Ion Beam Etching (e.g., Ion Milling, Etc.) Patents (Class 204/192.34)
  • Patent number: 9806393
    Abstract: A microwave/millimeter device having a narrow gap between two parallel surfaces of conducting material by using a texture or multilayer structure on one of the surfaces is disclosed. The fields are mainly present inside the gap, and not in the texture or layer structure itself, so the losses are small. The microwave/millimeter wave device further includes one or more conducting elements, such as a metallized ridge or a groove in one of the two surfaces, or a metal strip located in a multilayer structure between the two surfaces. The waves propagate along the conducting elements. At least one of the surfaces is provided with means to prohibit the waves from propagating in other directions between them than along the ridge, groove or strip. At very high frequency, the gap waveguides and gap lines may be realized inside an IC package or inside the chip itself.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: October 31, 2017
    Assignee: GAPWAVES AB
    Inventors: Per-Simon Kildal, Sjoerd Haasl, Peter Enoksson
  • Patent number: 9748441
    Abstract: A method of manufacturing a semiconductor light emitting device, including arranging a plurality of particles in a monolayer on a substrate, dry etching the plurality of particles arranged to provide a void between the particles in a condition IN which the particles are etched while the substrate is not substantially etched; and dry etching the substrate using the plurality of particles after the particle etching step as an etching mask, thereby forming an uneven structure on one surface of the substrate.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: August 29, 2017
    Assignee: OJI HOLDINGS CORPORATION
    Inventors: Yoshihisa Hatta, Kei Shinotsuka, Kotaro Dai, Yasuhito Kajita
  • Patent number: 9741536
    Abstract: Curtaining artifacts on high aspect ratio features are reduced by reducing the distance between a protective layer and feature of interest. For example, the ion beam can mill at an angle to the work piece surface to create a sloped surface. A protective layer is deposited onto the sloped surface, and the ion beam mills through the protective layer to expose the feature of interest for analysis. The sloped mill positions the protective layer close to the feature of interest to reduce curtaining.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: August 22, 2017
    Assignee: FEI Company
    Inventors: Sang Hoon Lee, Stacey Stone, Jeffrey Blackwood, Michael Schmidt
  • Patent number: 9721767
    Abstract: In some examples, a method comprising depositing a functional layer (e.g., a magnetic layer) over a substrate; depositing a granular layer over the functional layer, the granular layer including a first material defining a plurality of grains separated by a second material defining grain boundaries of the plurality of grains; removing the second material from the granular layer such that the plurality of grains of the granular layer define a hard mask layer on the functional layer; and removing portions of the functional layer not masked by the hard mask layer, wherein the depositing of the functional layer, the depositing of the granular layer, removing the second material, and removing the portions of the functional layer are performed in a vacuum environment.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: August 1, 2017
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Hao Wang, Haibao Zhao
  • Patent number: 9660603
    Abstract: A method of fabricating a sloped termination of a molybdenum layer includes providing the molybdenum layer and applying a photo resist material to the molybdenum layer. The photo resist material is exposed under a defocus condition to generate a resist mask having an edge portion. The molybdenum layer is etched at least at the edge portion of the resist mask to result in a sloped termination of the molybdenum layer.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: May 23, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Neng Jiang, Elizabeth Costner Stewart, Nicholas S. Dellas
  • Patent number: 9653309
    Abstract: A process for forming trenches in a target material includes forming a masking layer onto the target material, where the masking layer comprises a material having high selectivity to a plasma etch gas adapted for etching the target material. A pattern is formed in the masking layer to expose portions of the target material and the sample is placed on an angle mount at a pre-determined angle relative to a cathode of a reactive ion etcher so that the target material is within a plasma dark space of the plasma etch gas. Ballistic ions within the plasma dark space form a trench structure within the target material. The process may further include repeating the steps of positioning the sample and etching the exposed portions of the target material with the substrate at a different angle to define a triangular structure.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: May 16, 2017
    Assignee: The Regents of the University of California
    Inventors: Robert C. Dynes, Peter Roediger, Travis Wong, Shane A. Cybart
  • Patent number: 9620382
    Abstract: Plasma-based atomic layer etching of materials may be of benefit to various semiconductor manufacturing and related technologies. For example, plasma-based atomic layer etching of materials may be beneficial for adding and/or removing angstrom thick layers from a surface in advanced semiconductor manufacturing and related technologies that increasingly demand atomistic surface engineering. A method may include depositing a controlled amount of a chemical precursor on an unmodified surface layer of a substrate to create a chemical precursor layer and a modified surface layer. The method may also include selectively removing a portion of the chemical precursor layer, a portion of the modified surface layer and a controlled portion of the substrate. Further, the controlled portion may be removed to a depth ranging from about 1/10 of an angstrom to about 1 nm. Additionally, the deposition and selective removal may be performed under a plasma environment.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: April 11, 2017
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Gottlieb S. Oehrlein, Dominik Metzler
  • Patent number: 9610717
    Abstract: A method for manufacturing composite of resin and other materials includes the following steps. A shaped piece made by materials different with resin is provided, and is degreased and cleaned. A resist layer with a lot of location holes is formed on the surface of the heterogeneous member by nano-imprint lithography, and a lot of small holes are formed on the surface of the heterogeneous member while the resist layer is removed. Then the heterogeneous member is inserted in an injection mold, and molten crystalline thermoplastic resin is injected into the mold, thus the resin embedded into the holes and bonding with the shaped piece. The method is environmentally friendly and suitable for mass production.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: April 4, 2017
    Assignees: Fu Tai Hua Industry (Shenzhen) Co., Ltd., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Shyan-Juh Liu, Kar-Wai Hon, Sha-Sha Liu
  • Patent number: 9599667
    Abstract: The various technologies presented herein relate to utilizing visible light in conjunction with a thinned structure to enable characterization of operation of one or more features included in an integrated circuit (IC). Short wavelength illumination (e.g., visible light) is applied to thinned samples (e.g., ultra-thinned samples) to achieve a spatial resolution for laser voltage probing (LVP) analysis to be performed on smaller technology node silicon-on-insulator (SOI) and bulk devices. Thinning of a semiconductor material included in the IC (e.g., backside material) can be controlled such that the thinned semiconductor material has sufficient thickness to enable operation of one or more features comprising the IC during LVP investigation.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: March 21, 2017
    Assignee: Sandia Corporation
    Inventors: Joshua Beutler, John Joseph Clement, Mary A. Miller, Jeffrey Stevens, Edward I. Cole, Jr.
  • Patent number: 9515457
    Abstract: A particular quantum cascade laser includes a ridge-guide. The ridge-guide includes an angled facet that extends across a width of the ridge-guide and a flat facet that extends across the width of the ridge-guide. A first distance between the flat facet and the angled facet along a first side of the ridge-guide is different than a second distance between the flat facet and the angled facet along a second side of the ridge-guide.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: December 6, 2016
    Assignee: The Boeing Company
    Inventors: Michael Lee Tilton, Gregory C. Dente
  • Patent number: 9514953
    Abstract: Implementations described herein generally relate to semiconductor manufacturing and more particularly to methods for etching a low-k dielectric barrier layer disposed on a substrate using a non-carbon based approach. In one implementation, a method for etching a barrier low-k layer is provided. The method comprises (a) exposing a surface of the low-k barrier layer to a treatment gas mixture to modify at least a portion of the low-k barrier layer and (b) chemically etching the modified portion of the low-k barrier layer by exposing the modified portion to a chemical etching gas mixture, wherein the chemical etching gas mixture includes at least an ammonium gas and a nitrogen trifluoride gas or at least a hydrogen gas and a nitrogen trifluoride gas.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: December 6, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chia-Ling Kao, Sean Kang, Jeremiah T. Pender, Srinivas D. Nemani, He Ren, Mehul Naik
  • Patent number: 9507251
    Abstract: According to one embodiment, a method is disclosed for manufacturing a reflective mask. The method can include forming a reflection layer on a major surface of a substrate. The method can include forming an absorption layer on the reflection layer. The method can include forming a pattern region in the absorption layer. In addition, the method can include forming a light blocking region surrounding the pattern region in the absorption layer and the reflection layer. The forming the light blocking region includes etching-processing the reflection layer using a gas containing chlorine and oxygen.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: November 29, 2016
    Assignees: SHIBAURA MECHATRONICS CORPORATION, KABUSHIKI KAISHA TOPCON
    Inventors: Tomoaki Yoshimori, Makoto Karyu, Takeharu Motokawa, Kosuke Takai, Yoshihisa Kase
  • Patent number: 9500789
    Abstract: An array of nanowires with a period smaller then 150 nm can be used for applications such as an optical polarizer. A hard nanomask can be used to manufacture such structures. This nanomask includes a substantially periodic array of substantially parallel elongated elements having a wavelike cross-section. The fabrication method of the nanomask may be contactless and uses ion beams.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 22, 2016
    Assignee: Wostec, Inc.
    Inventors: Valery K. Smirnov, Dmitry S. Kibalov
  • Patent number: 9480140
    Abstract: A neutral beam is scanned across a workpiece surface and the beam angle is controlled in a manner that avoids variation in the beam source-to-workpiece distance during scanning.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: October 25, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sang Ki Nam, Ludovic Godet
  • Patent number: 9418817
    Abstract: A focused ion beam apparatus has an emitter for emitting an ion beam, an ion source chamber accommodating the emitter, a cooling unit and a heating unit for cooling and heating, respectively, the emitter, and an ion source gas supply section for supplying to the ion source chamber an ion source gas that is exchangeable with another ion source gas. A control section controls an operation of the cooling unit such that a temperature of a wall surface contacting the ion source gas in the ion source chamber is maintained at a temperature higher than a temperature at which the ion source gas before and after the exchange freezes. The control section controls an operation of the heater so that the emitter is temporarily heated to release the ion source gas from a surface of the emitter before the ion source gas is exchanged with the other ion source gas.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: August 16, 2016
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Fumio Aramaki, Yasuhiko Sugiyama, Hiroshi Oba
  • Patent number: 9401262
    Abstract: The present invention provides a plasma ion beam system that includes multiple gas sources and that can be used for performing multiple operations using different ion species to create or alter submicron features of a work piece. The system preferably uses an inductively coupled, magnetically enhanced ion beam source, suitable in conjunction with probe-forming optics sources to produce ion beams of a wide variety of ions without substantial kinetic energy oscillations induced by the source, thereby permitting formation of a high resolution beam.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: July 26, 2016
    Assignee: FEI COMPANY
    Inventors: Noel Smith, Clive D. Chandler, Mark W. Utlaut, Paul P. Tesch, David William Tuggle
  • Patent number: 9348067
    Abstract: The present invention relates to phase-contrast imaging which visualizes the phase information of coherent radiation passing a scanned object. Focused gratings are used which reduce the creation of trapezoid profile in a projection with a particular angle to the optical axis. A laser supported method is used in combination with a dedicating etching process for creating such focused grating structures.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: May 24, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gereon Vogtmeier, Klaus Juergen Engel, Thomas Koehler, Ewald Roessl
  • Patent number: 9209271
    Abstract: A vertical III-V nanowire Field-Effect Transistor (FET). The FET includes multiple nanowires or nanopillars directly connected to a drain contact, where each of the nanopillars includes a channel of undoped III-V semiconductor material. The FET further includes a gate dielectric layer surrounding the plurality of nanopillars and a gate contact disposed on a gate metal which is connected to the gate dielectric layer. Additionally, the FET includes a substrate of doped III-V semiconductor material connected to the nanopillars via a layer of doped III-V semiconductor material. In addition, the FET contains a source contact directly connected to the bottom of the substrate. By having such a structure, electrostatic control and integration density is improved. Furthermore, by using III-V materials as opposed to silicon, the current drive capacity is improved. Additionally, the FET is fabricated using nanosphere lithography which is less costly than the conventional photo lithography process.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: December 8, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jack C. Lee, Fei Xue
  • Patent number: 9102190
    Abstract: A nanotip, is fabricated by modifying a precursor nanotip having an apex and a shank by applying an electric field in the presence of a reactive gas to perform field-assisted etching wherein atoms are preferentially removed from the shank by chemical interaction with the reactive gas, and controlling the reactive gas pressure and/or tip voltage to vary the electric field so as to promote field evaporation of apex atoms during fabrication of the nanotip and thereby control the overall profile of the resulting nano-tip. The method permits shaping of the overall tip profile.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: August 11, 2015
    Assignees: National Research Council of Canada, The Governors of the University of Alberta
    Inventors: Jason L. Pitters, Radovan Urban, Robert A Wolcow
  • Patent number: 9082587
    Abstract: A method for forming a polished facet between an edge and a face of a sample, involves removing a first portion of the sample by directing an ion beam onto the edge adjacent the first portion along an ion beam axis to leave the polished facet. The ion beam axis lies on an ion beam plane oriented at a glancing incident angle, preferably from 1° to 30°, to a sample plane defined by and parallel to the first face. The ion beam is directed to flow from the edge towards the first face. Also disclosed is a sample preparation apparatus comprising a chamber adapted for evacuation with a sample holder adapted to hold a sample comprising a first face bounded by an edge, and an ion gun arranged to direct an ion beam along an ion beam axis towards the sample.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: July 14, 2015
    Assignee: Lancaster University Business Enterprises Limited
    Inventors: Oleg Victor Kolosov, Ilja Grishin
  • Patent number: 9075195
    Abstract: A color filter including a substrate, a plurality of single film filter units and a plurality of multi-film filter units is provided. The substrate has a first region and a second region. The single-film filter units are respectively disposed on the substrate and within the first region. The multi-film filter units are respectively disposed on the substrate and within the second region. When a white beam is projected on the color filter, the single-film filter units and the multi-film filter units reflect a plurality of color beams. The multi-film filter units include a plurality of first multi-film filter units. When the white beam is projected on the first multi-film filter units, the first multi-film filter units reflect a first color beam.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: July 7, 2015
    Assignee: HIMAX SEMICONDUCTOR, INC.
    Inventors: Shao-Min Hung, Han-Kang Liu, Bo-Nan Chen
  • Publication number: 20150147525
    Abstract: Methods for enabling or enhancing growth of carbon nanotubes on unconventional substrates. The method includes selecting an inactive substrate, which has surface properties that are not favorable to carbon nanotube growth. A surface of the inactive substrate is treated so as to increase a porosity of the same. CNTs are then grown on the surface having the increased porosity.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Applicant: Government of the United States as Represented by the Secretary of the Air Force
    Inventors: Benji Maruyama, Gordon A. Sargent, Ahmad E. Islam
  • Publication number: 20150136458
    Abstract: Disclosed herein are a printed circuit board and a method of manufacturing the same. In detail, according to a preferred embodiment of the present invention, the printed circuit board includes: an insulating layer; and a metal layer formed on the insulating layer, wherein in the metal layer, a ratio occupied by crystal orientations of (110) and (112) is 20 to 80%. By doing so, the preferred embodiment of the present invention provides a printed circuit board including the metal layer having different crystal orientations to minimize factors of hindering electrical characteristics such as electric conductivity and improve isotropy of mechanical properties and a method of manufacturing the printed circuit board.
    Type: Application
    Filed: February 17, 2014
    Publication date: May 21, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Eun Ju Yang, Gyu Seok Kim, Suk Jin Ham, Se Yoon Park, Jin Uk Cha, Hee Suk Chung, Mi Yang Kim
  • Publication number: 20150118520
    Abstract: A magnetic read sensor having improved pinning and reduced area resistance. The sensor has pinned magnetic layer that extends beyond the functional stripe of the sensor to improve magnetic pinning. The free layer has a magnetic portion that extends to the functional stripe height and a non-magnetic portion that extends beyond the functional stripe height. The sensor may have an end point detection layer located between the magnetic pinned layer and the magnetic free layer.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Yongchul Ahn, Xiaozhong Dang, Cherngye Hwang, Quang Le, Simon H. Liao, Guangli Liu, Stefan Maat
  • Publication number: 20150118625
    Abstract: Provided herein is a method, including a) transferring an initial pattern of an initial template to a substrate; b) performing block copolymer self-assembly over the substrate with a density multiplication factor k; c) creating a subsequent pattern in a subsequent template with the density multiplication factor k; and d) repeating steps a)-c) with the subsequent template as the initial template until a design specification for the subsequent pattern with respect to pattern density and pattern resolution is met.
    Type: Application
    Filed: January 2, 2015
    Publication date: April 30, 2015
    Inventors: XiaoMin Yang, Zhaoning Yu, Kim Yang Lee, Michael Feldbaum, Yautzong Hsu, Wei Hu, Shuaigang Xiao, Henry Yang, HongYing Wang, Rene Johannes Marinus van de Veerdonk, David Kuo
  • Publication number: 20150101365
    Abstract: An identifiable mark on a portion of a polished facet of a surface of an article and being identifiable by an optical magnifying viewing device, said identifiable mark comprising a nano-structure formed by a two-dimensional or a three-dimensional lattice of a plurality of discrete nanometer sized recessed or protruded entities, wherein said entities are arranged within a predefined region of said polished facet in a predetermined arrangement in relation to each other and such that an outer interface surface between the facet of the article and air is formed and an inner interface surface between the facet of the article and air is formed. Said predetermined arrangement of said entities is non-uniform and non-periodic arrangement, and wherein said entities are sized and shaped so as to cause optical scattering upon reflection of incident light and the distance from the inner interface surface to the outer interface surface is greater than the amplitude of the non-marked portion of said polished face.
    Type: Application
    Filed: May 23, 2014
    Publication date: April 16, 2015
    Inventors: Koon Chung HUI, Wing Chi TANG, Ho CHING
  • Publication number: 20150090583
    Abstract: The present invention has an objective to provide a processing method and an ion beam processing apparatus capable of inhibiting deposition of redeposited films even for fine patterns. In an embodiment of the present invention, ion beam processing is performed such that an etching amount of an ion beam incident in extending directions of pattern trenches formed on a substrate is made larger than the etching amount of the ion beam incident in other directions. This processing enables fine patterns to be processed while inhibiting redeposited films from being deposited on the bottom portions of the trenches of the fine patterns.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: YOSHIMITSU KODAIRA, ISAO TAKEUCHI, MIHOKO NAKAMURA
  • Publication number: 20150083581
    Abstract: A method of treating a substrate includes directing ions to the substrate along at least one non-zero angle with respect to a perpendicular to a substrate surface in a presence of a reactive ambient containing a reactive species where the substrate includes a surface feature. At least one surface of the surface feature is etched using the ions in combination with the reactive ambient at a first etch rate that is greater than a second etch rate when the ions are directed to the substrate without the reactive ambient and greater than a third etch rate when the reactive ambient is provided to the substrate without the ions.
    Type: Application
    Filed: March 31, 2014
    Publication date: March 26, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Steven R. Sherman, Simon Ruffell, John Hautala, Adam Brand
  • Publication number: 20150075972
    Abstract: An improved method of preparing a TEM sample. A sample is extracted from a work piece and attached to a probe for transport to a sample holder. The sample is attached to the sample holder using charged particle beam deposition, and mechanically separated from probe by moving the probe and the sample holder relative to each other, without severing the connection using a charged particle beam.
    Type: Application
    Filed: August 11, 2014
    Publication date: March 19, 2015
    Applicant: FEI Company
    Inventor: Corey Senowitz
  • Publication number: 20150064092
    Abstract: Methods of producing fibrous solid carbon forests include reacting carbon oxides with gaseous reducing agents in the presence of a catalyst having a predetermined grain size to cause growth of fibrous solid carbon forests upon a surface of the metal. The fibrous solid carbon forests are substantially perpendicular to the surface of the metal thus creating the “forests”. A bi-modal forest composition of matter is described in which a primary distribution of fibrous solid carbon comprises the forest and a secondary distribution of fibrous solid carbon is entangled with the primary distribution. A reactor includes a catalyst, a means for facilitating the reduction of a carbon oxide to form solid carbon forests on a surface of the catalyst, and a means for removing the solid carbon forest from the surface of the metal catalyst.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 5, 2015
    Applicant: SEERSTONE LLC
    Inventor: Dallas B. Noyes
  • Publication number: 20150060392
    Abstract: A three-dimensional nanostructures and a method for fabricating the same, and more particularly to three-dimensional structures of various shapes having high aspect ratio and uniformity in large area and a method of fabricating the same by attaching a target material to the outer surface of patterned polymer structures using an ion bombardment phenomenon occurring during a physical ion etching process to form target material-polymer composite structures, and then removing the polymer from the target material-polymer structures. A three-dimensional nanostructures with high aspect ratio and uniformity can be fabricated by a simple process at low cost by using the ion bombardment phenomenon occurring during physical ion etching. Also, nanostructures of various shapes can be easily fabricated by controlling the pattern and shape of polymer structures. In addition, uniform fine nanostructures having a thickness of 10 nm or less can be formed in a large area.
    Type: Application
    Filed: October 10, 2014
    Publication date: March 5, 2015
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Hee-Tae JUNG, Hwan-Jin Jeon, Kyoung-Hwan Kim, Youn-Kyoung Baek
  • Patent number: 8968537
    Abstract: Embodiments of the invention provide sputtering targets utilized in physical vapor deposition (PVD) and methods to form such sputtering targets. In one embodiment, a sputtering target contains a target layer disposed on a backing plate, and a protective coating layer—usually containing a nickel material—covering and protecting a region of the backing plate that would otherwise be exposed to plasma during the PVD processes. In many examples, the target layer contains a nickel-platinum alloy, the backing plate contains a copper alloy (e.g., copper-zinc), and the protective coating layer contains metallic nickel. The protective coating layer eliminates the formation of highly conductive, copper contaminants typically derived by plasma erosion of the copper alloy contained within the exposed surfaces of the backing plate. Therefore, the substrates and the interior surfaces of the PVD chamber remain free of such copper contaminants during the PVD processes.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: March 3, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Muhammad M. Rasheed, Rongjun Wang
  • Publication number: 20150053548
    Abstract: An improved method of preparing ultra-thin TEM samples that combines backside thinning with an additional cleaning step to remove surface defects on the FIB-facing substrate surface. This additional step results in the creation of a cleaned, uniform “hardmask” that controls the ultimate results of the sample thinning, and allows for reliable and robust preparation of samples having thicknesses down to the 10 nm range.
    Type: Application
    Filed: September 30, 2014
    Publication date: February 26, 2015
    Applicant: FEI Company
    Inventors: Jeffrey Blackwood, Matthew Bray, Corey Senowitz, Cliff Bugge
  • Patent number: 8945406
    Abstract: A method for manufacturing a symbol on an exterior of an electronic device is provided. The method includes preparing a support layer, preparing a nanograting layer on the support layer, the nanograting layer including a first nanograting area corresponding to a preset symbol and a second nanograting area corresponding to an area other than the preset symbol, wherein each of the first nanograting area and the second nanograting area includes three-dimensional (3D) nanostructures and a pitch between the 3D nanostructures arranged in the first nanograting area is different from a pitch between the 3D nanostructures arranged in the second nanograting area.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: February 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-eun Chung, Il-yong Jung
  • Publication number: 20150014152
    Abstract: Methods of patterning conductive layer with a mask are described. The methods include low-ion-mass sputtering of the conductive layer by accelerating (e.g. helium or hydrogen containing ions) toward a substrate which includes the patterned mask and the underlying conductive layer. The sputtering processes described herein selectively remove conductive layers while retaining mask material.
    Type: Application
    Filed: October 1, 2013
    Publication date: January 15, 2015
    Applicants: International Business Machines Corporation, Applied Materials, Inc.
    Inventors: Mark Hoinkis, Hiroyuki Miyazoe, Eric Joseph
  • Publication number: 20150002961
    Abstract: A scissor type magnetic sensor having a soft magnetic bias structure located at a back edge of the sensor stack. The sensor stack includes first and second magnetic free layers that are anti-parallel coupled across a non-magnetic layer sandwiched there-between. The soft magnetic bias structure has a length as measured perpendicular to the air bearing surface that is greater than its width as measured parallel with the air bearing surface. This shape allows the soft magnetic bias structure to have a magnetization that is maintained in a direction perpendicular to the air bearing surface and which allows the bias structure to maintain a magnetic bias field for biasing the free layers of the sensor stack.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Inventors: Christopher D. Keener, Quang Le, David J. Seagle, Neil Smith, Petrus A. Van Der Heijden
  • Publication number: 20140353142
    Abstract: In order to easily exchange a depleted dielectric member in a substrate processing apparatus, a faraday shield provided opposite to an antenna across a component member made of a dielectric, a first dielectric member provided opposite to the antenna across the component member and the faraday shield, and a second dielectric member provided opposite to the antenna across the component member, the faraday shield, and the first dielectric member are provided, and the second dielectric member is placed on a protrusion part formed on a vacuum container in the substrate processing apparatus.
    Type: Application
    Filed: December 19, 2012
    Publication date: December 4, 2014
    Inventor: Yukito Nakagawa
  • Publication number: 20140353141
    Abstract: A method for fabricating a holographic blazed grating is provided. The method includes: coating a photoresist layer on a substrate; performing lithography on the photoresist layer to form a photoresist grating; performing vertical ion beam etching on the substrate by using the photoresist grating as a mask, to form a homogeneous grating by transferring a pattern of the photoresist grating onto the substrate; cleaning the substrate to remove remaining photoresist; performing tilted Ar ion beam scanning etching on the substrate by using the homogeneous grating as a mask, and etching different portions of the substrate by utilizing a obscuring effect of the homogeneous grating mask on the ion beam, to form a triangular groove shape of the blazed grating; and cleaning the substrate to obtain the holographic blazed grating.
    Type: Application
    Filed: October 15, 2012
    Publication date: December 4, 2014
    Inventors: Quan Liu, Jianhong Wu, Minghui Chen
  • Publication number: 20140347038
    Abstract: A probe, comprising: a shank region having a top surface integrally connected to a bottom surface of a conical region; a pyramidal tip region having a base surface integrally connected to a top surface of the conical region; and wherein the base surface of the pyramidal tip region is contained within a perimeter of the top surface of the conical region. Also a method of fabricating the probe and a method of probing devices under test.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 27, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David R. Goulet, Walter V. Lepuschenko
  • Patent number: 8894828
    Abstract: Etch assisting agents for focused ion beam (FIB) etching of copper for circuit editing of integrated circuits both prevent loss of adjacent dielectric due to sputtering by the ion beam, and render sputtered re-deposited copper on adjacent surfaces non-conductive to avoid electrical short circuits. The agents are characterized by having an N—N (N being Nitrogen) bonding in their molecules and boiling points between about 70° C. and about 220° C., and include hydrazine and water solutions, hydrazine derivatives, NitrosAmine derivatives saturated with two hydrocarbon groups selected from Methyl, Ethyl, Propyl and Butyl, NitrosAmine related compounds, and Nitrogen Tetroxide. Preferred agents are Hydrazine monohydrate (HMH), HydroxyEthylHydrazine (HEH), CEH, BocMH, BocMEH, NDMA, NDEA, NMEA, NMPA, NEPA, NDPA, NMBA, NEBA, NPYR, NPIP, NMOR and Carmustine, alone or in combination with Nitrogen Tetroxide. The agents are effective for etching copper in high aspect ratio (deep) holes.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 25, 2014
    Assignee: Tiza Lab, LLC
    Inventor: Vladimir V. Makarov
  • Patent number: 8897910
    Abstract: The invention relates to a new technology which uses a surface modification method for ultra-precision machining, and in particular relates to a particle beam-assisted ultraprecision machining method for single-crystal brittle materials. The invention, the particle beam-assisted ultra-precision machining method for single-crystal brittle materials, can significantly improve machining accuracy, reduce surface finish and greatly reduce tool wear during ultra-precision machining of brittle materials.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: November 25, 2014
    Assignee: Tianjin University
    Inventors: Fengzhou Fang, Yunhui Chen, Zongwei Xu, Zhongjun Qiu, Xiaodong Zhang, Tengfei Dai, Xiaotang Hu
  • Publication number: 20140332372
    Abstract: An isotropic etching process can be performed with high uniformity. A plasma etching method of etching an etching target layer containing silicon includes preparing a processing target object having the etching target layer in a processing chamber; removing an oxide film on a surface of the etching target layer by generating plasma of a first processing gas that contains a fluorocarbon gas or a fluorohydrocarbon gas but does not contain oxygen; removing a carbon-based reaction product generated when the removing of the oxide film by generating plasma of a second processing gas that does not contain oxygen; and etching the etching target layer without applying a high frequency bias power to a lower electrode serving as a mounting table configured to mount the processing target object thereon by generating plasma of a third processing gas containing a fluorocarbon gas or a fluorohydrocarbon gas with a microwave.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 13, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Tomiko Kamada, Akinori Kitamura, Hiroto Ohtake, Yutaka Osada, Yuji Otsuka, Masayuki Kohno, Yusuke Takino, Eiji Suzuki
  • Publication number: 20140327876
    Abstract: An optical element has a substrate body made from transparent plastic and a coating having multiple layers. The coating includes a hard lacquer layer adjoining the substrate. The coating has a diffusivity ensuring the absorption of water molecules passing through the coating in the substrate and the release of water molecules from the substrate through the coating from an air atmosphere on that side of the coating facing away from the substrate with a flow density which, proceeding from the equilibrium state of the quantity of water molecules absorbed in the substrate in an air atmosphere at 23° C. and 50% relative humidity, brings the setting of the equilibrium state of the quantity of water molecules absorbed in the substrate in an air atmosphere at 40° C. and 95% relative humidity within an interval not more than 10 h longer than for setting this equilibrium under corresponding conditions with an identical uncoated substrate.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 6, 2014
    Applicant: Carl Zeiss Vision International GmbH
    Inventors: Norbert Hugenberg, Markus Haidl, Bernhard von Blanckenhagen, Lothar Holz, Stefan Kraus, Frank Macionczyk, Michael Krause, Erwin Green, Karl-Heinz Winter, Thomas Gloege, Silvia Faul, Anja Petereit, Bin Peng, Joerg Puetz, Patrick Kiefer, Adalbert Hanssen, Michael Krieger, Andreas Neuffer, Marc Stroisch
  • Publication number: 20140319339
    Abstract: In one aspect, methods of nanopore formation in solid state membranes are described herein, In some embodiments, a method of forming an aperture comprises providing at least one solid state membrane in a chamber, selecting a first dose of ions sufficient to provide a first aperture of predetermined diameter through the membrane and exposing a surface of the membrane at a first location to the first dose of ions in a focused ion beam having a focal point of diameter less than or equal to about 1 nm to remove material from the membrane at the first location thereby providing the first aperture having the predetermined diameter or substantially the predetermined diameter.
    Type: Application
    Filed: June 6, 2012
    Publication date: October 30, 2014
    Inventors: Adam R. Hall, Jijin Yang, David C. Ferranti, Colin Sanford
  • Patent number: 8864957
    Abstract: Thin films of vanadium oxide having exceptionally high metal-insulator transition properties are synthesized by RF sputtering. An Al2O3 substrate is placed in a sputtering chamber and heated to a temperature up to about 550 degrees Celsius. Ar and O2 gases are introduced into the sputtering chamber at the flow values of about 92.2 sccm and about 7.8 sccm respectively. A voltage is applied to create a plasma in the chamber. A sputtering gun with vanadium target material is ignited and kept at a power of about 250 W. The phase transition parameters of vanadium dioxide thin films, synthesized by RF sputtering, are modulated by exposing the vanadium dioxide thin film to UV (ultraviolet) radiation so as to induce a change in oxygen incorporation of the vanadium dioxide thin film.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: October 21, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Shriram Ramanathan, Dmitry Ruzmetov, Venkatesh Narayanamurti, Changhyun Ko
  • Publication number: 20140299465
    Abstract: In a method of irradiating a gas cluster ion beam on a solid surface and smoothing the solid surface, the angle formed between the solid surface and the gas cluster ion beam is chosen to be between 1° and an angle less than 30°. In case the solid surface is relatively rough, the processing efficiency is raised by first irradiating a beam at an irradiation angle ? chosen to be something like 90° as a first step, and subsequently at an irradiation angle ? chosen to be 1° to less than 30° as a second step. Alternatively, the set of the aforementioned first step and second step is repeated several times.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 9, 2014
    Inventors: Akinobu SATO, Akiko SUZUKI, Emmanuel BOURELLE, Jiro MATSUO, Toshio SEKI, Takaaki AOKI
  • Publication number: 20140302252
    Abstract: Samples to be imaged in a Transmission Electron Microscope must be thinned to form a lamella with a thickness of, for example, 20 nm. This is commonly done by sputtering with ions in a charged particle apparatus equipped with a Scanning Electron Microscope (SEM) column, a Focused Ion Beam (FIB) column, and one or more Gas Injection Systems (GISses). A problem that occurs is that a large part of the lamella becomes amorphous due to bombardment by ions, and that ions get implanted in the sample. The invention provides a solution by applying a voltage difference between the capillary of the GIS and the sample, and directing a beam of ions or electrons to the jet of gas. The beam ionizes gas that is accelerated to the sample, where (when using a low voltage between sample and GIS) low energy milling occurs, and thus little sample thickness becomes amorphous.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 9, 2014
    Applicant: FEI Company
    Inventors: Johannes Jacobus Lambertus Mulders, Remco Theodorus Johannes Petrus Geurts, Petrus Hubertus Franciscus Trompenaars, Eric Gerardus Theodoor Bosch
  • Publication number: 20140295674
    Abstract: An angled gas cluster ion beam (“GCIB”) and methods for using the same are disclosed. Gas clusters are ionized to create a gas cluster beam directed towards a semiconductor wafer. The semiconductor wafer is positioned so that it intercepts the gas cluster beam at an angle that is non-perpendicular to the beam, so that the gas cluster ions in the beam react with structures on the semiconductor wafer asymmetrically, allowing for asymmetrical deposition on or etching of material thereon. According to one embodiment, GCIB is used to form asymmetric spacers having different materials, different thicknesses, or both.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ali Khakifirooz, Richard S. Wise
  • Publication number: 20140251790
    Abstract: To restrict generation of particles or deterioration in process reproducibility caused by a large amount or carbon polymers generated in a plasma generation portion in an ion beam etching apparatus when a magnetic film on a substrate is etched with reactive ion beam etching in manufacturing a magnetic device. In an ion beam etching apparatus, first carbon-containing gas is introduced by a first gas introduction part into a plasma generation portion, and second carbon-containing gas is additionally introduced by a second gas introduction part into a substrate processing space to perform reactive ion beam etching, thereby etching a magnetic material at preferable selection ratio and etching rate while restricting carbon polymers from being formed in the plasma generation portion.
    Type: Application
    Filed: October 24, 2012
    Publication date: September 11, 2014
    Inventors: Yoshimitsu Kodaira, Tomohiko Toyosato
  • Patent number: 8815060
    Abstract: A method for applying a protective layer to an electronic device such as the ABS of a slider, magnetic head, etc. for reducing paramagnetic deadlayer thickness includes selecting an etching angle for minimizing formation of a paramagnetic deadlayer at an interface of an electronic device and an adhesive layer subsequently formed on the electronic device, etching a surface of an electronic device at the selected angle, the selected angle being less than about 75 degrees from an imaginary line extending perpendicular to the surface, forming an adhesive layer on the etched surface of the electronic device, and forming a protective layer on the adhesive layer. A magnetic head formed by the process is also disclosed.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: August 26, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Eric Wayne Flint, Ning Shi, Qi-Fan Xiao