For Detection Or Control Of Electrical Parameter (e.g., Current, Voltage, Resistance, Power, Etc.) Patents (Class 156/345.28)
  • Publication number: 20130025785
    Abstract: An apparatus for forming spacers is provided. A plasma processing chamber is provided, comprising a chamber wall, a substrate support, a pressure regulator, an antenna, a bias electrode, a gas inlet, and a gas outlet. A gas source comprises an oxygen gas source and an anisotropic etch gas source. A controller comprises a processor and computer readable media. The computer readable media comprises computer readable code for placing a substrate of the plurality of substrates in a plasma etch chamber, computer readable code for providing a plasma oxidation treatment to form a silicon oxide coating over the spacer layer, computer readable code for sputtering silicon to form silicon oxide with the oxygen plasma, computer readable code for providing an anisotropic main etch, computer readable code for etching the spacer layer, computer readable code for removing the substrate from the plasma etch chamber after etching the spacer layer.
    Type: Application
    Filed: September 27, 2012
    Publication date: January 31, 2013
    Applicant: Lam Research Corporation
    Inventor: Lam Research Corporation
  • Publication number: 20130023064
    Abstract: Apparatus, methods, and computer programs for semiconductor processing in a capacitively-coupled plasma chamber are provided. A chamber includes a bottom radio frequency (RF) signal generator, a top RF signal generator, and an RF phase controller. The bottom RF signal generator is coupled to the bottom electrode in the chamber, and the top RF signal generator is coupled to the top electrode. Further, the bottom RF signal is set at a first phase, and the top RF signal is set at a second phase. The RF phase controller is operable to receive the bottom RF signal and operable to set the value of the second phase. Additionally, the RF phase controller is operable to track the first phase and the second phase to maintain a time difference between the maximum of the top RF signal and the minimum of the bottom RF signal at approximately a predetermined constant value, resulting in an increase of the negative ion flux to the surface of the wafer.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 24, 2013
    Applicant: Lam Research Corporation
    Inventors: Alexei Marakhtanov, Mirzafer K. Abatchev, Rajinder Dhindsa, Eric Hudson, Andrew D. Bailey, III
  • Publication number: 20130020026
    Abstract: An apparatus for etching features in an etch layer is provided. A plasma processing chamber is provided, comprising a chamber wall, a chuck, a pressure regulator, an electrode or coil, a gas inlet, and a gas outlet. A gas source comprises a fluorine free deposition gas source and an etch gas source. A controller comprises at least one processor and computer readable media, comprising computer readable code for providing a conditioning for a patterned pseudo-hardmask, wherein the conditioning comprises computer readable code providing a fluorine free deposition gas comprising a hydrocarbon gas, computer readable code for forming a plasma, computer readable code for providing a bias less than 500 volts, and computer readable code for forming a deposition on top of the patterned pseudo-hardmask, computer readable code for etching the etch layer, and computer readable code for cyclically repeating the conditioning and etching at least twice.
    Type: Application
    Filed: September 27, 2012
    Publication date: January 24, 2013
    Applicant: LAM RESEARCH CORPORATION
    Inventor: Lam Research Corporation
  • Patent number: 8357263
    Abstract: Apparatus and methods for plasma etching are disclosed. In one embodiment, an apparatus for etching a plurality of features on a wafer comprises a chamber, a feature plate disposed in the chamber for holding the wafer, a gas channel configured to receive a plasma source gas, an anode disposed above the feature plate, a cathode disposed below the feature plate, a radio frequency power source configured to provide a radio frequency voltage between the anode and the cathode so as to generate plasma ions from the plasma source gas, a pump configured to remove gases and etch particulates from the chamber, and a clamp configured to clamp the wafer against the feature plate. The clamp includes at least one measurement hole for passing a portion of the plasma ions to measure a DC bias of the feature plate.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: January 22, 2013
    Assignee: Skyworks Solutions, Inc.
    Inventors: Daniel K. Berkoh, Elena B. Woodard, Dean G. Scott
  • Patent number: 8357264
    Abstract: In a plasma reactor employing source and bias RF power generators, plasma is stabilized against an engineered transient in the output of either the source or bias power generator by a compensating modulation in the other generator.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: January 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Kartik Ramaswamy, Daniel J. Hoffman, Matthew L. Miller, Kenneth S. Collins
  • Publication number: 20130014894
    Abstract: Methods and apparatus for controlling power distribution in a substrate processing system are provided. In some embodiments, a substrate processing system including a process chamber having a substrate support and a processing region disposed above the substrate support; a first conduit disposed above the processing region to provide a portion of a first toroidal path that extends through the first conduit and across the processing region; a second conduit disposed above the processing region to provide a portion of a second toroidal path that extends through the second conduit and across the processing region; an RF generator coupled to the first and second conduits to provide RF energy having a first frequency to each of the first and second conduits; an impedance matching network disposed between the RF generator and the first and second conduits; and a power divider to control the amount of RF energy provided to the first and second conduits from the RF generator.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 17, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: CANFENG LAI, DAVID E. ABERLE, MICHAEL P. KAMP, HENRY BARANDICA, MARTIN A. HILKENE, MATTHEW D. SCOTNEY-CASTLE, JEFFREY TOBIN, DOUGLAS H. BURNS, LARA HAWRYLCHAK, PETER I. PORSHNEV
  • Publication number: 20130001754
    Abstract: A method for etching features in a silicon layer is provided. A hard mask layer is formed over the silicon layer. A photoresist layer is formed over the hard mask layer. The hard mask layer is opened. The photoresist layer is stripped by providing a stripping gas; forming a plasma with the stripping gas by providing a high frequency RF power and a low frequency RF power, wherein the low frequency RF power has a power less than 50 watts; and stopping the stripping gas when the photoresist layer is stripped. The opening the hard mask layer and the stripping the photoresist layer are performed in a same chamber.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 3, 2013
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Sangjun Cho, Tom Choi, Taejoon Han, Sean Kang, Prabhakara Gopaladasu, Bi-Ming Yen
  • Patent number: 8343306
    Abstract: A plasma processing apparatus can prevent a sheath from becoming distorted, simplify a configuration of the apparatus, and prevent particles from attaching to a substrate. The plasma processing apparatus performs plasma processing on the substrate. A housing chamber houses the substrate. A mounting stage is disposed within the housing chamber and mounted with the substrate. An annular member is disposed in the mounting stage. A power supply unit supplies high-frequency power to the mounting stage. An observation unit optically observes the distribution of the plasma. A voltage applying unit applies a DC voltage to the annular member. A control unit sets the value of the DC voltage to be applied based on the observed plasma distribution.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: January 1, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Satoshi Tanaka, Chishio Koshimizu, Manabu Iwata, Naoki Matsumoto, Toru Ito
  • Patent number: 8337661
    Abstract: A plasma reactor for processing a workpiece such as a semiconductor wafer using predetermined transients of plasma bias power or plasma source power has unmatched low power RF generators synchronized to the transients to minimize transient-induced changes in plasma characteristics.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: December 25, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Kartik Ramaswamy, Daniel J. Hoffman, Matthew L. Miller, Kenneth S. Collins
  • Publication number: 20120318456
    Abstract: Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function (or a modified periodic voltage function) to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a defined distribution of energies of ions at the surface of the substrate so as to effectuate the defined distribution of ion energies on a time-averaged basis.
    Type: Application
    Filed: August 28, 2012
    Publication date: December 20, 2012
    Applicant: ADVANCED ENERGY INDUSTRIES, INC.
    Inventors: Victor Brouk, Daniel J. Hoffman, Daniel Carter
  • Patent number: 8334700
    Abstract: An arc detection system for a plasma generation system includes a radio frequency (RF) sensor that generates first and second signals based on a respective electrical properties of (RF) power that is in communication with a plasma chamber. A correlation module generates an arc detect signal based on the first and second signals. The arc detect signal indicates whether an arc is occurring in the plasma chamber and is employed to vary an aspect of the RF power to extinguish the arc.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: December 18, 2012
    Assignee: MKS Instruments, Inc.
    Inventors: David J. Coumou, Riad E. El-Choueiry
  • Publication number: 20120309203
    Abstract: A plasma etching method that can increase the selection ratio of a stop layer to an interlayer insulation film. The plasma etching method is carried out on a substrate that has the interlayer insulation film formed of CwFx (x and w are predetermined natural numbers) and a stop layer that stops etching and is exposed at the bottom of a hole or a trench formed in the interlayer insulation film. The interlayer insulation film and the stop layer are exposed at the same time to plasma generated from CyFz (y and z are predetermined natural numbers) gas and hydrogen-containing gas.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Naotsugu HOSHI, Noriyuki Kobayashi
  • Publication number: 20120302070
    Abstract: A method for performing pulse-etching in a semiconductor device includes the steps of providing a semiconductor substrate, wherein a metal layer is disposed on the semiconductor substrate, and a hard mask layer is blanketed over the metal layer; introducing the semiconductor substrate into a processing container; introducing, into the processing container, etching gases in which a deposition-type gas composed of at least two of C, H, and F is added to etching gas selected from the group consisting of Cl2 gas, BCl3 gas, HBr gas, and the combination thereof; applying a pulse-modulated high-frequency voltage between a pair of electrodes that are provided in the processing container so as to be opposed to each other and to hold the semiconductor substrate, such that the high-frequency voltage is turned on and off to establish a duty ratio; generating a plasma between the pair of electrodes; and etching the semiconductor substrate using the plasma.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Chih Ching Lin, Yi Nan Chen, Hsien Wen Liu
  • Publication number: 20120302031
    Abstract: The present invention relates to a plasma etching method and apparatus for preparing high-aspect-ratio structures. The method includes the steps of placing the substrate into a plasma etching apparatus, wherein the plasma etching apparatus includes an upper electrode plate and a lower electrode plate; continuously supplying an upper source RF power and a DC power to the upper electrode plate; and discontinuously supplying a bias RF power to the lower electrode plate. When the bias RF power is switched to the off state, a large amount of secondary electrons pass through the bulk plasma and reach the substrate to neutralize the positive ions during the duration time of the off state (Toff).
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Chang Ming Wu, Yi Nan Chen, Hsien Wen Liu
  • Publication number: 20120302065
    Abstract: The present invention relates to a pulse-plasma etching method and apparatus for preparing a depression structure with reduced bowing. The pulse-plasma etching apparatus comprises a container, an upper electrode plate, a lower electrode plate, a gas source, a first ultrahigh RF power supply, a bias RF power supply, and a pulsing module. When the pulsing module supplies an ultrahigh-frequency voltage between the upper electrode plate and the lower electrode plate, an ultrahigh-frequency voltage is switched to the off state, and a large amount of electrons pass through the plasma and reach the substrate to neutralize the positive ions during the duration of the off state (Toff).
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Chih Ching Lin, Yi Nan Chen, Hsien Wen Liu
  • Publication number: 20120285620
    Abstract: This disclosure describes systems, methods, and apparatuses for extinguishing electrical arcs in a plasma processing chamber. Once an arc is detected, the steady state voltage provided to the plasma processing chamber can be reduced, and the current being provided to the chamber decays below a steady state value as the arc is extinguished. When the current falls to or below a current threshold, the voltage can be ramped back up bringing the voltage and current back to steady state values. This technique enables power to return to a steady state level faster than traditional arc mitigation techniques.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 15, 2012
    Applicant: ADVANCED ENERGY INDUSTRIES, INC.
    Inventors: Skip B. Larson, Kenneth E. Nauman
  • Patent number: 8303763
    Abstract: Apparatus and methods are provided for monitoring a pulsed RF bias signal applied to a chuck in a processing chamber. One method includes operations for detecting voltage values of individual pulses of the pulsed RF bias voltage, and for determining the time for sampling the value of each individual detected pulse. At the sampling time for each pulse, a particular voltage value of the respective individual detected pulse is sampled and the particular voltage value is held. Each particular voltage value represents a characteristic peak-to-peak voltage value of each individual detected pulse. A feedback signal representing the characteristic peak-to-peak voltage value for a voltage envelope of one of the individual detected pulses is generated, and the voltage of the pulsed RF bias voltage signal applied to the chuck is adjusted according to a difference between the feedback signal and a desired voltage value of the pulsed RF bias voltage signal.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: November 6, 2012
    Assignee: Lam Research Corporation
    Inventors: Andras Kuthi, Stephen Hwang, James C. Vetter, Greg Eilenstine, Rongping Wang, Tuan Ngo
  • Publication number: 20120273341
    Abstract: Methods and apparatus for controlling a plasma are provided herein. In some embodiments, a method may include supplying a first RF signal having a first frequency and a first period from an RF power source to a first electrode, wherein the first period is a first integer number of first cycles at the first frequency; supplying a second RF signal having a second frequency and a second period from the RF power source to the first electrode, wherein the second period is a second integer number of second cycles at the second frequency and wherein a first multiplicative product of the first frequency and the first integer number is equal to a second multiplicative product of the second frequency and the second integer number; and controlling the phase between the first and second periods to control an ion energy distribution of the plasma formed in a process chamber.
    Type: Application
    Filed: April 9, 2012
    Publication date: November 1, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ANKUR AGARWAL, AJIT BALAKRISHNA, SHAHID RAUF
  • Patent number: 8297224
    Abstract: An ALD apparatus includes: a process chamber that accommodates a boat charged with a plurality of wafers; gas supply systems that supplies process gases to the wafers; a pair of electrodes arranged in a stacked direction of the wafers; a high-frequency power source that supplies a high-frequency power to the pair of the electrodes; a variable impedance element connected to a front end opposite to the high-frequency power of the pair of the electrodes; and a control unit that changes an output frequency of the high-frequency power source. By moving the local minimum point of the voltage distribution through the change of the output frequency of the high-frequency power source during the plasma discharge, the plasma generation amount within a pair of discharge electrodes is uniformized. Thus, the processing non-uniformity between the wafers stacked in the boat is suppressed, and the processing is uniformized over the total boat length.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: October 30, 2012
    Assignee: Hitachi Kokusai Electric Inc.
    Inventor: Nobuo Ishimaru
  • Patent number: 8287689
    Abstract: A feeder rod that transmits radio-frequency power via a matcher to a susceptor used in plasma generation that is disposed inside a processing chamber where a wafer undergoes a predetermined type of plasma processing, includes as an integrated part thereof electrical characteristics measurement probes. The integrated feeder rod unit can be detachably installed as a whole between the matcher and the processing chamber.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: October 16, 2012
    Assignee: Tokyo Electron Limited
    Inventor: Kenji Sato
  • Patent number: 8289029
    Abstract: An arc detection system for a plasma generation system includes a radio frequency (RF) sensor that generates first and second signals based on a respective electrical properties of (RF) power that is in communication with a plasma chamber. A correlation module generates an arc detect signal based on the first and second signals. The arc detect signal indicates whether an arc is occurring in the plasma chamber and is employed to vary an aspect of the RF power to extinguish the arc.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: October 16, 2012
    Assignee: MKS Instruments, Inc.
    Inventor: David J. Coumou
  • Patent number: 8282767
    Abstract: A plasma processing apparatus including a chamber having an inner wall with a protective film thereon and a sample stage disposed in the chamber in which plasma is generated by supplying high-frequency wave energy to processing gas to conduct plasma processing for a sample on the sample stage using the plasma. The apparatus includes a control device which determines, based on monitor values of a wafer attracting current monitor (Ip) to monitor a current supplied from a wafer attracting power source, an impedance monitor (Zp) to monitor plasma impedance viewed from a plasma generating power source, and an impedance monitor (Zb) to monitor a plasma impedance viewed from a bias power supply, presence or absence of occurrence of an associated one of abnormal discharge in inner parts, deterioration in insulation of an insulating film of a wafer attracting electrode, and abnormal injection in a gas injection plate.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: October 9, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Naoshi Itabashi, Tsutomu Tetsuka, Seiichiro Kanno, Motohiko Yoshigai
  • Publication number: 20120252219
    Abstract: Provided are a plasma processing apparatus with a radio-frequency power supply supplying temporally modulated intermittent radio-frequency power which can be controlled with high precision in a wide repetition frequency band, and a plasma processing method using the plasma processing apparatus. A plasma processing apparatus includes: a vacuum vessel; a plasma generating section plasma in the vacuum vessel; a stage installed in the vacuum vessel and mounted with a sample; and a radio-frequency power supply applying temporally modulated intermittent radio-frequency power to the stage, wherein the radio-frequency power supply has two or more different frequency bands and temporally modulates the radio-frequency power by a repetition frequency which has the same range of analog signals used in each of the frequency band.
    Type: Application
    Filed: July 19, 2011
    Publication date: October 4, 2012
    Inventors: Michikazu MORIMOTO, Yasuo OHGOSHI, Yuuzou OOHIRABARU, Tetsuo ONO
  • Patent number: 8277603
    Abstract: A move mechanism for horizontally moving a target object in an accelerating manner, includes a moving unit configured to be horizontally moved in an accelerating manner, a plate part arranged on the moving unit and supported by the moving unit at a substantially center-of-gravity height position, and a mirror part configured to reflect a laser beam for measuring a position, the mirror part being connected to the plate part such that a center-of-gravity height position of the mirror part is arranged at the substantially center-of-gravity height position of the plate part.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: October 2, 2012
    Assignee: NuFlare Technology, Inc.
    Inventors: Shuichi Tamamushi, Shuichiro Fukutome
  • Patent number: 8262847
    Abstract: A method and apparatus for processing a substrate in a capacitively-coupled plasma processing system having a plasma processing chamber and at least an upper electrode and a lower electrode. The substrate is disposed on the lower electrode during plasma processing. The method includes providing at least a first RF signal, which has a first RF frequency, to the lower electrode. The first RF signal couples with a plasma in the plasma processing chamber, thereby inducing an induced RF signal on the upper electrode. The method also includes providing a second RF signal to the upper electrode. The second RF signal also has the first RF frequency. A phase of the second RF signal is offset from a phase of the first RF signal by a value that is less than 10%. The method further includes processing the substrate while the second RF signal is provided to the upper electrode.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: September 11, 2012
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Hudson Eric, Alexei Marakhtanov, Andreas Fischer
  • Patent number: 8264237
    Abstract: An arc detection system for a plasma generation system includes a radio frequency (RF) sensor that generates first and second signals based on a respective electrical properties of (RF) power that is in communication with a plasma chamber. A correlation module generates an arc detect signal based on the first and second signals. The arc detect signal indicates whether an arc is occurring in the plasma chamber and is employed to vary an aspect of the RF power to extinguish the arc.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: September 11, 2012
    Assignee: MKS Instruments, Inc.
    Inventor: David J. Coumou
  • Publication number: 20120217221
    Abstract: Systems, methods and apparatus for regulating ion energies in a plasma chamber are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber via a remotely generated ionizing electromagnetic field that extends into the plasma chamber from a remote projected source, controllably switching power to the substrate so as to apply a periodic voltage function to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a desired distribution of energies of ions at the surface of the substrate so as to effectuate the desired distribution of ion energies on a time-averaged basis.
    Type: Application
    Filed: July 28, 2011
    Publication date: August 30, 2012
    Applicant: ADVANCED ENERGY INDUSTRIES, INC.
    Inventors: Daniel J. Hoffman, Victor Brouk, Daniel Carter
  • Patent number: 8251011
    Abstract: An apparatus, which performs a plasma process on a target substrate by using plasma, includes first and second electrodes in a process chamber to oppose each other. An RF field, which turns a process gas into plasma by excitation, is formed between the first and second electrodes. An RF power supply, which supplies RF power, is connected to the first or second electrode through a matching circuit. The matching circuit automatically performs input impedance matching relative to the RF power. A variable impedance setting section is connected to a predetermined member, which is electrically coupled with the plasma, through an interconnection. The impedance setting section sets a backward-direction impedance against an RF component input to the predetermined member from the plasma. A controller supplies a control signal concerning a preset value of the backward-direction impedance to the impedance setting section.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: August 28, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Yohei Yamazawa, Manabu Iwata, Chishio Koshimizu, Fumihiko Higuchi, Akitaka Shimizu, Asao Yamashita, Nobuhiro Iwama, Tsutomu Higashiura, DongSheng Zhang, Michiko Nakaya, Norikazu Murakami
  • Publication number: 20120214310
    Abstract: A method for etching features in an etch layer. A conditioning for a patterned pseudo-hardmask of amorphous carbon or polysilicon disposed over the etch layer is provided, where the conditioning comprises providing a fluorine free deposition gas comprising a hydrocarbon gas, forming a plasma from the fluorine free deposition gas, providing a bias less than 500 volts, and forming a deposition on top of the patterned pseudo-hardmask. The etch layer is etched through the patterned pseudo-hardmask.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 23, 2012
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Ben-Li Sheu, Rajinder Dhindsa, Vinay Pohray, Eric A. Husdon, Andrew D. Bailey, III
  • Publication number: 20120214313
    Abstract: There is provided a plasma processing apparatus capable of optimizing a plasma process in response to various requirements of a micro processing by effectively controlling a RF bias function. In this plasma processing apparatus, a high frequency power RFH suitable for generating plasma of a capacitively coupling type is applied to an upper electrode 48 (or lower electrode 16) from a third high frequency power supply 66, and two high frequency powers RFL1 (0.8 MHz) and RFL2 (13 MHz) suitable for attracting ions are applied to the susceptor 16 from first and second high frequency power supplies 36 and 38, respectively, in order to control energy of ions incident onto a semiconductor wafer W from the plasma. A control unit 88 controls a total power and a power ratio of the first and second high frequency powers RFL1 and RFL2 depending on specifications, conditions or recipes of an etching process.
    Type: Application
    Filed: August 22, 2011
    Publication date: August 23, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yoshinobu Ooya, Akira Tanabe, Yoshinori Yasuta
  • Patent number: 8241457
    Abstract: A microwave plasma processing system 10 includes: a processing chamber 100 in which a desired process is applied to a target object using a plasma; a susceptor 106 (stage) in the processing chamber 100 to support the target object; a high-frequency power supply 112 supplying high-frequency electric power to the susceptor 106; a capacitor 108a provided to the susceptor 106; and a measurement device 20 measuring voltages at the pair of plates of the capacitor 108a when high-frequency electric power is supplied from the high-frequency power supply 112 to the susceptor 106.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: August 14, 2012
    Assignees: Tokyo Electron Limited, Tohoku University
    Inventors: Mitsuo Kato, Masaki Sugiyama, Akihiko Hiroe, Tadahiro Ohmi, Masaki Hirayama
  • Patent number: 8222161
    Abstract: Substrate processing of a substrate is performed in a processing chamber and the evenness in in-plane film thickness is enhanced. An exhaust unit exhausts the atmosphere in the processing chamber and a processing gas is supplied that is excited by an exciting unit. A rotational drive unit horizontally rotates a support unit that supports a mounting substrate on which the substrate is mounted; and a coolant supply/discharge unit is connected to the lower end of the support unit through a connecting unit. The substrate mounting unit has a coolant circulation path therein. The support unit includes a first coolant flow path for passing coolant through the coolant circulation path. The coolant supply/discharge unit includes a second coolant flow path. The connecting unit connects the first coolant flow path and the second coolant flow path together and is provided outside the processing chamber.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: July 17, 2012
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Yoshihiko Yanagisawa, Mitsuro Tanabe, Harunobu Sakuma, Tadashi Takasaki
  • Publication number: 20120175061
    Abstract: The plasma etching method includes: an etching step of placing, on a stage in a chamber, a substrate in which a prescribed mask pattern is formed by a protective film on a surface of a material to be etched, generating a plasma in the chamber while supplying processing gas to the chamber, and etching a portion of the material corresponding to an opening portion in the mask pattern; a voltage measurement step of, during the etching in the etching step, measuring a voltage at the surface of the material on a side where the mask pattern is formed, through a conductive member that is placed in contact with the surface of the material on the side where the mask pattern is formed; and a control step of controlling an etching condition in the etching step in accordance with a measurement result obtained in the voltage measurement step.
    Type: Application
    Filed: March 16, 2012
    Publication date: July 12, 2012
    Inventor: Shuji Takahashi
  • Publication number: 20120168081
    Abstract: Disclosed is a substrate treating apparatus which comprises a process chamber; an electrode configured to generate plasma from a gas supplied into the process chamber; an RF power supply configured to output an RF power; a transmission line configured to transmit the RF power to the electrode from the RF power supply; an impedance matching unit connected to the transmission line and configured to match plasma impedance; and a controller configured to output a control signal to the impedance matching unit, wherein the impedance matching unit comprises an adjustable capacitor having a plurality of capacitors and a plurality of switches corresponding to the plurality of capacitors, the plurality of switches being switched on/off according to the control signal so that capacitance of the adjustable capacitor is adjusted.
    Type: Application
    Filed: December 27, 2011
    Publication date: July 5, 2012
    Applicant: SEMES CO., LTD.
    Inventor: Dukhyun Son
  • Publication number: 20120164834
    Abstract: Methods and hardware for generating variable-density plasmas are described. For example, in one embodiment, a process station comprises a showerhead including a showerhead electrode and a substrate holder including a mesa configured to support a substrate, wherein the substrate holder is disposed beneath the showerhead. The substrate holder includes an inner electrode disposed in an inner region of the substrate holder and an outer electrode being disposed in an outer region of the substrate holder. The process station further comprises a plasma generator configured to generate a plasma in a plasma region disposed between the showerhead and the substrate holder, and a controller configured to control the plasma generator, the inner electrode, the outer electrode, and the showerhead electrode to effect a greater plasma density in an outer portion of the plasma region than in an inner portion of the plasma region.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Inventors: Kevin Jennings, Mohamed Sabri, Edward Augustyniak, Sunil Kapoor, Douglas Keil
  • Publication number: 20120145322
    Abstract: In the present invention, there is provided a plasma processing apparatus including a vacuum processing chamber for applying a plasma processing to a sample, a sample stage deployed inside the vacuum processing chamber for mounting the sample thereon, induction antennas provided outside the vacuum processing chamber, a radio-frequency power supply for supplying a radio-frequency power to the induction antennas, and a Faraday shield which is capacitively coupled with the plasma, a radio-frequency voltage being applied to the Faraday shield from the radio-frequency power supply via a matching box, wherein the matching box includes a series LC circuit including a variable capacitor and an inductor, a motor control unit for controlling a motor for the variable capacitor, and a radio-frequency voltage detection unit for detecting the radio-frequency voltage applied to the Faraday shield, the matching box executing a feedback control over the radio-frequency voltage applied to the Faraday shield.
    Type: Application
    Filed: February 4, 2011
    Publication date: June 14, 2012
    Inventors: Masaharu GUSHIKEN, Megumu Saitou, Ryoji Nishio
  • Publication number: 20120145323
    Abstract: A plasma processing apparatus for subjecting a substrate to be processed to plasma processing includes a processing chamber, a substrate electrode having an electrostatic chuck mechanism, a plasma generator, a high-frequency bias power supply which applies a high-frequency bias voltage to the substrate electrode, a voltage monitor which monitors the high-frequency bias voltage, a current monitor which monitors a high-frequency bias current, a measurement storage unit which stores a resistance component, an induction component and a capacity component of the electrostatic chuck mechanism, which have been calculated beforehand as fitting parameters of an expression V w = V esc - R esc ? I esc - L esc ? ? I esc ? t - 1 C esc ? ? I esc ? ? t + A , ( A ) that is an approximate curve of a correlation among a voltage of the substrate, a computing unit which estimates the voltage of the substrate according to the expression, and a control unit that generates a
    Type: Application
    Filed: February 17, 2012
    Publication date: June 14, 2012
    Inventors: Hitoshi Tamura, Naoki Yasui, Seiichi Watanabe
  • Publication number: 20120149206
    Abstract: In a plasma etching method, a substrate, on which an oxide film as a target layer to be etched, a hard mask layer, and a patterned photoresist are sequentially formed, is loaded into the processing chamber and mounted on a lower electrode. A processing gas containing CxFy (x is 3 or less and y is 8 or less), C4F8, a rare gas and O2 is supplied and a plasma of the processing gas is generated by applying a high frequency power to an upper or a lower electrode. Further, a high frequency power for bias is applied to the lower electrode, and a DC voltage is applied to the upper electrode.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 14, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Kosei UEDA, Hikoichiro SASAKI
  • Patent number: 8192576
    Abstract: Apparatus and methods are provided to detect and control a voltage potential applied in a plasma chamber for processing a semiconductor wafer. The plasma chamber includes circuitry for monitoring and adjusting a pulsed RF bias voltage signal to be applied to a chuck in the plasma chamber, where the chuck is configured to mount the wafer for processing. The circuitry includes an RF bias voltage detector for detecting individual pulses of the pulsed RF bias voltage signal applied to the chuck. A timing circuit is provided for determining a time for sampling each of the individual detected pulses and a sample and hold circuit.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: June 5, 2012
    Assignee: Lam Research Corporation
    Inventors: Andras Kuthi, Stephen Hwang, James C. Vetter, Greg Eilenstine, Rongping Wang, Tuan Ngo
  • Patent number: 8186300
    Abstract: A plasma processing apparatus for processing a surface of a to-be-processed substrate includes a processing chamber, a first electrode provided in the processing chamber, a second electrode arranged in opposition to the first electrode, a main power source for supplying the first or second electrode with power for generating a plasma, a biasing power source for supplying the second or first electrode with biasing power, a gas supplying unit for supplying a processing gas into the processing chamber and a control unit for controlling the main power source, the biasing power source and the gas supplying unit. The control unit performs a control such that, during a time of transition from a stationary state of plasma, in which a plasma processing is to be carried out, to a plasma quenching, an output of the main power source is kept not larger than an output of the biasing power source.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: May 29, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takamasa Ichino, Ryoji Nishio, Tomoyuki Tamura, Shinji Obama
  • Publication number: 20120118504
    Abstract: A processing apparatus for performing a process on an object includes a chamber; a rotary floater for supporting the object on its upper end side; XY rotating attraction bodies provided in the rotary floater at an interval circumferentially; a floating attraction body provided in the rotary floater to extend circumferentially; a floating electromagnet group for floating the rotary floater while adjusting an inclination of the rotary floater by applying a vertically upward acting magnetic attraction to the floating attraction body; an XY rotating electromagnet group for rotating the rotary floater while adjusting a horizontal position of the rotary floater by applying a magnetic attraction force to the XY rotating attraction bodies; a gas supply for supplying a gas into the chamber; a mechanism for performing a process on the object; and an apparatus control unit for controlling an entire operation of the apparatus.
    Type: Application
    Filed: July 21, 2010
    Publication date: May 17, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masamichi Nomura, Kenjiro Koizumi, Shigeru Kasai, Sumi Tanaka
  • Publication number: 20120091097
    Abstract: The invention provide apparatus and methods for creating gate structures on a substrate in real-time using Vacuum Ultra-Violet (VUV) data and Electron Energy Distribution Function (EEDƒ) data and associated (VUV/EEDƒ)-related procedures in (VUV/EEDƒ) etch systems. The (VUV/EEDƒ)-related procedures can include multi-layer-multi-step processing sequences and (VUV/EEDƒ)-related models that can include Multi-Input/Multi-Output (MIMO) models.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 19, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Lee CHEN, Jianping ZHAO
  • Publication number: 20120095586
    Abstract: The invention provides an apparatus and methods for creating gate structures on a substrate in real-time using Vacuum Ultra-Violet (VUV) data and Electron Energy Distribution Function (EEDf) data and associated (VUV/EEDf)-related procedures in (VUV/EEDf) etch systems. The (VUV/EEDf)-related procedures can include multi-layer-multi-step processing sequences and (VUV/EEDf)-related models that can include Multi-Input/Multi-Output (MIMO) models.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 19, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Lee CHEN, Jianping ZHAO
  • Publication number: 20120090782
    Abstract: There are provided a microwave plasma source and a plasma processing apparatus capable of improving uniformity of a plasma density distribution within a processing chamber by controlling positions of nodes and antinodes of a standing wave of microwave within the processing chamber not to be fixed. The microwave plasma source 2 includes a microwave supply unit 40. The microwave supply unit 40 includes multiple microwave introducing devices 43 each introducing microwave into the processing chamber; and multiple phase controllers 46 for adjusting phases of the microwaves inputted to the microwave introducing devices 43. Here, the phases of the microwaves inputted to the microwave introducing devices 43 are adjusted by fixing an input phase of the microwave inputted to one of two adjacent microwave introducing devices 43 while varying an input phase of the microwave inputted to the other microwave introducing device 43 according to a periodic waveform.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 19, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Taro Ikeda, Yuki Osada
  • Publication number: 20120083051
    Abstract: Apparatus and methods for plasma etching are disclosed. In one embodiment, an apparatus for etching a plurality of features on a wafer comprises a chamber, a feature plate disposed in the chamber for holding the wafer, a gas channel configured to receive a plasma source gas, an anode disposed above the feature plate, a cathode disposed below the feature plate, a radio frequency power source configured to provide a radio frequency voltage between the anode and the cathode so as to generate plasma ions from the plasma source gas, a pump configured to remove gases and etch particulates from the chamber, and a clamp configured to clamp the wafer against the feature plate. The clamp includes at least one measurement hole for passing a portion of the plasma ions to measure a DC bias of the feature plate.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 5, 2012
    Applicant: Skyworks Solutions, Inc.
    Inventors: Daniel K. Berkoh, Elena B. Woodard, Dean G. Scott
  • Publication number: 20120052689
    Abstract: A method of etching a substrate includes positioning the substrate on a substrate support within a chamber, etching a formation in the substrate in the presence of plasma within the chamber, decreasing a positive charge within the formation, and further etching the formation in the substrate in the presence of plasma after decreasing the positive charge within the formation.
    Type: Application
    Filed: December 16, 2010
    Publication date: March 1, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Ken Tokashiki
  • Publication number: 20120038277
    Abstract: According to one embodiment, a power supply control device of a plasma processing device having a plasma generation unit which generates plasma in a process chamber. The power supply control device includes a radio frequency power supply, a storage unit, and a matching circuit. The radio frequency power supply supplies a power to the plasma generation unit. The storage unit stores matching information including a first matching value, a second process condition, and a third matching value. The first matching value corresponds to process information of a first process condition. The second matching value corresponds to process information of a second process condition. The third matching value corresponds to process information of a transient state where the first process condition is being switched to the second process condition. The matching circuit matches impedances based on the matching information.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 16, 2012
    Inventors: Hideo ETO, Nobuyasu Nishiyama, Makoto Saito, Keiji Suzuki
  • Patent number: 8114245
    Abstract: A plasma etching device which has an auxiliary electrode enabling realization of a uniform plasma density of generated plasma on the surface of a base and which enables uniform etching with respect to the base without depending upon pressure and without rotating a magnetic field applying means. The plasma etching device has magnetic field applying means which has two parallel plate electrodes I and II and RF power applying means, with the base set on the electrode I, and which is horizontal and unidirectional with respect to the surface of the base where plasma etching is carried out. In this plasma etching device, an auxiliary electrode is provided at least on the upstream side of the base in a flow of electron current generated by the magnetic field applying means. The auxiliary electrode includes a local electrode arranged on the side facing the electrode II and means for adjusting impedance provided at a part of the local electrode to be electrically connected with the electrode I.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: February 14, 2012
    Assignees: Tokyo Electron Limited
    Inventors: Tadahiro Ohmi, Masaki Hirayama, Haruyuki Takano, Yusuke Hirayama
  • Publication number: 20120018096
    Abstract: The invention relates to a plasma chamber (10, 20, 30) having a first receiving device for a substrate (14, 24, 34) fastened to a first side and having a plasma generation unit for generating a plasma in the plasma chamber, wherein the plasma generation unit is connected or can be connected to a high frequency voltage supply (11, 21, 31). The high frequency voltage supply is designed to generate a modulated, high-frequency alternating voltage and to output said voltage to the plasma generation unit. The plasma generation unit is designed to generate the plasma using the modulated, high-frequency alternating voltage.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Inventor: Roland Gesche
  • Publication number: 20120018095
    Abstract: A plasma processing system for processing a wafer is provided. The system includes an electrostatic chuck (ESC) positioned inside a plasma processing chamber and configured to support the wafer. The ESC includes a positive terminal for providing a first force to the wafer and a negative terminal for providing a second force to the wafer. The system also includes a first circuit arrangement configured to measure at least a first voltage for determining a value of a positive load current applied to the positive terminal. The system further includes a second circuit arrangement configured to measure at least a second voltage for determining a value of a negative load current applied to the negative terminal. The system yet also includes circuitry configured to adjust a bias voltage using the values of the positive load current and the negative load current for balancing the first force and the second force.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 26, 2012
    Inventors: Seyed Jafar Jafarian-Tehrani, Ralph Jan-Pin Lu