For Detection Or Control Of Electrical Parameter (e.g., Current, Voltage, Resistance, Power, Etc.) Patents (Class 156/345.28)
  • Publication number: 20150000842
    Abstract: A power supply system 90 includes high frequency power supplies 92 and 93 that supply a high frequency power for plasma generation; a DC power supply 91 that supplies a DC voltage to be applied to an electrode; and control unit 94 that controls the high frequency power supplies 92 and 93 and the DC power supply 91 including a first DC power supply unit 101 that supplies a first negative DC voltage V1, a second DC power supply unit 102 that supplies a second negative DC voltage V2 having a higher absolute value than the first negative DC voltage V1, and a selecting circuit 103 that selectively connects the first DC power supply unit 101 and the second DC power supply unit 102 to the electrode; and a discharging circuit 104 connected with a node 109 between the first DC power supply unit 101 and the selecting circuit 103.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 1, 2015
    Inventors: Taichi Hirano, Fumitoshi Kumagai
  • Publication number: 20140367044
    Abstract: A method for automatically performing power matching using a mechanical RF match during substrate processing is provided. The method includes providing a plurality of parameters for the substrate processing wherein the plurality of parameters including at least a predefined number of learning cycles. The method also includes setting the mechanical RF match to operate in a mechanical tuning mode. The method further includes providing a first set of instructions to the substrate processing to ignore a predefined number of cycles of Rapid Alternating Process RAP steps. The method yet also includes operating the mechanical RF match in the mechanical tuning mode for the predefined number of learning cycles. The method yet further includes determining a set of optimal capacitor values. The method moreover includes providing a second set of instructions to a power generator to operate in a frequency tuning mode.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventor: Arthur Sato
  • Publication number: 20140367043
    Abstract: Embodiments of the present invention include methods and apparatus for plasma processing in a process chamber using an RF power supply coupled to the process chamber via a matching network. In some embodiments, the method includes providing RF power to the process chamber by the RF power supply at a first frequency while the matching network is in a hold mode, adjusting the first frequency, using the RF power supply, to a second frequency during a first time period to ignite the plasma, adjusting the second frequency, using the RF power supply, to a known third frequency during a second time period while maintaining the plasma, and changing an operational mode of the matching network to an automatic tuning mode to reduce a reflected power of the RF power provided by the RF power supply.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: WAHEB BISHARA, SAMER BANNA
  • Publication number: 20140367042
    Abstract: A system includes a probe arranged in a plasma processing chamber of the plasma processing system. A capacitor has one end connected to the probe. An RF source is configured to selectively supply an RF signal including RF bursts to another end of the capacitor. A plasma characterizing computing device is configured to collect a set of process data from the probe by measuring current supplied to the capacitor and voltage at the capacitor; identify a relevancy range for the set of process data, wherein the relevancy range includes process data collected after the capacitor begins discharging and before the capacitor is fully discharged; determine a set of seed values based on the process data in the relevancy range; and employ the relevancy range and the set of seed values as initial values for curve fitting corresponding to the one of the RF bursts to reduce a number of curve-fitting iterations.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 18, 2014
    Inventors: Douglas Keil, Jean-Paul Booth, Christopher Thorgrimsson
  • Patent number: 8911637
    Abstract: A method for processing a substrate in a capacitively-coupled plasma processing system having a plasma processing chamber and at least an upper electrode and a lower electrode. The substrate is disposed on the lower electrode during plasma processing. The method includes providing at least a first RF signal, which has a first RF frequency, to the lower electrode. The first RF signal couples with a plasma in the plasma processing chamber, thereby inducing an induced RF signal on the upper electrode. The method also includes providing a second RF signal to the upper electrode. The second RF signal also has the first RF frequency. A phase of the second RF signal is offset from a phase of the first RF signal by a value that is less than 10%. The method further includes processing the substrate while the second RF signal is provided to the upper electrode.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: December 16, 2014
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Hudson Eric, Alexei Marakhtanov, Andreas Fischer
  • Patent number: 8911588
    Abstract: Methods and apparatus for modifying RF current path lengths are disclosed. Apparatus includes a plasma processing system having an RF power supply and a lower electrode having a conductive portion. There is included an insulative component disposed in an RF current path between the RF power supply and the conductive portion. There are included a plurality of RF path modifiers disposed within the insulative component, the plurality of RF path modifiers being disposed at different angular positions relative to a reference angle drawn from a center of the insulative component, whereby at least a first one of the plurality of RF path modifiers is electrically connected to the conductive portion and at least a second one of the plurality of the plurality of RF path modifiers is not electrically connected to the conductive portion.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: December 16, 2014
    Assignee: Lam Research Corporation
    Inventors: Sang Ki Nam, Rajinder Dhindsa, Alexei Marakhtanov
  • Publication number: 20140363977
    Abstract: In a plasma processing apparatus including a first radio-frequency power supply which supplies first radio-frequency power for generating plasma in a vacuum chamber, a second radio-frequency power supply which supplies second radio-frequency power to a sample stage on which a sample is mounted, and a matching box for the second radio-frequency power supply, the matching box samples information for performing matching during a sampling effective period which is from a point of time after elapse of a prescribed time from a beginning of on-state of the time-modulated second radio-frequency power until an end of the on-state and maintains a matching state attained during the sampling effective period from after the end of the on-state until a next sampling effective period.
    Type: Application
    Filed: February 19, 2014
    Publication date: December 11, 2014
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Michikazu Morimoto, Naoki Yasui, Yasuo Ohgoshi
  • Patent number: 8904957
    Abstract: An etching chamber 1 incorporates a focus ring 9 so as to surround a semiconductor wafer W provided on a lower electrode 4. The plasma processor is provided with an electric potential control DC power supply 33 to control the electric potential of this focus ring 9, and so constituted that the lower electrode 4 is supplied with a DC voltage of, e.g., ?400 to ?600 V to control the electric potential of the focus ring 9. This constitution prevents surface arcing from developing along the surface of a substrate to be processed.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 9, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Akihiro Kikuchi, Satoshi Kayamori, Shinya Shima, Yuichiro Sakamoto, Kimihiro Higuchi, Kaoru Oohashi, Takehiro Ueda, Munehiro Shibuya, Tadashi Gondai
  • Patent number: 8906196
    Abstract: A plasma processing apparatus includes a vacuum vessel, first, second and third power supplies which supply first, second and third RF voltages, a first electrode disposed within the vacuum vessel, a second electrode disposed inside or outside the vacuum vessel, a phase control unit for controlling the phase difference of the second and third RF voltages, wherein the second and third RF voltages are of the same frequency, and a RF radiation unit which is supplied with the third RF voltage. The apparatus further comprises a voltage detector, and the phase control unit computes a phase difference between the second and third RF voltages based upon an output of the voltage detector.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: December 9, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Ryoji Nishio
  • Patent number: 8900363
    Abstract: An inline vacuum processing apparatus includes a deposition unit, a process execution unit, a determination unit, and a control unit. The deposition unit causes one deposition chamber of a first deposition chamber and a second deposition chamber to execute a deposition process. The process execution unit causes the other deposition chamber to execute a process necessary for the deposition process. The determination unit measures the number of substrates processed in one deposition chamber and determines whether all substrates included in a first lot have undergone the deposition process. The control unit switches, based on a determination result from the determination unit, a process to be executed in each of the first deposition chamber and the second deposition chamber.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: December 2, 2014
    Assignee: Canon Anelva Corporation
    Inventor: Masahiro Kawata
  • Publication number: 20140349417
    Abstract: A system and method of applying power to a target plasma chamber include, characterizing a no plasma performance slope of the target plasma chamber, applying a selected plasma recipe to a first wafer in the target chamber, the selected plasma recipe includes a selected power set point value and monitoring a recipe factor value on the RF electrode. A ratio of process efficiency is generated comparing the reference chamber and the target chamber, the generating using as inputs the no plasma performance slopes of the target chamber and the reference chamber and the monitored recipe factor value. An adjusted power set point value is calculated, the adjusted power set point configured to cause power delivered to a plasma formed in the target chamber to match power that would be delivered to a reference plasma formed in the reference chamber.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 27, 2014
    Applicant: Lam Research Corporation
    Inventors: Robert G. O'Neill, Arthur Sato, Eric Tonnis, Seetharaman Ramachandran, Shang-I Chou
  • Publication number: 20140345802
    Abstract: In a plasma processing apparatus, first to third RF power monitors 94, 94 and 98 are configured to monitor high frequency powers (progressive wave powers), which propagate on first to third high frequency power supply lines 88, 90 and 92 from first to third high frequency power supplies 36, 38 and 40 toward a load side, respectively, and high frequency powers (reflection wave powers), which propagate on the first high frequency power supply lines 88, 90 and 92 from the load side toward the first to third high frequency power supplies 36, 38 and 40, respectively, at the same time. A main controller 82 is configured to control the high frequency power supplies 36, 38 and 40 and matching devices 42, 44 and 46 based on monitoring information sent from RF power monitors 94, 96 and 98.
    Type: Application
    Filed: December 13, 2012
    Publication date: November 27, 2014
    Inventors: Naoyuki Umehara, Ryuji Ohtani, Shunichi Ito, Kazutaka Sei, Tomomasa Nishida
  • Patent number: 8894804
    Abstract: An arrangement within a plasma reactor for detecting a plasma unconfinement event is provided. The arrangement includes a sensor, which is a capacitive-based sensor implemented within the plasma reactor. The sensor is implemented outside of a plasma confinement region and is configured to produce a transient current when the sensor is exposed to plasma associated with the plasma unconfinement event. The sensor has at least one electrically insulative layer oriented toward the plasma associated with the plasma unconfined event. The arrangement also includes a detection circuit, which is electrically connected to the sensor for converting the transient current into a transient voltage signal and for processing the transient voltage signal to ascertain whether the plasma unconfinement event exists.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: November 25, 2014
    Assignee: Lam Research Corporation
    Inventors: Jean-Paul Booth, Alexei Marakhtanov, Rajinder Dhindsa, Luc Albarede, Seyed Jafar Jafarian-Tehrani
  • Patent number: 8888947
    Abstract: By controlling the flow rate of one or more gaseous components of an etch ambient during the formation of metal lines and vias on the basis of feedback measurement data from critical dimensions, process variations may be reduced, thereby enhancing performance and reliability of the respective metallization structure.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: November 18, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Matthias Schaller, Uwe Schulze, Mathias Baranyai
  • Patent number: 8883024
    Abstract: The invention provide apparatus and methods for creating gate structures on a substrate in real-time using Vacuum Ultra-Violet (VUV) data and Electron Energy Distribution Function (EEDƒ) data and associated (VUV/EEDƒ)-related procedures in (VUV/EEDƒ) etch systems. The (VUV/EEDƒ)-related procedures can include multi-layer-multi-step processing sequences and (VUV/EEDƒ)-related models that can include Multi-Input/Multi-Output (MIMO) models.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 11, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Lee Chen, Jianping Zhao
  • Patent number: 8877080
    Abstract: The invention provides an apparatus and methods for creating gate structures on a substrate in real-time using Vacuum Ultra-Violet (VUV) data and Electron Energy Distribution Function (EEDf) data and associated (VUV/EEDf)-related procedures in (VUV/EEDf) etch systems. The (VUV/EEDf)-related procedures can include multi-layer-multi-step processing sequences and (VUV/EEDf)-related models that can include Multi-Input/Multi-Output (MIMO) models.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 4, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Lee Chen, Jianping Zhao
  • Publication number: 20140305905
    Abstract: At a time point T0 when starting a process, a duty ratio of a high frequency power RF1 to which power modulation is performed is set to be an initial value (about 90%) which allows plasma to be ignited securely under any power modulating conditions. At the substantially same time of starting the process, the duty ratio of the high frequency power RF1 is gradually reduced from the initial value (about 90%) in a regular negative gradient or in a ramp waveform. At a time point t2 after a lapse of a preset time Td, the duty ratio has an originally set value Ds for an etching process. After the time point t2, the duty ratio is fixed or maintained at the set value Ds until the end (time point T4) of the process.
    Type: Application
    Filed: December 3, 2012
    Publication date: October 16, 2014
    Inventors: Norikazu Yamada, Toshifumi Tachikawa, Koichi Nagami
  • Publication number: 20140305589
    Abstract: Systems and methods for soft pulsing are described. One of the systems includes a master radiofrequency (RF) generator for generating a first portion of a master RF signal during a first state and a second portion of the master RF signal during a second state. The master RF signal is a sinusoidal signal. The system further includes an impedance matching circuit coupled to the master RF generator via an RF cable to modify the master RF signal to generate a modified RF signal and a plasma chamber coupled to the impedance matching circuit via an RF transmission line. The plasma chamber is used for generating plasma based on the modified RF signal.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 16, 2014
    Applicant: LAM RESEARCH CORPORATION
    Inventor: John C. Valcore, JR.
  • Publication number: 20140302680
    Abstract: The embodiments disclosed herein pertain to improved methods and apparatus for etching a semiconductor substrate. A plasma grid assembly is positioned in a reaction chamber to divide the chamber into upper and lower sub-chambers. The plasma grid assembly may include one or more plasma grids having slots of a particular aspect ratio, which allow certain species to pass through from the upper sub-chamber to the lower sub-chamber. Where multiple plasma grids are used, one or more of the grids may be movable, allowing for tenability of the plasma conditions in at least the lower sub-chamber. In some cases, an electron-ion plasma is generated in the upper sub-chamber. Electrons that make it through the grid to the lower sub-chamber are cooled as they pass through. In some cases, this results in an ion-ion plasma in the lower sub-chamber.
    Type: Application
    Filed: June 12, 2013
    Publication date: October 9, 2014
    Inventors: Harmeet Singh, Thorsten Lill, Vahid Vahedi, Alex Paterson, Monica Titus, Gowri Kamarthy
  • Publication number: 20140302682
    Abstract: The present invention provides a plasma processing method that uses a plasma processing apparatus including a plasma processing chamber in which a sample is plasma processed, a first radio-frequency power supply that supplies a first radio-frequency power for generating plasma, and a second radio-frequency power supply that supplies a second radio-frequency power to a sample stage on which the sample is mounted, wherein the plasma processing method includes the steps of modulating the first radio-frequency power by a first pulse; and controlling a plasma dissociation state to create a desired dissociation state by gradually controlling a duty ratio of the first pulse as a plasma processing time elapses.
    Type: Application
    Filed: August 7, 2013
    Publication date: October 9, 2014
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Satoru MUTO, Tetsuo ONO, Yasuo OHGOSHI, Hirofumi EITOKU
  • Patent number: 8852385
    Abstract: An upper electrode and a lower electrode are disposed opposite to each other in a process container configured to be vacuum-exhausted. The upper electrode is connected to a first RF power supply configured to apply a first RF power for plasma generation. The lower electrode is connected to a second RF power supply configured to apply a second RF power for ion attraction. The second RF power supply is provided with a controller preset to control the second RF power supply to operate in a power modulation mode that executes power modulation in predetermined cycles between a first power set to deposit polymers on a predetermined film on a wafer and a second power set to promote etching of the predetermined film on the wafer.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: October 7, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Noriyuki Kobayashi, Shigeru Yoneda, Kenichi Hanawa, Shigeru Tahara, Masaru Sugimoto
  • Publication number: 20140262032
    Abstract: Methods and apparatus for generating a variable clock used to control a component of a substrate processing system are provided herein. In some embodiments, an apparatus for controlling a substrate processing system includes: a phase locked loop circuit for generating a relative clock that is phase locked to a variable frequency signal being used by a substrate processing chamber; and a controller, coupled to the phase locked loop circuit, for producing a control signal for a component of the substrate processing system, wherein the control signal is based upon the relative clock and an operating indicia of the substrate processing system.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC
    Inventors: KENNETH S. COLLINS, SATORU KOBAYASHI, KARTIK RAMASWAMY
  • Publication number: 20140262031
    Abstract: A multi-chambered processing platform includes one or more multi-mode plasma processing systems. In embodiments, a multi-mode plasma processing system includes a multi-mode source assembly having a primary source to drive an RF signal on a showerhead electrode within the process chamber and a secondary source to generate a plasma with by driving an RF signal on an electrode downstream of the process chamber. In embodiments, the primary 7 source utilizes RF energy of a first frequency, while the secondary source utilizes RF energy of second, different frequency. The showerhead electrode is coupled to ground through a frequency dependent filter that adequately discriminates between the first and second frequencies for the showerhead electrode to be RF powered during operation of the primary source, yet adequately grounded during operation of the secondary plasma source without electrical contact switching or reliance on physically moving parts.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 18, 2014
    Inventors: Sergey G. BELOSTOTSKIY, Alexander MARCACCI, Kartik RAMASWAMY, Srinivas D. NEMANI, Andrew NGUYEN, Yogananda SARODE
  • Publication number: 20140273484
    Abstract: An inductively coupled plasma processing apparatus includes a chamber configured to provide a space for processing a substrate and including a window formed in an upper portion thereof, a substrate stage configured to support the substrate within the chamber and including a lower electrode, the lower electrode configured to receive a first radio frequency signal, an upper electrode arranged on the upper portion of the chamber with the window interposed between the upper electrode and the space for processing the substrate, the upper electrode configured to receive a second radio frequency signal, a conductive shield member arranged within the chamber and configured to cover the window, and a shield power supply configured to apply a shield signal to the shield member in synchronization with the second radio frequency signal.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: JEONG-YUN LEE, HAE-JOONG PARK, KYUNG-YUB JEON, SANG-JEAN JEON
  • Publication number: 20140251956
    Abstract: An apparatus for an etching process includes a chamber, a plasma generator disposed in the chamber, a stacked structure disposed in the chamber to support a substrate thereon and including an electrode plate and an insulation coating layer on the electrode plate, electrode rods inserted into through holes of the stacked structure to penetrate through the stacked structure, directly contacting the substrate and spaced apart from sidewalls of the through holes of the stacked structure, at least one DC pulse generator generating a DC pulse to the electrode plate and the electrode rods, first connection lines connecting the DC pulse generator to the electrode rods, and at least one second connection line connecting the DC pulse generator to a lower portion of the electrode plate.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Yub JEON, Jeong-Yun LEE, Kyung-Sun KIM, Tae-Gon KIM
  • Publication number: 20140256066
    Abstract: Methods, systems, and computer programs are presented for reducing chamber instability while processing a semiconductor substrate. One method includes an operation for identifying a first recipe with steps having an operating frequency equal to the nominal frequency of a radiofrequency (RF) power supply. Each step is analyzed with the nominal frequency, and the analysis determines if any step produces instability at the nominal frequency. The operating frequency is adjusted, for one or more of the steps, when the instability in the one or more steps exceeds a threshold. The adjustment acts to find an approximate minimum level of instability. A second recipe is constructed after the adjustment, such that at least one of the steps includes a respective operating frequency different from the nominal frequency. The second recipe is used to etch the one or more layers disposed over the substrate in the semiconductor processing chamber.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: Lam Research Corporation
    Inventor: Arthur Sato
  • Patent number: 8828254
    Abstract: A plasma processing method and a plasma processing apparatus in which a stable process region can be ensured in a wide range, from low microwave power to high microwave power. The plasma processing method includes making production of plasma easy in a region in which production of plasma by continuous discharge is difficult, and plasma-processing an object to be processed, with the generated plasma, wherein the plasma is produced by pulsed discharge in which ON and OFF are repeated, radio-frequency power for producing the pulsed discharge, during an ON period, is a power to facilitate production of plasma by continuous discharge, and a duty ratio of the pulsed discharge is controlled so that an average power of the radio-frequency power per cycle is power in the region in which production of plasma by continuous discharge is difficult.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 9, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshiharu Inoue, Tetsuo Ono, Michikazu Morimoto, Masaki Fujii, Masakazu Miyaji
  • Patent number: 8821684
    Abstract: A substrate plasma processing apparatus includes a substrate holding electrode and a counter electrode which are arranged in a chamber, a high frequency generating device which applies a high frequency of 50 MHZ or higher to the substrate holding electrode, a DC negative pulse generating device which applies a DC negative pulse voltage in a manner of superimposing on the high frequency, and a controller controlling to cause intermittent application of the high frequency and cause intermittent application of the DC negative pulse voltage according to the timing of on or off of the high frequency.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: September 2, 2014
    Assignees: Kabushiki Kaisha Toshiba, Tokyo Electron Limited
    Inventors: Akio Ui, Naoki Tamaoki, Takashi Ichikawa, Hisataka Hayashi, Takeshi Kaminatsui, Shinji Himori, Norikazu Yamada, Takeshi Ohse, Jun Abe
  • Patent number: 8821741
    Abstract: A preprocess step for supplying an inert gas into an enclosed space in which a substrate is disposed, while exhausting gas by sucking out of the enclosed space. And then, an etching step for supplying a process vapor into the enclosed space while exhausting gas out of the enclosed space at an rate lower than a rate in the preprocess step. And then a post-process step for supplying an inert gas into the enclosed space while exhausting gas by sucking out of the enclosed space at a rate higher than the rate in the etching step.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: September 2, 2014
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Takashi Ota, Akio Hashizume, Takahiro Yamaguchi, Yuya Akanishi
  • Publication number: 20140235062
    Abstract: Disclosed is a plasma processing method which includes a gas supplying process, a power supplying process, and an etching process. In the gas supplying process, a processing gas is supplied into a processing container in which an object to be processed is disposed. In the power supplying process, a plasma generating power of a frequency ranging from about 100 MHz to about 150 MHz as a power for generating plasma of the processing gas supplied into the processing container, and a biasing power which is a power having a frequency lower than that of the plasma generating power are supplied. In the etching process, the object to be processed is etched by the plasma of the processing gas while the biasing power is pulse-modulated so that the duty ratio ranges from about 10% to about 70% and the frequency ranges from about 5 kHz to about 20 kHz.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 21, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Masafumi URAKAWA
  • Publication number: 20140231389
    Abstract: At a first timing after mounting a semiconductor wafer W on an electrostatic chuck 38, a susceptor 12 is switched from an electrically grounded state into a floated state. From a second timing after the first timing, a second high frequency power HF for plasma generation is applied to the susceptor 12, and a processing gas is excited into plasma in a chamber 10. From a third timing after the second timing, a first high frequency power LF for ion attraction is applied to the susceptor 12, and a self-bias (?Vdc) is generated. From a fourth timing close to the third timing, a negative second DC voltage ?BDC corresponding to the self-bias (?Vdc) is applied to the susceptor 12. From the fifth timing after the fourth timing, a positive first DC voltage ADC is applied to an inner electrode 42 of the electrostatic chuck 38.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 21, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Kohichi Nagami, Norikazu Yamada, Tadashi Gondai, Kouichi Yoshida
  • Publication number: 20140225504
    Abstract: A plasma processing apparatus includes a plasma generating device configured to generate a plasma within a processing vessel by using a high frequency wave generated by a microwave generator 41 including a magnetron 42 configured to generate the high frequency wave; detectors 54a and 54b configured to measure a power of a traveling wave that propagates to a load side and a power of a reflected wave reflected from the load side, respectively; and a voltage control circuit 53a configured to control a voltage supplied to the magnetron 42 by a power supply 43. Further, the voltage control circuit 53a includes a load control device configured to supply, to the magnetron 42, a voltage corresponding to a power calculated by adding a power calculated based on the power of the reflected wave measured by the detector 54b to the power of the traveling wave measured by the detector 54a.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 14, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Kazushi Kaneko, Naoki Matsumoto, Koji KOYAMA, Kazunori Funazaki, Hideo Kato, Kiyotaka Ishibashi
  • Publication number: 20140227882
    Abstract: Deposits such as particles deposited on a surface of a target object can be easily removed while suppressing damage to the target object such as destruction of pattern formed on the surface of the target object or film roughness on the surface of the target object. In a pre-treatment, vapor of a hydrogen fluoride is supplied to a wafer W to dissolve a natural oxide film 11, so that a deposit 10 attached to a surface of the natural oxide film 11 is slightly separated from a surface of the wafer W. A carbon dioxide gas that does not react with an underlying film 12 is supplied to a processing gas atmosphere where the wafer W is placed, so that a gas cluster of the carbon dioxide gas is generated. Then, the gas cluster in a non-ionized state is irradiated toward the wafer W to remove the deposit 10.
    Type: Application
    Filed: July 12, 2012
    Publication date: August 14, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Kensuke Inai, Kazuya Dobashi
  • Publication number: 20140202633
    Abstract: A system for processing a substrate includes a plasma chamber to produce a plasma including reactive gas ions at a first pressure, a bias supply to supply a bias between the plasma chamber and the substrate, a plasma sheath modifier disposed between the plasma chamber and substrate, the plasma sheath modifier having an aperture configured to direct the reactive ions toward the substrate in a beam having an ion beam profile, and a process chamber enclosing the substrate, the process chamber at a second pressure different than the first pressure to define a pressure differential.
    Type: Application
    Filed: April 11, 2014
    Publication date: July 24, 2014
    Inventors: Ludovic Godet, Xianfeng Lu, Deepak A. Ramappa
  • Patent number: 8779662
    Abstract: A physical vapor deposition system may include an RF generator configured to supply a pulsing AC process signal to a target in a physical vapor deposition chamber via the RF matching network. A detector circuit may be coupled to the RF generator and configured to sense the pulsing AC process signal and to produce a corresponding pulsing AC voltage magnitude signal and pulsing AC current magnitude signal. An envelope circuit may be electrically coupled to the detector circuit and configured to receive the pulsing AC voltage and current magnitude signals and to produce a DC voltage envelope signal and a DC current envelope signal. A controller may be electrically coupled to the envelope circuit and the RF matching network and configured to receive the DC voltage and current envelope signals and to vary an impedance of the RF matching network in response to the DC voltage and current envelope signals.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: July 15, 2014
    Assignee: COMET Technologies USA, Inc
    Inventor: Gerald E. Boston
  • Publication number: 20140170853
    Abstract: Methods and apparatuses for multiple patterning using image reversal are provided. The methods may include depositing gap-fill ashable hardmasks using a deposition-etch-ash method to fill gaps in a pattern of a semiconductor substrate and eliminating spacer etching steps using a single-etch planarization method. Such methods may be performed for double patterning, multiple patterning, and two dimensional patterning techniques in semiconductor fabrication.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 19, 2014
    Inventors: Nader Shamma, Bart van Schravendijk, Sirish Reddy, Chunhai Ji
  • Patent number: 8753527
    Abstract: A plasma etching method uses a plasma etching apparatus including a process chamber, a susceptor, a microwave supplying portion, a gas supplying portion, an evacuation apparatus, a bias electric power supplying portion that supplies alternating bias electric power to the susceptor, and a bias electric power control portion that controls the alternating bias electric power, wherein the bias electric power control portion controls the alternating bias electric power so that supplying and disconnecting the alternating bias electric power to the susceptor are alternately repeated to allow a ratio of a time period of supplying the alternating bias electric power with respect to a total time period of supplying the alternating bias electric power and disconnecting the alternating bias electric power to be 0.1 or more and 0.5 or less.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: June 17, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Tetsuya Nishizuka, Masahiko Takahashi, Toshihisa Ozu
  • Publication number: 20140162462
    Abstract: A plasma-assisted etch process for the manufacture of semiconductor or MEMS devices employs an RF source to generate a plasma that is terminated through an electrode. The termination is designed as a “short” at the frequency of the RF source to minimize voltage fluctuations on the electrode due to the RF source energy. The electrode voltage potential can then be accurately controlled with a bias source, resulting in improved control of etch depth of a semiconductor substrate disposed on the electrode.
    Type: Application
    Filed: July 18, 2013
    Publication date: June 12, 2014
    Applicant: APPLIED MATERIALS INC.
    Inventors: Yuri Trachuck, Robert Chebi, Carl Almgren
  • Patent number: 8741095
    Abstract: A plasma processing apparatus includes a vacuum evacuable processing chamber; a first electrode for supporting a substrate to be processed in the processing chamber; a processing gas supply unit for supplying a processing gas into a processing space; a plasma excitation unit for generating a plasma by exciting the processing gas in the processing chamber; a first radio frequency power supply unit for supplying a first radio frequency power to the first electrode to attract ions in the plasma to the substrate; and a first radio frequency power amplitude modulation unit for modulating an amplitude of the first radio frequency power at a predetermined interval. The plasma processing apparatus further includes a first radio frequency power frequency modulation unit for modulating a frequency of the first radio frequency power in substantially synchronously with the amplitude modulation of the first radio frequency power.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 3, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Chishio Koshimizu
  • Patent number: 8736175
    Abstract: A plasma processing system for generating plasma to process at least a wafer. The plasma processing system includes a coil for conducting a current for sustaining at least a portion of the plasma. The plasma processing system also includes a sensor coupled with the coil for measuring a magnitude of a supplied current to provide a magnitude measurement without measuring any phase angle of the supplied current. The supplied current is the current or a total current that is used for providing a plurality of currents (e.g., including the current). The plasma processing system also includes a controller coupled with the sensor for generating a command using the magnitude measurement and/or information derived using the magnitude measurement, without using information related to phase angle measurement, and for providing the command for controlling the magnitude of the supplied current and/or a magnitude of the total current.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: May 27, 2014
    Assignee: Lam Research Corporation
    Inventors: Maolin Long, Seyed Jafar Jafarian-Tehrani, Arthur Sato, Neil Martin Paul Benjamin, Norman Williams
  • Publication number: 20140138029
    Abstract: A cleaning and purifying apparatus 40 detects an abnormal event that occurs during use of the plasma generator 1 and controls plasma discharge based on the result of detection.
    Type: Application
    Filed: June 6, 2012
    Publication date: May 22, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Kenji Narita, Wataru Sanematsu
  • Patent number: 8728239
    Abstract: A gas panel according to various aspects of the present invention is configured to deliver a constant flow rate of gases to a reaction chamber during a deposition process step. In one embodiment, the gas panel comprises a deposition sub-panel having a deposition injection line, a deposition vent line, and at least one deposition process gas line. The deposition injection line supplies a mass flow rate of a carrier gas to a reactor chamber. Each deposition process gas line may include a pair of switching valves that are configured to selectively direct a deposition process gas to the reactor chamber or a vent line. The deposition vent line also includes a switching valve configured to selectively direct a second mass flow rate of the carrier gas that is equal to the sum of the mass flow rate for all of the deposition process gases to the reactor chamber or a vent line.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: May 20, 2014
    Assignee: ASM America, Inc.
    Inventors: Matthias Bauer, Gregory M Bartlett
  • Publication number: 20140124139
    Abstract: A plasma processing apparatus includes a first and second electrodes disposed on upper and lower sides and opposite each other within a process container, a first RF power application unit and a DC power supply both connected to the first electrode, and second and third radio frequency power application units both connected to the second electrode. A conductive member is disposed within the process container and grounded to release through plasma a current caused by a DC voltage applied from the DC power supply. The conductive member is supported by a first shield part around the second electrode and laterally protruding therefrom at a position between the mount face of the second electrode and an exhaust plate for the conductive member to be exposed to the plasma. The conductive member is grounded through a conductive internal body of the first shield part.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 8, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Akira KOSHIISHI, Masaru SUGIMOTO, Kunihiko HINATA, Noriyuki KOBAYASHI, Chishio KOSHIMIZU, Ryuji OHTANI, Kazuo KIBI, Masashi SAITO, Naoki MATSUMOTO, Yoshinobu OHYA, Manabu IWATA, Daisuke YANO, Yohei YAMAZAWA, Hidetoshi HANAOKA, Toshihiro HAYAMI, Hiroki YAMAZAKI, Manabu SATO
  • Publication number: 20140120635
    Abstract: A gas for an etching process and a treatment process of a metal stacked film in which an insulating layer is interposed between two layers of magnetic materials can be optimized. An etching method of etching a multilayered film including a metal stacked film in which an insulating layer is interposed between a first magnetic layer and a second magnetic layer includes etching the metal stacked film with plasma generated by supplying a gas containing at least C, O, and H into a processing chamber; and treating the metal stacked film with plasma generated by supplying a gas containing at least a CF4 gas into the processing chamber.
    Type: Application
    Filed: October 29, 2013
    Publication date: May 1, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Eiichi Nishimura, Masato Kushibiki, Nao Koizumi, Takashi Sone, Fumiko Yamashita
  • Patent number: 8704607
    Abstract: The pulse modulated RF power control method includes an output amplitude control step for controlling amplitude of a pulse output, and a duty control step for controlling a duty ratio of the pulse output. The output amplitude control step performs a constant amplitude control to control an amplitude value of the pulse output so that the amplitude value becomes equal to a set amplitude value. The constant amplitude control according to the output amplitude control, for instance, gives a feedback of the amplitude value of the pulse output outputted by the power control, obtains a difference value between the feedback value and the set amplitude value, and controls the amplitude value of the pulse output so that the difference value becomes zero.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: April 22, 2014
    Assignee: Kyosan Electric Mfg. Co., Ltd.
    Inventors: Itsuo Yuzurihara, Yoshihisa Hata
  • Publication number: 20140102639
    Abstract: The invention relates to a device and a method for plasma treatment of hollow bodies. The invention is in particular suited for the protective plasma treatment of the inner surface of thermally sensitive hollow bodies such as plastic bottles. The plasma treatment according to the invention can, for example, consist of chemical activation, sterilization, cleaning or coating. One or more hollow bodies are put into a processing chamber for treatment. The processing chamber is in fluid connection with at least one plasma source. An exhaust device on the processing chamber generates a negative pressure in the processing chamber relative to the plasma source so that plasma can expand out of the plasma source into the processing chamber and hollow body.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 17, 2014
    Applicant: Reinhausen Plasma GmbH
    Inventors: Stefan Nettesheim, Dariusz Korzec
  • Publication number: 20140102638
    Abstract: A plasma processing apparatus capable of optimizing a plasma process is provided. The plasma processing apparatus includes a control unit for controlling a minimum energy and a maximum energy of ions incident onto a substrate independently of each other such that ion energy of the ions are concentrated at a first energy band and a second energy band respectively. In the plasma processing apparatus, the oxide film is etched to form a hole within the oxide film, the first energy band is lower than a first energy value at which the oxide film is etched while the organic film is not etched, and the second energy band is higher than a second energy value at which an etching yield at an inclined surface of the hole is higher than an etching yield of an upper surface of the organic film.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 17, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yoshinobu Ooya, Akira Tanabe, Yoshinori Yasuta
  • Patent number: 8698037
    Abstract: A sensor apparatus for measuring a plasma process parameter for processing a workpiece. The sensor apparatus includes a base, an information processor supported on or in the base, and at least one sensor supported on or in the base. The at least one sensor includes at least one sensing element configured for measuring an electrical property of a plasma and may include a transducer coupled to the at least one sensing element. The transducer can be configured to receive a signal from the sensing element and convert the signal into a second signal for input to the information processor.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: April 15, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Randall S. Mundt, Paul Douglas MacDonald, Andrew Beers, Mason L. Freed, Costas J. Spanos
  • Patent number: 8689733
    Abstract: This invention includes a first filter (27) connected between a susceptor (21) and ground and having a variable impedance, a sensor (28) for detecting an electrical signal based on the state of a plasma (P) generated in a process chamber (11), and a control means (36) for controlling the impedance of the first filter (27) on the basis of a detection result output from the sensor (28). Thus, a preferable plasma distribution to match the object of the plasma process can be realized.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: April 8, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Chishio Koshimizu, Yohei Yamazawa
  • Patent number: 8686711
    Abstract: A method for calibrating a high frequency measuring device so as to accurately measure plasma processing parameters within a chamber. A calibration parameter is calculated from a first set of three reference loads measured by a high frequency measurement device. A second calibration parameter is calculated from S parameters measured between a connection point where the high-frequency measuring device is connected and the inside of the chamber of a plasma processing device. A second set of three reference loads, which include the impedance previously calculated and encompass a range narrower than that encompassed by the first set of three reference loads, is measured with the reference loads in the chamber.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 1, 2014
    Assignee: DAIHEN Corporation
    Inventors: Ryohei Tanaka, Yoshifumi Ibuki