Non-mineral Distilland With Catalyst Or Chemical Treatment Of Volatile Component Patents (Class 201/2.5)
  • Publication number: 20100294643
    Abstract: A reactive distillation process is disclosed for the selective oxygenation of a biomass. The biomass may be a ligno-cellulosic biomass, or a bio-oil. The process comprises the steps of contacting a biomass slurry with a particulate inorganic material, and heating the mixture to its boiling point. In a preferred embodiment water vapors emanated from the process are collected and condensed to provide a source of fresh water.
    Type: Application
    Filed: November 28, 2008
    Publication date: November 25, 2010
    Applicant: KIOR INC.
    Inventor: Paul O'Connor
  • Publication number: 20100282588
    Abstract: A thermolysis process for treating algal biomass, consisting substantially of dried algal cells, in which the algal biomass is heated from ambient to 460° C. in a flowing stream that contains one or more of carbon dioxide, acetic acid or other organic acids and that produces a condensable hydrocarbon product whose mass yield is greater than the dry, ash-free mass fraction of lipids in the starting algal biomass and whose higher enthalpy of combustion exceeds 25 MJ/kg plus a char, and a hydrocarbon-laden gaseous product. In another feature, the present invention includes heating the previously dried, algal biomass in a readily available, waste acid gas, such as flue gas that is rich in carbon dioxide, or to intimately mix the algal biomass with a solid acid, such as a protonated, large pore zeolite, and then heating the mixture in a non-oxidizing sweep gas.
    Type: Application
    Filed: May 7, 2010
    Publication date: November 11, 2010
    Inventors: Norman M. Whitton, Robert S. Weber
  • Patent number: 7799960
    Abstract: In a method and apparatus for thermal processing of slurry, the slurry is combined with a bio-mass to produce a mixture which is then subjected to a cracking temperature in a receiving tank, thereby liquefying and allowing the mixture to catalytically undergo a cracking reaction. The cracking reaction which the liquefied mixture undergoes is continued in a mixer pump to thereby produce a reaction mixture. The reaction mixture is outgased in an intermediate tank to separate an outgased fraction from a non-outgased fraction. Subsequently, the outgased fraction is allowed to cool down, thereby producing fuel, while the non-outgased fraction is returned to the receiving tank and subjected again to the cracking temperature. Residual matter of the non-outgased fraction settles in the intermediate tank and is periodically removed.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: September 21, 2010
    Inventor: Jürgen Buchert
  • Publication number: 20100209965
    Abstract: A process is disclosed for converting a particulate biomass material to a bioliquid. In the process the biomass material is mixed with a heat transfer medium and a catalytic material, and heated to a temperature in the range of from 150 to 600° C. The particle size of the solid biomass may be reduced by abrasion in admixture with inorganic particles under agitation by a gas. The biomass particles of reduced size obtained in the abrasion process may be converted to bioliquid in any of a number of conversion processes.
    Type: Application
    Filed: July 13, 2007
    Publication date: August 19, 2010
    Applicants: BIOECON INTERNATIONAL HOLDING N.V.
    Inventors: Paul O'Connor, Dennis Stamires
  • Publication number: 20100193344
    Abstract: A low-energy input process for the pyrolytic conversion of biomass to charcoal or carbonized charcoal is provided. The biomass is sealed in a container, pressurized, then air is introduced at the proximal end of the container and released at the distal end of the container. The biomass is ignited by a heater at the distal end. The operation of the heater is halted after initial ignition and the biomass is allowed to continue to burn in a proximal-to-distal end airflow to finish the conversion.
    Type: Application
    Filed: September 24, 2008
    Publication date: August 5, 2010
    Inventor: Michael J. Antal, JR.
  • Publication number: 20100181183
    Abstract: The present application describes a methodology aiming t the removal of the harmful ash constituents from the ash of biomass, such as alkali metals, chlorine and sulfur, prior to its thermochemical conversion, in order to minimize/eliminate the ash-related corrosion, deposition and agglomeration problems, as well as the emissions of alkali metals, chlorine and sulfur. Thos removal is achieved by a combined pre-treatment method which includes the prepyrolysis of biomass at temperatures varying in the range of 200-300° C. and for a period of 5 min up to 2 h, followed by the leaching of the biomass materials using water with a solid/water mass ratio varying from 33 g/L up to 300 g/L with the water temperature varying from 13° up to 55° C. and the residence time varying from 5 min up to 24 h.
    Type: Application
    Filed: June 27, 2008
    Publication date: July 22, 2010
    Inventor: Emmanouil Koukios
  • Publication number: 20100163395
    Abstract: Method for fast pyrolysis of lignocellulose including: mechanically comminuting the lignocellulose to lignocellulose particles; at least one of completely drying and preheating the lignocellulose particles; mixing the lignocellulose particles with heat transfer particles so as to provide a mixture; heating the heat transfer particles, prior to the mixing, to a temperature between 500° C. and 650° C.; and heating, in a pyrolysis reactor with oxygen excluded, the lignocellulose particles using the heat transfer particles so as to establish a temperature between 400° C. and 600° C. for 1 to 50 seconds and so as to react the lignocellulose particles so as to provide pyrolysis coke, pyrolysis condensate, and pyrolysis gas.
    Type: Application
    Filed: June 22, 2006
    Publication date: July 1, 2010
    Applicant: FORSCHUNGSZENTRUM KARLSRUHE GMBH
    Inventors: Edmund Henrich, Friedhelm Weirich, Eckhard Dinjus
  • Publication number: 20100133084
    Abstract: A method of reducing costs in the steel industry by making a Steel Industry Fuel comprising solublizing a portion of a coking waste product with a green solvent, to form a mixture and adding the mixture to coal wherein a prefuel mixture of the green solvent and the coking waste product has a lower viscosity than the coking waste product prior to the addition of the green solvent and wherein the green solvent is a combustible fuel derived from a renewable source, and adding the prefuel mixture of the green solvent and the coking waste product to a coal.
    Type: Application
    Filed: November 12, 2009
    Publication date: June 3, 2010
    Applicant: AKJ INDUSTRIES, INC.
    Inventors: Kenneth D. Burnside, Daniel C. Deer, III
  • Publication number: 20100065411
    Abstract: A waste plastic to fuel oil distillation vessel is disclosed. The distillation vessel can be a revolving cone with many traverse supporting tubes therein. This structure allows high temperature air or gas to go through the support tubes, which pass through the vessel, to increase the heating area and increase the temperature of the distillation vessel. Also disclosed is a discharging system for discharging residue from inside of the vessel and a method of converting waste plastic or rubber into fuel oil.
    Type: Application
    Filed: March 11, 2009
    Publication date: March 18, 2010
    Inventors: Jianguo LI, Xianji WU
  • Patent number: 7642394
    Abstract: Systems and methods for recycling waste and reclaiming beneficial and useful compositions such as organic solvents comprises a shredder, operating in an inerted or anaerobic atmosphere, which shreds the waste into smaller pieces that are fed into and indirectly heated in an anaerobic desorption unit so as to vaporize at least one organic compound associated with the waste. A vacuum means is used to transfer the organic compound vapors from the desorption unit to a water quench condensing unit that operates to produce a mixed organic compound liquid stream. The liquid organic compound and water stream is then processed in an oil and water separator. The water is separated and can be reused in the system for quenching gas vapors or inerting the desorption unit. The water-free mixed organic compound liquid stream is then fed into a multi-stage packed distillation column separating organic compound according to boiling points to produce products such as organic solvents.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: January 5, 2010
    Assignee: Pollution Control Industries, Inc.
    Inventors: Kenneth E. Carle, Kevin P. Prunsky
  • Publication number: 20090308726
    Abstract: A device for converting biomass with a water content of at least 50% to gaseous products includes a reactor filled at least partially with a packing including at least one filler body for accommodating supercritical water and a hydrothermal molten salt. A heater is arranged to heat up the reactor and its content. A first feeding pipe is coupled to the reactor to feed water and salt solution into the reactor. A second feeding pipe is coupled to the reactor to feed to biomass into the reactor. A discharge pipe is coupled to the reactor to discharge gaseous products from the reactor. An outlet is proved in the bottom of the reactor for removing portions of the molten salt.
    Type: Application
    Filed: June 17, 2009
    Publication date: December 17, 2009
    Applicant: Forschungszentrum Karlsruhe GmbH
    Inventors: NICHOLAUS DAHMEN, Andrea Kruse, Mathias Pagel, Hubert Goldacker, Jens Zimmermann
  • Publication number: 20090250330
    Abstract: Biogas is converted to a liquid fuel by passing the biogas through a liquid reaction medium that contains a petroleum fraction in the presence of a transition metal catalyst, and doing so at an elevated but non-boiling temperature.
    Type: Application
    Filed: July 11, 2008
    Publication date: October 8, 2009
    Inventors: Rudolf W. Gunnerman, Peter W. Gunnerman
  • Patent number: 7563345
    Abstract: A system for pyrocatalytic conversion of non-halogenated synthetic resinous material is reacted in a molten lead bath in an oxygen free environment, wherein the non-halogenated resinous material is mixed with a particulate catalyst in the lead bath which is at a temperature in the range from about 450° C. to 55° C., wherein the non-halogenated resinous waste is thermally and catalytically converted with at least 60% effectiveness into reusable hydrocarbons which are removed as vapor form the molten lead bath and recovered as useable hydrocarbons.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: July 21, 2009
    Inventor: Zbigniew Tokarz
  • Patent number: 7531703
    Abstract: The present invention provides a method of recycling a plastic thereby forming a narrow spectrum of hydrocarbons having from 4 to 14 carbon atoms that can be directly used as gasoline without additional processing or refining. The method includes the step of feeding the plastic, selected from the group of polyethylene, polypropylene, polystyrene, and combinations thereof, into a heated vessel for melting. The method also includes the step of decomposing the plastic at a temperature of from 400° C. to 500° C. in the presence of a metallocene catalyst and a zeolitic catalyst thereby forming the hydrocarbons having from 4 to 14 carbon atoms. The metallocene catalyst includes dichlorobis(2-methylindenyl)zirconium (IV). The zeolitic catalyst includes ammonium Y zeolite and has a pore size of from 1 to 4 Angstroms.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: May 12, 2009
    Assignee: Ecoplastifuel, Inc.
    Inventors: Swaminathan Ramesh, Joel Sibul
  • Publication number: 20090084666
    Abstract: In at least one embodiment of the present invention, a method for producing liquid hydrocarbons from biomass is provided. The method comprises hydropyrolizing biomass with a gaseous exhaust stream formed from one of gasification and reforming of carbon containing moiety (CCM). The gaseous exhaust stream includes hydrogen (H2) and at least one of carbon monoxide (CO), carbon dioxide (CO2) and water (H2O).
    Type: Application
    Filed: August 27, 2008
    Publication date: April 2, 2009
    Applicant: PURDUE RESEARCH FOUNDATION
    Inventors: Rakesh Agrawal, Navneet R. Singh
  • Publication number: 20090000938
    Abstract: Apparatus for the destructive reclamation of materials and energy from municipal wastes and other raw materials through the use of Microwave induced Gasification and Pyrolysis, where the waste or raw material may be circulated once or several times through the process thus enabling the programming of different processes to differing materials and desired end products. The form employed being linear, circulating conveyors or rotating carousels that may carry trays or crucibles, some of which may be equipped with linings that absorb microwaves to enable the early charring of materials that do not initially absorb microwaves and thus will not heat up on their own.
    Type: Application
    Filed: February 2, 2005
    Publication date: January 1, 2009
    Inventor: Kjell Ivar Kasin
  • Publication number: 20080286557
    Abstract: A system and process for gasification of a carbonaceous feedstock uses pyrolysis to produce a gas product, which may include methane, ethane, and other desirable hydrocarbon gases, and a solids product, which includes activated carbon or carbon. The gas product may then be filtered using at least a portion of the activated carbon from the solids product as a filtering medium. In an embodiment, at least some of the noxious chemicals are sequestered or removed from the gas product in one or more filtering steps using the activated carbon as a filtering medium. In a further embodiment, the filtering steps are performed in stages using activated carbon at different temperatures. A high-temperature pyrolysis system that produces activated carbon may be combined with another high-temperature pyrolysis system that does not produce activated carbon to provide filtering of noxious compounds using activated carbon from the first high-temperature pyrolysis system.
    Type: Application
    Filed: March 14, 2008
    Publication date: November 20, 2008
    Inventor: Richard D. TUCKER
  • Publication number: 20080217157
    Abstract: In a method and apparatus for thermal processing of slurry, slurry is combined with a bio-mass to produce a mixture. The mixture is subjected in a heated mixer pump to a cracking temperature, thereby allowing the mixture to catalytically undergo a cracking reaction to produce a reaction mixture which is directly outgased in the mixer pump to produce an outgased portion and a solid portion. The outgased portion and the solid portion are separately discharged from the mixer pump; with the low boiling fraction of the outgased portion allowed to cool down for further processing, and the solid portion collected in a residual matter container for further processing.
    Type: Application
    Filed: September 13, 2007
    Publication date: September 11, 2008
    Inventor: JURGEN BUCHERT
  • Patent number: 7423189
    Abstract: The present invention discloses a method of utilizing a catalytic reaction to recycle organic scrap, wherein via a special cracking equipment, a special catalyst and a two-stage cracking process, the present invention not only can effectively convert organic scrap into regenerated oil but also can promote the yield and quality of the regenerated oil; further, the method of the present invention can overcome environmental problems and has the characteristics of high safety, high stability, and high economic efficiency.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: September 9, 2008
    Inventor: Andy H. C. Chen
  • Patent number: 7223296
    Abstract: A hydrogen generation system may include a burner unit that generates combustion gas and a combustion gas passage through which the combustion gas generated by the burner unit flows. A reformer, having a reforming catalyst, generates a reformed gas containing hydrogen by steam reforming a feed material and steam using the heat from the combustion gas. An evaporator evaporates water into steam using the heat from the combustion gas, flowing through the combustion gas passage, and supplies the steam to the reformer. The combustion gas passage is arranged to cover at least a portion of an outer surface of the reformer, and the evaporator is arranged to cover at least a portion of an outer surface of the combustion gas passage.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: May 29, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tomonori Asou, Akira Maenishi, Yutaka Yoshida, Kunihiro Ukai, Yuji Mukai
  • Patent number: 6972085
    Abstract: A system for refining hydrocarbon containing materials in a continuous coking mode may provide a pyrolyzer (1) which may be inclined to effect a liquid seal between a liquid conduction environment (6) and a gaseous conduction environment (7). A heat source (9) may heat the material past the coking point and the system may include a screw or auger (10) which can continuously remove the coke while simultaneously outputting refined products.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: December 6, 2005
    Assignee: The University of Wyoming Research Corporation
    Inventors: Lee E. Brecher, Lyle A. Johnson, Jr., Vijay K. Sethi
  • Patent number: 6881303
    Abstract: A plastic as a material to be treated and an additive such as unsaturated fatty acid oil are mixed, and the mixture is heated in a pyrolysis tank at a temperature of 300° C. to 450° C. by a heating member to thereby thermally decompose the mixture. A gas component produced during the heating process is then removed and a pyrolysate is thus produced.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: April 19, 2005
    Assignee: Tokyo Ertec Co., Ltd.
    Inventors: Yoji Inoue, Satoru Aikawa, Norihiro Inagaki, Shigeru Tasaka
  • Patent number: 6777581
    Abstract: A subject of the invention is a method for transformation of polyolefin wastes into hydrocarbons and a plant for carrying thereof. According to the method, disintegrated polyolefin raw material is subjected in a reactor to the progressive heating to the temperature below 600° C. together with a catalyst chosen from a group comprising cements, heavy metal silicates and resinates and mixtures thereof, where a catalyst is used in an amount below 30% b.w., preferably in an amount of 5-10 % b.w., calculated on the weight of the polyolefin raw material.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: August 17, 2004
    Assignee: Smuda Technologies, Inc.
    Inventor: Henryk Zmuda
  • Patent number: 6774271
    Abstract: A system and method of converting waste plastics into hydrocarbon oil comprises a thermal cracking reactor, into which the waste plastics are cracked at a temperature in the range of 270-800° C. to obtain partly gaseous hydrocarbons, partly liquid hydrocarbons, and remaining residues. A continuous thermal cracking and residual discharging portion is connected to have the liquid hydrocarbons gradually and fully cracked into gaseous hydrocarbons, while the residues are discharged at a residual discharge outlet. A chlorine removal portion is connected to receive the gaseous hydrocarbons to remove chlorine from it. A catalytic cracking reactor is connected to the chlorine removal portion to have the gaseous hydrocarbons catalytic cracking with an acid catalyst. A three-stage cooling portion is adopted to have the catalytically cracked gaseous hydrocarbons fully converted into liquid hydrocarbons, i.e., hydrocarbon oil. A pressurized activation reaction portion is provided to remove few amount of S. N. P.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: August 10, 2004
    Inventor: Tianfu Jiang
  • Patent number: 6683227
    Abstract: A process for the thermocatalytic conversion of waste organic materials (e.g., waste tires) into reusable hydrocarbons is provided. The process entails providing the feedstock and catalyst comprising AlCl3 to a heated, stirred reactor. An overhead portion of vaporized hydrocarbons as well as vaporized AlCl3 is initially removed from the reactor via a discharge port. The composition of the removed hydrocarbons will vary depending on which of three modes the process is run: low reactor pressure, partial vacuum, and high pressures. Vaporized AlCl3 and a certain fraction of the hydrocarbons are subsequently removed via condensation and returned to the reactor. The composition of the condensed hydrocarbon fraction is controlled based on vapor pressure. The remaining vaporized hydrocarbon is recovered for subsequent uses. A reactor discharge portion is also removed from the reactor. This portion may contain unreacted feedstock and catalyst.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: January 27, 2004
    Inventors: Gerald M. Platz, James C. Holste, Dawid J. Duvenhage
  • Publication number: 20030196883
    Abstract: A plastic as a material to be treated and an additive such as unsaturated fatty acid oil are mixed, and the mixture is heated in a pyrolysis tank at a temperature of 300° C. to 450° C. by a heating member to thereby thermally decompose the mixture. A gas component produced during the heating process is then removed and a pyrolysate is thus produced.
    Type: Application
    Filed: February 28, 2001
    Publication date: October 23, 2003
    Applicant: Tokyo Ertec Co., Ltd.
    Inventors: Yoji Inoue, Satoru Aikawa, Norihiro Inagaki, Shigeru Tasaka
  • Publication number: 20030050519
    Abstract: A method for decomposing plastic waste to produce fuel materials makes the plastic waste decomposed by cracking and then inverted the plastic waste to be multiple fuel materials such as gas, gasoline, and diesel oil, and other byproducts such as hydrochloride acid and active carbon by fractionation. Whereby, the plastic waste is reused in an efficient and beneficial way.
    Type: Application
    Filed: September 11, 2001
    Publication date: March 13, 2003
    Inventor: Ming-Chin Cheng
  • Publication number: 20030009068
    Abstract: A process for the thermocatalytic conversion of waste organic materials (e.g., waste tires) into reusable hydrocarbons is provided. The process entails providing the feedstock and catalyst comprising AlCl3 to a heated, stirred reactor. An overhead portion of vaporized hydrocarbons as well as vaporized AlCl3 is initially removed from the reactor via a discharge port. The composition of the removed hydrocarbons will vary depending on which of three modes the process is run: low reactor pressure, partial vacuum, and high pressures. Vaporized AlCl3 and a certain fraction of the hydrocarbons are subsequently removed via condensation and returned to the reactor. The composition of the condensed hydrocarbon fraction is controlled based on vapor pressure. The remaining vaporized hydrocarbon is recovered for subsequent uses. A reactor discharge portion is also removed from the reactor. This portion may contain unreacted feedstock and catalyst.
    Type: Application
    Filed: June 13, 2001
    Publication date: January 9, 2003
    Inventors: Gerald M. Platz, James C. Holste, Dawid J. Duvenhage
  • Patent number: 6504068
    Abstract: A method of converting a plastic waste into oil by decomposing the plastic waste by a reaction using water in a supercritical or near supercritical region as a reaction medium. In this method, the reaction is conducted by using a tubular continuous reactor. The present invention further provides an apparatus therefor. Moreover, the present invention provides a method of converting a plastic waste into oil by conducting the reaction after hydrogen chloride is removed by performing the pyrolysis of the plastic waste in the case that the plastic waste contain chlorine. The present invention further provides an apparatus for performing this method.
    Type: Grant
    Filed: June 6, 1997
    Date of Patent: January 7, 2003
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Wataru Matsubara, Hiroshi Makihara, Kazuto Kobayashi, Masaki Iijima
  • Patent number: 6423878
    Abstract: An apparatus for the pyrolysis (cracking) of a polymeric material consisting of a reactor provided with a molten catalyst bed and a feeding extruder for introducing the polymeric material into the catalyst bed. The process consists in the introduction of a polymeric material in the molten catalyst bed for converting a variety of polymers, side-chain plastics, linear-chain plastics and halogenated plastics, such as for example PVC, into hydrocarbon products which are useful for energy generation while avoiding the pollution problems associated with the direct combustion of plastic materials. The process can also be used for cracking mixtures of polymeric material derived from the sorting of municipal solid waste.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: July 23, 2002
    Inventor: Riccardo Reverso
  • Patent number: 6372948
    Abstract: An improved process and apparatus for the destructive distillation or pyrolysis of rubber, such as used rubber tires, to produce liquid and gaseous hydrocarbons and a solid carbonaceous char. A heat transfer gas circulating in a circulation loop is used to cool the hot char produced in the distillation chamber of a distillation oven, the circulation loop having some means for removing the heat transferred to the heat transfer gas from the hot char. In one embodiment, two distillation ovens are operated in off-set, batchwise distillation cycles. The distillation cycles in the two ovens are coordinated so that a fresh charge of rubber feed is introduced into the distillation chamber of one of the ovens as the distillation of rubber in the other oven is concluded.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: April 16, 2002
    Assignee: Gentech, Inc.
    Inventor: V. J. Flanigan
  • Publication number: 20020007595
    Abstract: The invention relates to a method and a device for autothermally reforming hydrocarbons. According to the invention, the fuel is fed to a reforming reactor via a feeding device. The resulting reformate is conveyed to the reforming starting materials in a heat exchanger in a reverse direction flow, in such a way that heat is exchanged, said starting materials being conveyed from the outside inwards. The fuel supplied by the feeding device is delivered directly to the reaction zone together with the starting material. Said reaction zone has a catalyst. The combustion and reforming or catalysis processes are then carried out simultaneously and in the same area in the reaction zone.
    Type: Application
    Filed: August 27, 2001
    Publication date: January 24, 2002
    Inventors: Uli Maier-Roeltgen, Alexander Schuler, Hartmut Finkbeiner
  • Publication number: 20010056214
    Abstract: An apparatus for the pyrolysis (cracking) of a polymeric material consisting of a reactor provided with a molten catalyst bed and a feeding extruder for introducing the polymeric material into the catalyst bed. The process consists in the introduction of a polymeric material in the molten catalyst bed for converting a variety of polymers, side-chain plastics, linear-chain plastics and halogenated plastics, such as for example PVC, into hydrocarbon products which are useful for energy generation while avoiding the pollution problems associated with the direct combustion of plastic materials. The process can also be used for cracking mixtures of polymeric material derived from the sorting of municipal solid waste.
    Type: Application
    Filed: August 8, 2001
    Publication date: December 27, 2001
    Inventor: Riccardo Reverso
  • Patent number: 6310264
    Abstract: A method for processing material comprising combinations of aluminum and plastic, such as aluminum bottle caps having a plastic coating, comprising the steps of: pyrolyzing the plastic in an inert atmosphere, cracking or gasifying the gases or vapours which are released in the course of pyrolysis, afterburning the coke which remains behind on the aluminum in the course or pyrolysis. The gases or vapours released are recirculated and are used, during pyrolysis, as an inert, oxygen-free medium.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: October 30, 2001
    Assignee: Alcoa Nederland B.V.
    Inventor: Ronald Gerard Kamst
  • Patent number: 6271427
    Abstract: The invention relates to a method for the recovery of carbon and combinations of hydrocarbons from discarded tyres or similar polymeric material by pyrolysis, using a reactor (3) in which the material is placed in a preferably largely fragmented condition, whereby the material is heated to pyrolysis temperature by the recirculation of previously formed and heated pyrolysis gas which is led through the material and where the pyrolysis gas obtained in this way is brought to condense to condensable products in a condenser (8) connected to the reactor.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: August 7, 2001
    Inventor: Bengt-Sture Ershag
  • Patent number: 6255547
    Abstract: The subject of the invention is the method of obtaining liquid fuels from polyolefine wastes. According to the method, properly disintegrated polyolefines in an amount of 100 parts y weight are heated in the temperatures between 300° C. to 450° C. till the moment of a decay of volatile product forming, in the presence of heavy metals silicates as catalysts, added in amounts of 1-30 parts by weight. As catalyst, the silicates of iron Fe3+, cobalt Co2+, nickel Ni2+, manganium Mn2+, chromium Cr3+, copper Cu2+, zinc Zn2+, cadmium Cd2+ and/or their mixtures are used. The catalyst is applied in an amorphic form in an amount from 5 to 10 % by weight, calculated on the mass of the raw material. The catalyst is recycled and used multiply. A process is run in a continous way.
    Type: Grant
    Filed: March 15, 1999
    Date of Patent: July 3, 2001
    Inventor: Heinrich Smuda
  • Patent number: 6204421
    Abstract: A method for recycling a waste stream containing water and solids comprises (a) removing water from the waste stream to produce a second stream containing less than 60% by weight water, (b) drying the second stream to produce a waste feed charge containing less than 15% by weight water, and (c) injecting the waste feed charge into a coker during the coking cycle. The water removal can be carried out in one or more steps, and can be carried out in a vertical disk centrifuge if it is also desired to reduce the particle size of the solids fraction. The waste feed charge can be injected into a delayed coker, flexicoker, or fluid coker, and allows the recycle of solid waste into the coke.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: March 20, 2001
    Assignee: Scaltech Inc.
    Inventors: Klaus Genssler, Raymond R. Ruth
  • Patent number: 6184427
    Abstract: A process of activated cracking of high molecular organic waste material which includes confining the organic waste material in a reactor space as a mixture with a pulverized electrically conducting material (sensitizer) and/or catalysts and/or “upgrading agents” and treating this mixture by microwave or radio frequency electro-magnetic radiation. Organic waste materials include hydrocarbons or their derivatives, polymers or plastic materials and shredded rubber. The shredded rubber can be the source of the sensitizer and/or catalyst material as it is rich in carbon and other metallic species. This sensitizer can also consist of pulverized coke or pyrolytically carbonized organic feedstock and/or highly dispersed metals and/or other inorganic materials with high dielectric loss which absorb microwave or radio frequency energy.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: February 6, 2001
    Assignee: Invitri, Inc.
    Inventors: James S. Klepfer, Travis W. Honeycutt, Viktor Sharivker, Gulshen Tairova
  • Patent number: 6172271
    Abstract: This invention provides a method for reclaiming oil from waste plastic in such a way that thermosetting resins and solid foreign matter in the plastic will not pose a problem. This method greatly reduces the burden of presorting the garbage or industrial waste. To achieve this objective when oil is to be reclaimed from a waste plastic containing chlorine compounds, such as vinyl chloride, the plastic must first be stripped of chlorine. Prior to pyrolysis, while being conveyed forward in a continuous stream, the plastic is mixed with heated sand and/or an additive agent to raise its temperature to 250-350° C. This creates a product which is comprised of a mixture of sand and substantially dechlorinated plastic. The product is mixed with heated sand to heat it directly to a temperature of 350-500° C. It is maintained at this temperature until pyrolysis occurs.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: January 9, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hirotoshi Horizoe, Takeshi Amari, Hiroshi Nagai, Shizuo Yasuda, Yuji Kaihara, Yoshimasa Kawami, Yasumasa Matsukawa