: An aluminum bearing alloy includes, by mass, 3 to 40% Sn, 0.5 to 7% Si, 0.05 to 2% Fe, balance of Al, and unavoidable impurities. In the alloy, a ternary-element intermetallic compound of Al—Si—Fe and Si particles are contained as hard particles.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: October 28, 2003
    Assignee: Daido Metal Company Ltd.
    Inventors: Masahito Fujita, Yukihiko Kagohara, Koichi Yamamoto, Takayuki Shibayama
  • Patent number: 6638377
    Abstract: An aluminum alloy piping material for automotive piping excelling in corrosion resistance and workability and a method of fabricating the same. The aluminum alloy piping material is made of an aluminum alloy which contains 0.3-1.5% of Mn, 0.01-0.20% of Fe, and 0.01-0.20% of Si, wherein the content of Cu as impurities is limited to 0.05% or less, with the balance being Al and impurities, wherein, among Si compounds, Fe compounds, and Mn compounds present in the alloy's matrix, the number of compounds with a particle diameter (equivalent circle diameter, hereinafter the same) of 0.5 &mgr;m or more is 3×104 or less per mm2. The aluminum alloy piping material has a tensile strength of 70-130 MPa (temper: O material). An ingot of an aluminum alloy having the composition is hot extruded. The resulting extruded pipe is cold drawn at a working ratio of 30% or more and annealed.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: October 28, 2003
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Takahiro Koyama, Hirokazu Tanaka, Yoshifusa Shoji
  • Patent number: 6638376
    Abstract: An aluminum alloy piping material exhibiting good corrosion resistance and having an excellent workability, such as bulge formation capability at the pipe ends. The aluminum alloy piping material is suitably used for pipes connecting automotive radiators and heaters or pipes connecting evaporators, condensers, and compressors. The aluminum alloy material is formed from an aluminum alloy which contains 0.3-1.5% of Mn, 0.20% or less of Cu, 0.06-0.30% of Ti, 0.01-0.20% of Fe, and 0.01-0.20% of Si, with the balance being Al and impurities, wherein, among Si compounds, Fe compounds, and Mn compounds present in the matrix, the number of compounds with a particle diameter of 0.5 &mgr;m or more is 2×104 or less per mm2. The aluminum alloy piping material may further comprise 0.4% or less of Mg.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: October 28, 2003
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Hirokazu Tanaka, Yoshifusa Shoji, Takahiro Koyama, Toshihiko Fukuda
  • Patent number: 6630247
    Abstract: A ceramic-metal composite that is tough and stiff has been prepared and is comprised of an inert ceramic (e.g., alumina) embedded and dispersed in a matrix comprised of a metal (e.g., aluminum), a reactive ceramic (e.g., boron carbide) and a reactive ceramic-metal reaction product (e.g., AlB2, Al4BC, Al3B48C2, AlB12, Al4C3, AlB24C4 or mixtures thereof) wherein grains of the inert ceramic have an average grain size greater than or equal to the average grain size of grains of the reactive ceramic. The ceramic-metal composite may be prepared by forming a mixture comprised of an inert ceramic powder (e.g., alumina) and a reactive ceramic powder (e.g., boron carbide), the inert ceramic powder having an average particle size equal to or greater than the average particle size of the reactive ceramic powder, forming the mixture into a porous body and consolidating the porous body in the presence of a metal (e.g., aluminum) to form the ceramic-metal composite.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: October 7, 2003
    Assignee: Dow Global Technologies Inc.
    Inventors: Richard T. Fox, Chan Han, Aleksander J. Pyzik
  • Publication number: 20030183306
    Abstract: A new class of light or reactive elements and monophase &agr;′-matrix magnesium- and aluminum-based alloys with superior engineering properties, for the latter being based on a homogeneous solute distribution or a corrosion-resistant and metallic shiny surface withstanding aqueous and saline environments and resulting from the control during synthesis of atomic structure over microstructure to net shape of the final product, said &agr;′-matrix being retained upon conversion into a cast or wrought form. The manufacture of the materials relies on the control of deposition temperature and in-vacuum consolidation during vapor deposition, on maximized heat transfer or casting pressure during all-liquid processing and on controlled friction and shock power during solid state alloying using a mechanical milling technique.
    Type: Application
    Filed: October 7, 2002
    Publication date: October 2, 2003
    Applicant: Franz HEHMANN
    Inventors: Franz Hehmann, Michael Weidemann
  • Patent number: 6623571
    Abstract: This invention relates to the synthesis of a new generation of metastable aluminum-titanium (Al—Ti) alloys and the process of making them. The preparation method used is a combination process incorporating the advantages of conventional casting and spray techniques. The process is a low cost process. The aluminum-titanium materials made in this invention contain titanium in both the reacted and unreacted form. The results were confirmed using microstructural and x-ray diffraction studies. The presence of phases clearly indicate the metastable nature of these materials in accordance with the equilibrium phase diagram established for Al—Ti system. The Al—Ti materials can be made in the dimensions suitable for structural applications at ambient and elevated temperatures and as control materials for synthesis of more dilute equilibrium Al—Ti materials using conventional techniques such as casting.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: September 23, 2003
    Assignee: National University of Singapore
    Inventor: Manoj Gupta
  • Patent number: 6620265
    Abstract: A method for manufacturing an aluminum alloy fin material brazing comprises forming an ingot sheet by casting a molten liquid of an aluminum alloy by a continuous casting rolling method, and cold-rolling the ingot sheet to prepare a fin material. The aluminum alloy contains prescribed amounts of Mn, Fe, and Si, with the balance being Al and inevitable impurities. The continuous cast-rolling is applied under each a prescribed condition of a molten liquid temperature, a roll press load, a casting speed, and a thickness of the ingot sheet. Two or more intermediate annealings are applied midway in the cold-rolling process, with intermediate annealing including final intermediate annealing with a heating furnace in prescribed temperature range, thereby adjusting the prescribed rolling ratio in the cold-rolling, after the final intermediate annealing.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: September 16, 2003
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Akira Kawahara, Takeyoshi Doko
  • Publication number: 20030164206
    Abstract: Disclosed are methods and materials for preparing metal matrix composite (MMC) components that have low weight, good thermal conductivity and a controllable in-plane coefficient of thermal expansion. One embodiment of the invention features a metal matrix composite that includes a metal alloy and random in-plane discontinuous fibers. In some embodiments, the metal alloy includes aluminum, copper or magnesium. In certain embodiments, the metal matrix composite includes additives that enable solution hardening. In other embodiments, the metal matrix composite includes additives that enable precipitation hardening. Another embodiment of the invention features a method of manufacturing a metal matrix composite. The method includes contacting random in-plane discontinuous fibers with a binder, and pressurizing the random in-plane discontinuous fibers and the binder to form a bound preform. The preform is pressurized to a pressure greater than the molten metal capillary breakthrough pressure of the bound preform.
    Type: Application
    Filed: March 4, 2003
    Publication date: September 4, 2003
    Inventors: James A. Cornie, Mark A. Ryals, Stephen S. Cornie
  • Patent number: 6605199
    Abstract: An aluminum alloy sputter target having a sputter target face for sputtering the sputter target is provided. The sputter target face has a textured-metastable grain structure. The textured-metastable grain structure has a grain orientation ratio of at least 35 percent (200) orientation. The textured-metastable grain structure is stable during sputtering of the sputter target. The textured-metastable grain structure has a grain size of less than 5 &mgr;m. The method forms aluminum alloy sputter targets by first cooling an aluminum alloy target blank to a temperature of less than −50° C. Then deforming the cooled aluminum alloy target blank introduces plastic strain into the target blank and reduces the grain size of the grains to form a textured-metastable grain structure. Finally, finishing the aluminum alloy target blank forms a finished sputter target that maintains the textured-metastable grain structure of the finished sputter target.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: August 12, 2003
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman, Jaak Van den Sype
  • Patent number: 6602363
    Abstract: A corrosion resistant aluminum alloy has controlled amounts of iron, manganese, chromium, and titanium along with levels of copper, silicon, nickel, and no more than impurity levels of zinc. The alloy chemistry is tailored such that the electrolytic potential of the grain boundaries matches the alloy matrix material to reduce intergranular corrosion. The alloy is particularly suited for the manufacture of tubing for heat exchangers using extrusion and brazing techniques.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: August 5, 2003
    Assignee: Alcoa Inc.
    Inventor: Baolute Ren
  • Publication number: 20030127212
    Abstract: A composite material 5 in which a dispersing material 7 is dispersed in a matrix 6 is provided.
    Type: Application
    Filed: November 19, 2002
    Publication date: July 10, 2003
    Applicant: NGK Insulators, Ltd.
    Inventors: Masahiro Kida, Takahiro Ishikawa, Masayuki Shinkai, Takatoshi Ikematsu
  • Publication number: 20030116234
    Abstract: A consumable welding filler material for cladding alloys includes a ductile metal and an alloying element in appropriate ratio to produce a hypereutectic during a welding process. In one embodiment, a consumable welding filler material for cladding alloys includes a metal sheath, which includes aluminum, and an inner core material, which includes silicon in an amount of greater than 12.6 wt. % so that a hypereutectic is produced when the consumable welding filler material is melted during a welding process.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Michael L. Santella, Craig A. Blue, Jeffrey D. McNabb, Vinod K. Sikka
  • Patent number: 6579386
    Abstract: A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: June 17, 2003
    Assignee: Lockheed Martin Corporation
    Inventors: Gerald W. O. Bjorkman, Jr., Alex Cho, Carolyn K. Russell
  • Publication number: 20030102059
    Abstract: An aluminum bearing-alloy containing 1.5 to 8 mass % of Si is provided, in which there can be observed Si grains on the sliding surface of the aluminum bearing-alloy. A fractional area of the observed Si grains having a grain size of less than 4 &mgr;m is 20 to 60% of a total area of all the observed Si grains. Another fractional area of the observed Si grains having a grain size of from 4 to 20 &mgr;m is not less than 40% of the total area of all the observed Si grains.
    Type: Application
    Filed: October 4, 2002
    Publication date: June 5, 2003
    Applicant: Daido Metal Company Ltd.
    Inventors: Yukihiko Kagohara, Takeshi Hoshina, Hideo Ishikawa, Masaaki Sakamoto
  • Patent number: 6572715
    Abstract: The present invention provides an aluminum alloy support body for a presensitized plate in which the uniformity of the grained surface due to electrochemical etching is further improved, and a method of producing the same. The aluminum alloy support body for the presensitized plate according to the present invention has a composition comprising 0.1 to 0.7% by weight of Fe; 0.01 to 0.2% by weight of Si; 0.005 to 1.0% by weight of one or more rare earth elements; and the balance of Al and unavoidable impurities. In the present invention, the aluminum alloy support body may further contain 0.005 to 0.1% by weight of Ni and 0.005 to 0.3% by weight of one or more rare earth elements. One or more elements of Ce, La and Nd can be selected as the rare earth elements.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: June 3, 2003
    Assignees: Kodak Polychrom Graphics, LLC, Mitsubishi Aluminum Co., Ltd.
    Inventors: Hirotaka Komine, Mitsuo Ishida, Keitarou Yamaguchi
  • Publication number: 20030089430
    Abstract: An aluminum alloy sputter target having a sputter target face for sputtering the sputter target. The sputter target face has a textured-metastable grain structure. The textured-metastable grain structure has a grain orientation ratio of at least 35 percent (200) orientation. The textured-metastable grain structure is stable during sputtering of the sputter target. The textured-metastable grain structure has a grain size of less than 5 &mgr;m. The method forms aluminum alloy sputter targets by first cooling an aluminum alloy target blank to a temperature of less than −50 ° C. Then deforming the cooled aluminum alloy target blank introduces plastic strain into the target blank and reduces the grain size of the grains to form a textured-metastable grain structure. Finally, finishing the aluminum alloy target blank forms a finished sputter target that maintains the textured-metastable grain structure of the finished sputter target.
    Type: Application
    Filed: November 14, 2001
    Publication date: May 15, 2003
    Inventors: Andrew C. Perry, Paul S. Gilman, Jaak Van den Sype
  • Patent number: 6562471
    Abstract: The metal alloy based on aluminium and titanium includes an aluminium content between 80 and 90 atomic percent and a titanium content between 10 and 20 atomic percent. The alloy is microcrystalline and outside thermodynamic equilibrium, the alloy is thereby resistant to oxidation and corrosion and has at the same time remarkable adhesion to polymer materials. The metal alloy can be in the form of a reflecting coating of a thickness ranging between 0.01 and 3 &mgr;m, covered with a protective film of a polymer material. A mirror having specular reflectivity not less than about 65%, good resistance to corrosion and oxidation includes a substrate of a polymer material supporting the reflecting coating.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: May 13, 2003
    Assignee: Centre Stephanois de Recherches Mecaniques Hydromecanique et Frottement
    Inventors: Michel Martin, Frédéric Faverjon, Janick Moreau, Jean-Marc Poirson, Jean-Paul Terrat
  • Patent number: 6562154
    Abstract: Aluminum sheet products having highly anisotropic grain microstructures and highly textured crystallographic microstructures are disclosed. The products exhibit improved strength and improved resistance to fatigue crack growth, as well as other advantageous properties such as improved combinations of strength and fracture toughness. The sheet products are useful for aerospace and other applications, particularly aircraft fuselages.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: May 13, 2003
    Assignee: Aloca Inc.
    Inventors: Roberto J. Rioja, Robert W. Westerlund, Anne E. Roberts, Dhruba J. Chakrabarti, Diana K. Denzer, Anthony Morales, Paul E. Magnusen, Gregory B. Venema
  • Publication number: 20030059641
    Abstract: A metal matrix composite was fabricated by adding particles of calcium hexaboride to a metal of aluminum, magnesium or titanium and their alloys. The resulting metal matrix composite is light weight has improved strength, increased elastic modulus and reduced thermal coefficient of expansion, thus making the metal matrix composite more useful in industry. A metal matrix composite is also formed by mixing particles of aluminum, magnesium, titanium or combinations thereof with particles of silicon lexaboride, calcium hexaboride, silicon tetraboride, calcium tetraboride or combinations thereof. The blended particles are processed according to powder metallurgical techniques to produce a metal matrix composite material.
    Type: Application
    Filed: May 8, 2002
    Publication date: March 27, 2003
    Inventor: Samuel C. Weaver
  • Publication number: 20030056861
    Abstract: A metal matrix composite was fabricated by adding particles of calcium hexaboride to a metal of aluminum, magnesium or titanium and their alloys. The resulting metal matrix composite is light weight has improved strength, increased elastic modulus and reduced thermal coefficient of expansion, thus making the metal matrix composite more useful in industry.
    Type: Application
    Filed: September 24, 2001
    Publication date: March 27, 2003
    Inventor: Samuel C. Weaver
  • Publication number: 20030042647
    Abstract: A boron containing ceramic-aluminum metal composite is formed by mixing a boron containing ceramic with a metal powder comprised of aluminum or alloy thereof, shaping the mixture into a porous preform, contacting the preform with an infiltrating metal comprised of aluminum or alloy thereof that melts at a lower temperature than the metal powder and heating to a temperature sufficient to melt the infiltrating metal, but insufficient to melt the metal powder, such that the infiltrating metal infiltrates the porous preform to form the composite. The composite that is formed may be used for vehicular parts.
    Type: Application
    Filed: August 22, 2002
    Publication date: March 6, 2003
    Inventors: Aleksander J. Pyzik, Uday V. Deshmukh, Nicholas M. Shinkel, Tim L. Allen
  • Patent number: 6524409
    Abstract: A method of producing light alloy castings by foundry technology in which, after solidification and shake-out, the casting is subjected to a heat-treatment cycle comprising a solution heat-treatment step at a temperature high enough to put into solution the phases precipitated in the course of the solidification of the casting, possibly followed by a quenching step and an ageing step, wherein the solution heat-treatment step is performed at least partially in hot isostatic pressing conditions.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: February 25, 2003
    Assignee: Teksid Aluminum S.p.A.
    Inventors: Stefano Barone, Sergio Gallo, Claudio Mus
  • Patent number: 6521061
    Abstract: A porous preform includes at least one kind of preform-forming materials of ceramic particles, ceramic fibers and ceramic whiskers, and a film of a binder formed on a surface of said at least one kind of the preform-forming materials and comprising magnesium or a magnesium alloy. The preform is used for producing a metal matrix composite material.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: February 18, 2003
    Assignee: Hiroshima University
    Inventors: Hideharu Fukunaga, Gen Sasaki, Makoto Yoshida, Jin Pan
  • Publication number: 20030029529
    Abstract: A corrosion resistant aluminum alloy has controlled amounts of iron, manganese, chromium, and titanium along with levels of copper, silicon, nickel, and no more than impurity levels of zinc. The alloy chemistry is tailored such that the electrolytic potential of the grain boundaries matches the alloy matrix material to reduce intergranular corrosion. The alloy is particularly suited for the manufacture of tubing for heat exchangers using extrusion and brazing techniques.
    Type: Application
    Filed: August 20, 2002
    Publication date: February 13, 2003
    Inventor: Baolute Ren
  • Publication number: 20030029533
    Abstract: An aluminum alloy article containing the alloying amounts of iron, silicon, manganese, titanium, and zinc has controlled levels of iron and manganese to produce an alloy article that combines excellent corrosion resistant with good formability. The alloy article composition employs a controlled ratio of manganese to iron and controlled total amounts of iron and manganese to form intermetallic compounds in the final alloy article. The electrolytic potential of the intermetallic compounds match the aluminum matrix of the article to minimize corrosion. The levels of iron and manganese are controlled so that the intermetallic compounds are present in a volume fraction that allows the alloy article to be easily formed. The aluminum alloy composition is especially adapted for extrusion processes, and tubing that are used in heat exchanger applications.
    Type: Application
    Filed: August 20, 2002
    Publication date: February 13, 2003
    Inventors: Baolute Ren, Subhasish Sircar, William A. Cassada
  • Patent number: 6517954
    Abstract: The invention relates to an aluminium alloy, in particular for a layer of a friction bearing, for example, which, apart from aluminium and smelt-related impurities, additionally contains soft-phase formers, e.g. Sn, Pb, Bi, Sb or similar. The alloy contains added quantities of at least one element from the group of elements consisting of Sc, Y, Hf, Nb, Ta, La, lanthanides and actinides in a maximum of 10% by weight, preferably 4% by weight, in particular between 0.015% by weight and 3.25% by weight, relative to 100% by weight of alloy, the remainder being aluminium with smelt-related impurities.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: February 11, 2003
    Assignee: Miba Gleitlager Aktiengesellschaft
    Inventors: Robert Mergen, Markus Manner
  • Publication number: 20030024611
    Abstract: Disclosed are methods and materials for preparing metal matrix composite (MMC) components that have low weight, good thermal conductivity and a controllable in-plane coefficient of thermal expansion. One embodiment of the invention features a metal matrix composite that includes a metal alloy and random in-plane discontinuous fibers. In some embodiments, the metal alloy includes aluminum, copper or magnesium. In certain embodiments, the metal matrix composite includes additives that enable solution hardening. In other embodiments, the metal matrix composite includes additives that enable precipitation hardening. Another embodiment of the invention features a method of manufacturing a metal matrix composite. The method includes contacting random in-plane discontinuous fibers with a binder, and pressurizing the random in-plane discontinuous fibers and the binder to form a bound preform. The preform is pressurized to a pressure greater than the molten metal capillary breakthrough pressure of the bound preform.
    Type: Application
    Filed: May 15, 2001
    Publication date: February 6, 2003
    Inventors: James A. Cornie, Mark A. Ryals, Stephen S. Cornie
  • Patent number: 6508888
    Abstract: A superconducting conductor and method for its production. The conductor is formed of least one superconducting core and an aluminum based cryogenic stabilizer which is a high purity Al—Fe—Ni aluminum alloy having a composition, in % by weight: 200 ppm≦Fe+Ni≦1500 ppm; 0.20≦Fe/(Fe+Ni)≦0.65; optionally, B<100 ppm; impurities other than Fe, Ni and B<0.01% total; and remainder aluminum.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: January 21, 2003
    Assignee: Aluminium Pechiney
    Inventor: Michel Leroy
  • Publication number: 20030005793
    Abstract: A process for producing a lightweight molded part, comprising introducing a gas into a particle-containing, molten metal to produce a metal foam having voids with a monomodal distribution of their dimensions, introducing the metal foam into a casting die and compressing it therein essentially under all-round pressure; and the molded part made by this process.
    Type: Application
    Filed: June 14, 2002
    Publication date: January 9, 2003
    Applicant: HUTTE KLEIN-REICHENBACH GESELLSCHAFT mbH
    Inventors: Franz Dobesberger, Herbert Flankl, Dietmar Leitlmeier, Alois Birgmann, Peter Schulz
  • Patent number: 6500284
    Abstract: There is provided a continuous casting and rolling process for continuously producing a deformed fine grain solid metal composition suitable for semi-solid forming. The process is characterized by high throughput, continuity, and precise control of the process parameters, such as solidification rate, rolling temperature and speed and total deformation. The solidification rate is preferred to be in a range of 10 to 150° C./s, and the total deformation is controlled to be larger than a Mises effective strain of 2.3 to obtain a deformed fine grain structure with enough distortion energy. A method combining the continuous casting and rolling process of preparing semi-solid raw material with semi-solid forming of shaped articles is also disclosed.
    Type: Grant
    Filed: June 10, 1998
    Date of Patent: December 31, 2002
    Assignee: Suraltech, Inc.
    Inventors: Youdong Zhou, Jian Lu, Navtej Singh Saluja, Alfredo Riviere, V
  • Publication number: 20020189728
    Abstract: The invention includes methods of reducing grain sizes of materials, and methods of forming sputtering targets. The invention includes a method for producing a sputtering target material in which a metallic material is subjected to plastic working at a processing percentage of at least 5% and a processing rate of at least 100%/second. In particular applications the metallic material comprises one or more of aluminum, copper and titanium.
    Type: Application
    Filed: June 7, 2002
    Publication date: December 19, 2002
    Applicant: Honeywell International Inc.
    Inventors: Lijun Yao, Tadao Ueda
  • Patent number: 6491772
    Abstract: The invention is directed to a solderable aluminum alloy having an aluminum alloy which is formable into a substrate. The aluminum alloy has 0.05-4.5% by weight of tin added to the aluminum alloy to be formed into the substrate. The invention is also directed to a process for preparing a solderable aluminum substrate. The process includes preparing an aluminum slug with 0.05-4.5% of tin added to the aluminum slug; then rolling the aluminum slug to the desired thickness for the substrate; finally forming the rolled slug into the final shaped of the substrate.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: December 10, 2002
    Assignee: The Whitaker Corporation
    Inventors: Anthony Scappaticci, Peter John Donovan
  • Publication number: 20020179199
    Abstract: The present invention provides a highly heat dissipative and abrasion resistant bicycle brake disk. The brake disk is of a metal-based composite material, wherein the metal-based composite material includes a metal-containing material and 5% to 40% by volume of ceramic particles.
    Type: Application
    Filed: January 8, 2002
    Publication date: December 5, 2002
    Inventors: Wen-Pin Weng, Chuan-Cheng Huang
  • Publication number: 20020174916
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Application
    Filed: July 11, 2002
    Publication date: November 28, 2002
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Publication number: 20020174917
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Application
    Filed: July 11, 2002
    Publication date: November 28, 2002
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Patent number: 6471794
    Abstract: An aluminum alloy fin material for brazing which is composed of an aluminum alloy comprising above 0.1 wt % to 3 wt % of Ni, above 1.5 wt % to 2.2 wt % of Fe, and 1.2 wt % or less of Si, and at least one selected from the group consisting of 4 wt % or less of Zn, 0.3 wt % or less of In, and 0.3 wt % or less of Sn, and further comprising, optionally, at least one selected from the group consisting of co, Cr, Zr, Ti, Cu, Mn, and Mg in given amounts, the balance being unavoidable impurities and aluminum, wherein a ratio of the grain length in the right angle direction/the grain length in the parallel direction is 1/30 or less, an electric conductivity is 50 to 55 %IACS, and a tensile strength is 170 to 280 MPa.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: October 29, 2002
    Assignees: The Furukawa Electric Co., Ltd., Denso Corporation
    Inventors: Takeyoshi Doko, Akira Kawahara, Sunao Fukuda, Yoshihiko Kamiya, Masaki Shimizu, Kenji Negura
  • Patent number: 6471793
    Abstract: Thin foil of refined aluminum for the manufacture of anodes for electrolytic capacitors, the foil being formed of aluminum of a purity greater than 99.9% by weight and at least one of the elements Pb, B and In with an average total content of these elements of between 0.1 and 10 ppm by weight. The elements are distributed in a surface zone of the foil at a depth of 0.1 &mgr;m, such that a signal current obtained by ionic analysis has a dispersion ratio (Imax−Imin)/Iaverage of less than 5.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: October 29, 2002
    Assignee: Pechiney Rhenalu
    Inventor: Jean-Remi Butruille
  • Publication number: 20020153071
    Abstract: The invention includes a physical vapor deposition target composed of a face centered cubic unit cell metal or alloy and having a uniform grain size less than 30 microns, preferably less than 1 micron; and a uniform axial or planar <220> texture. Also described is a method for making sputtering targets. The method can comprise billet preparation; equal channel angular extrusion with a prescribed route and number of passes; and cross-rolling or forging subsequent to the equal channel angular extrusion.
    Type: Application
    Filed: June 12, 2002
    Publication date: October 24, 2002
    Inventors: V.M. Segal, S. Ferrasse, F. Alford
  • Patent number: 6468366
    Abstract: A nitriding portion made of aluminum nitride as a main ingredient having a high concentration region in which an element mentioned below is existent at a high concentration and a low concentration region in which the element existent at a low concentration is formed on a surface of a substrate made of aluminum, aluminum alloy or aluminum-containing composite material by existing at least one element other than aluminum selected from Group 2A, Group 3A, Group 4A and Group 4B in Periodic Table in a stepwise manner. Thereby, it is possible to form the nitriding portion which shows a high corrosion resistance property with respect to a halogen-based corrosive gas.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: October 22, 2002
    Assignee: NGK Insulators, Ltd.
    Inventors: Yuji Katsuda, Taketoshi Tsutsumi, Masaaki Masuda
  • Publication number: 20020148539
    Abstract: A process of making an aluminum alloy anodic material having improved electrochemical properties for use in an electrochemical cell and battery, the alloy consisting essentially of 95-99.5% w/w Al and 0.5-5.0 cumulative w/w additive metal selected from Group II-Group V metals of the Periodic Table, the process comprising heating 95-99.5% w/w Al and 0.5-5.0 cumulative % w/w additive metal in admixture to a temperature to form a homogeneous matrix of melted alloy; cooling the melted alloy at a liquidus/solidius cooling rate to produce a solid, non-equilibrium alloy of a non-homogenous multiphase matrix comprising discrete, relatively large crystals of pure aluminum and relatively smaller crystals of the additive metal included at the interface with the aluminum crystals; rolling the solid alloy to reduce its thickness to a factor of 0.2 to 0.
    Type: Application
    Filed: February 15, 2002
    Publication date: October 17, 2002
    Applicant: Aluminum-Power Inc.
    Inventors: Alexander M. Iarochenko, Evgeny B. Kulakov
  • Patent number: 6458224
    Abstract: An aluminum alloy article containing the alloying amounts of iron, silicon, manganese, titanium, and zinc has controlled levels of iron and manganese to produce an alloy article that combines excellent corrosion resistant with good formability. The alloy article composition employs a controlled ratio of manganese to iron and controlled total amounts of iron and manganese to form intermetallic compounds in the final alloy article. The electrolytic potential of the intermetallic compounds match the aluminum matrix of the article to minimize corrosion. The levels of iron and manganese are controlled so that the intermetallic compounds are present in a volume fraction that allows the alloy article to be easily formed. The aluminum alloy composition is especially adapted for extrusion processes, and tubing that are used in heat exchanger applications.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: October 1, 2002
    Assignee: Reynolds Metals Company
    Inventors: Baolute Ren, Subhasish Sircar, William A. Cassada, III
  • Patent number: 6439295
    Abstract: A process for manufacturing a strip of aluminium or an aluminium alloy for electrolytically roughened lithographic printing plates, in which the alloy is continuously cast as a strip and then rolled to final thickness, is such that the cast strip is rolled to final thickness with a thickness reduction of at least 90% without any further heating. The resultant microstructure in the region close to the surface of the strip leads to improved electrolytic etching behaviour.
    Type: Grant
    Filed: July 18, 1997
    Date of Patent: August 27, 2002
    Assignee: Alcan Technology & Management Ltd.
    Inventors: Guenther Hoellrigl, Glenn Smith
  • Publication number: 20020100523
    Abstract: A free machining aluminum alloy contains an effective amount of one or more high melting point constituents that provide enhanced machining capability. The high melting point constituents occupy from about 0.1 to about 3.0 volume percent of the aluminum alloy. The constituents can be any material that is essentially insoluble in the aluminum alloy matrix so as to form a discontinuity and one that will resist deformation during machining to enhance the formation of voids between the matrix and the free machining constituents. The constituents include elements, nitrides, oxides, borides, carbides, silicides, aluminides and combinations thereof that have a high melting point and high strength and low solubility in aluminum at the elevated temperature so that the constituents resist deformation during the machining operation. The free machining aluminum alloy can be formed as a workpiece and subjected to any machining operation.
    Type: Application
    Filed: March 27, 2002
    Publication date: August 1, 2002
    Inventor: Subhasish Sircar
  • Patent number: 6423161
    Abstract: The invention includes a material containing aluminum grains which have an average grain size of less than 20 &mgr;m. The material contains manganese, with a total non-aluminum content of 0.01 to 10.0% by weight. The material is preferably used as a sputtering target. A sputtering target is produced by subjecting the material to plastic working at a processing percentage of at least 5% at a processing rate of at least 100%/second.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: July 23, 2002
    Assignee: Honeywell International Inc.
    Inventors: Lijun Yao, Tadao Ueda
  • Publication number: 20020084006
    Abstract: A novel product composed of a ceramic phase particle dispersoid in metal, including uniformly distributed, finely sized carbide phase particles formed in situ in a molten metal and a novel method for producing such a ceramic phase particle dispersoid in metal are disclosed. A salt-based liquid state reaction involving a liquid metal/alloy containing a liquid Ti, B, Si, Sc, Hf, Nb, Ta, Zr, Mo, Al (when the molten metal matrix is not aluminum), or V and a halide salt containing carbon particles forms a uniform distribution of finely sized ceramic phase particles formed and dispersed in-situ in the metal matrix. The ceramic dispersoid in metal product of the present invention includes at least about 50 volume percent of a matrix metal of aluminum; and up to about 50 volume percent of a uniform distribution of finely sized ceramic phase particles formed and dispersed in-situ in the aluminum metal matrix, wherein the finely sized ceramic phase particles have an average particle diameter of less than about 2.
    Type: Application
    Filed: February 7, 2002
    Publication date: July 4, 2002
    Inventors: Men Glenn Chu, Siba P. Ray
  • Patent number: 6398882
    Abstract: A novel product composed of a ceramic phase particle dispersoid in metal, including uniformly distributed, finely sized carbide phase particles formed in situ in a molten metal and a novel method for producing such a ceramic phase particle dispersoid in metal are disclosed. A salt-based liquid state reaction involving a liquid metal/alloy containing a liquid Ti, B, Si, Sc, Hf, Nb, Ta, Zr, Mo, Al (when the molten metal matrix is not aluminum), or V and a halide salt containing carbon particles forms a uniform distribution of finely sized ceramic phase particles formed and dispersed in-situ in the metal matrix. The ceramic dispersoid in metal product of the present invention includes at least about 50 volume percent of a matrix metal of aluminum; and up to about 50 volume percent of a uniform distribution of finely sized ceramic phase particles formed and dispersed in-situ in the aluminum metal matrix, wherein the finely sized ceramic phase particles have an average particle diameter of less than about 2.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: June 4, 2002
    Assignee: Alcoa, Inc.
    Inventors: Men Glenn Chu, Siba P. Ray
  • Publication number: 20020059968
    Abstract: A porous composite material includes a metal material for forming a matrix, and at least two kinds of fine particle materials having different wettabilities with respect to the metal material. The porous composite material is provided by melting and impregnating the metal material for forming a matrix with the mixture of at least two kinds of fine particle materials. The porous composite material has excellent characteristics in shock absorbency, acoustics, non-combustibility, lightness, rigidity, and so forth.
    Type: Application
    Filed: September 21, 2001
    Publication date: May 23, 2002
    Applicant: NGK Insulator, Ltd.
    Inventors: Masayuki Shinkai, Masahiro Kida
  • Publication number: 20020048714
    Abstract: A support for a lithographic printing plate with no damage in appearance such as unevenness in the form of streaks and with excellent pit homogeneity. A support for a lithographic printing plate obtained by subjecting a surface of an aluminum alloy plate to a surface treatment including alkali etching and an electrochemical graining treatment, wherein the aluminum alloy plate shows dispersion of 50% or lower for each element, the dispersion being defined by an specific equation with regard to contents of Fe, Si, Mn, Mg and Sn in a surface layer portion thereof which is from the surface to a depth of 1 &mgr;m.
    Type: Application
    Filed: September 6, 2001
    Publication date: April 25, 2002
    Inventors: Hirokazu Sawada, Atsuo Nishino, Akio Uesugi
  • Publication number: 20020043310
    Abstract: The object of the invention is a method for manufacturing aluminum alloy strips with a thickness less than or equal to 12 &mgr;m, including:
    Type: Application
    Filed: August 13, 2001
    Publication date: April 18, 2002
    Inventors: Philippe Tavernier, Jacques Gagniere, Herve Gehanno, Sylvain Henry, Regine Debreux, Bruno Chenal
  • Publication number: 20020043312
    Abstract: An aluminum sheet material for automobiles is herein disclosed, having an aluminum alloy composition: (i) comprising 3.5 to 5 wt % of Si, 0.3 to 1.5 wt % of Mg, 0.4 to 1.5 wt % of Zn, 0.4 to 1.5 wt % of Cu, 0.4 to 1.5 wt % of Fe, and 0.6 to 1 wt % of Mn, and one or more members selected from the group of 0.01 to 0.2 wt % of Cr, 0.01 to 0.2 wt % of Ti, 0.01 to 0.2 wt % of Zr, and 0.01 to 0.2 wt % of V, with the balance of aluminum and unavoidable impurities, or (ii) comprising between more than 2.6 wt % and 5 wt % of Si, 0.2 to 1.0 wt % of Mg, 0.2 to 1.5 wt % of Zn, 0.2 to 1.5 wt % of Cu, 0.2 to 1.5 wt % of Fe, and between 0.05 and less than 0.6 wt % of Mn, and one or more members selected from the group of 0.01 to 0.2 wt % of Cr, 0.01 to 0.2 wt % of Ti, 0.01 to 0.2 wt % of Zr, and 0.01 to 0.2 wt % of V, with the balance of aluminum and unavoidable impurities.
    Type: Application
    Filed: October 17, 2001
    Publication date: April 18, 2002
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kazuhisa Kashiwazaki, Yoichiro Bekki, Noboru Hayashi