Composition Patents (Class 204/291)
  • Patent number: 6287452
    Abstract: Nitric oxide-specific electrodes are useful for in situ detection of nitric oxide in biomedical applications and have at least a surface region thereof which is capable of forming complexes with nitric oxide, for example, nitrosyl complexes. The nitric oxide complexes formed at the surface of the electrodes apparently increase the concentration of nitric oxide available for detection, thereby leading to significantly improved relative responses as compared to other known nitric oxide electrode materials. Most preferably, the electrode has at least an exterior surface region which contains ruthenium and/or at least one oxide of ruthenium. The electrodes are advantageously conditioned in saline solution at +675 mV for about two hours.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: September 11, 2001
    Assignee: Duke University
    Inventors: Barry W. Allen, Louis A. Coury, Jr., Claude A. Piantadosi
  • Patent number: 6280604
    Abstract: Nitric oxide-specific electrodes are useful for in situ detection of nitric oxide in biomedical applications and have at least a surface region capable of forming complexes with nitric oxide. The nitric oxide complexes formed at the surface of the electrodes apparently increase the concentration of nitric oxide available for detection, leading to significantly improved relative responses as compared to other known nitric oxide electrode materials. The electrode has at least an exterior surface region which contains ruthenium and/or at least one oxide of ruthenium. The electrodes are pre-conditioned at a potential, or potentials, different than the working potential of the electrode, followed by further conditioning at the working potential. Direct response to nitric oxide has been observed for ruthenium electrodes at or below potentials about +675 mV vs. Ag/AgCl, while ruthenium electrodes paradoxical response to nitric oxide has been observed at potentials above +675 mV vs. Ag/Cl.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: August 28, 2001
    Assignee: Duke University
    Inventors: Barry W. Allen, Louis A. Coury, Claude A. Piantadosi
  • Patent number: 6277510
    Abstract: The present invention provides a porous electrode used for a conductive material-filled polymer composite. At least one surface of the porous electrode is an open porous structure, which includes a plurality of macropores and micropores randomly distributed and interconnected with each other. The conductive material-filled polymer composite includes a polymer substrate and conductive particles filled therein. When the surface of the open porous structure of the porous electrode is bonded with the conductive material-filled polymer composite, the conductive particles in the conductive material-filled polymer composite can be trapped in the macropores of the porous structure, and the polymer substrate in the conductive material-filled polymer composite can be immersed into the micropores of the porous structure. This enables a better direct contact between the conductive particles and the porous electrode.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: August 21, 2001
    Assignee: Industrial Technology Research Institute
    Inventors: Kun-Huang Chang, Wei-Wen Yeh, Shu-Chin Chou, Chen-Ron Lin
  • Patent number: 6277256
    Abstract: A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: August 21, 2001
    Assignee: The Regents of the University of California
    Inventors: Fernando H. Garzon, Eric L. Brosha
  • Patent number: 6274016
    Abstract: A nitrogen oxide gas sensor wherein an alloy electrode of platinum and rhodium or a cermet electrode of platinum, rhodium, and zirconia or of a rhodium alloy and zirconia is used as the gas sensing electrode. The electrode of the sensor is suitable for measuring nitrogen oxide such as NO and NO2 in an exhaust gas.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: August 14, 2001
    Assignee: Kabushiki Kaisha Riken
    Inventors: Masaharu Hasei, Yongtie Yan, Akira Kunimoto
  • Patent number: 6268430
    Abstract: Disclosed are ionomers comprising functionalized polyolefins having fluoroalkyl sulfonate pendant groups and ionically conductive compositions formed therefrom by the addition of solvents.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: July 31, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Susan Kuharcik Choi, Christopher Marc Doyle, Mark Gerrit Roelofs, Lin Wang, Zhen-Yu Yang
  • Patent number: 6258222
    Abstract: An electrolyzer 1 for electrolyzing water existing between electrode plates 4, 5 disposed at a prescribed interval by imposing a voltage between the electrode plates is arranged such that at least the electrode plate 5 acting as an anode comprises a ferrite electrode including at least one hole 15 is formed therein, the interval between the hole and an extreme or terminal end of an electrode terminal 9 inserted into the hole 15 is filled with a conductive metal coupling member 16 that becomes deformed when the electrode terminal 9 is inserted in the hole so that the ferrite electrode 5 is made conductive to and arranged integrally with the electrode terminal 9.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: July 10, 2001
    Assignee: Omega Go., Ltd.
    Inventors: Shinichi Nakamura, Kazunori Hirao, Kunihiko Fukuzuka
  • Patent number: 6238534
    Abstract: Hybrid membrane electrode assemblies (MEAs) are presented, having an anode comprising a dense distribution of catalyst that may be borne on small, high-aspect ratio supports, such as nanostructured elements, and a cathode comprising a less dense distribution of catalyst that may be borne on lower-aspect ratio supports, such as carbon particle supported catalyst.
    Type: Grant
    Filed: May 14, 1999
    Date of Patent: May 29, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Shane S. Mao, Gregory Meis Haugen, Krzysztof A. Lewinski, Mark Kevitt Debe
  • Patent number: 6221220
    Abstract: A self-contained, portable device for decomposing ions present in a liquid includes a housing shaped to be held within a human hand; a source of electric current; an anode that is comprised of an inert material, attached to the housing and in electrical communication with the source of electric current; a cathode that is comprised of an inert material, attached to the housing and in electrical communication with the source of electric current; and a switch for electrically connecting the anode, the cathode and the source of electric current.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: April 24, 2001
    Inventor: Hans Buringer
  • Patent number: 6214485
    Abstract: The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: April 10, 2001
    Assignee: Northwestern University
    Inventors: Scott A. Barnett, Erica Perry Murray, Tsepin Tsai
  • Patent number: 6210550
    Abstract: It is described a novel type of electrode suitable for use as an anode for oxygen evolution from electrolytes containing sulphuric acid, or sulphates, in the presence of manganese, in electrometallurgical processes for the production of zinc, copper, nickel and cobalt and galvanic processes for the deposition of chromium, nickel and noble metals. The anode of the invention comprises a titanium substrate provided with an electrocatalytic coating for oxygen evolution made of iridium and bismuth oxides. In an alternative embodiment of the invention the coating comprises doping agents selected from the groups IV A, V A and V B, particularly tin and/or antimony.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: April 3, 2001
    Assignee: De Nora S.p.A.
    Inventors: Antonio Nidola, Ulderico Nevosi
  • Patent number: 6207038
    Abstract: A process for preparing a solid composite electrolyte comprising at least one compound of the BIMEVOX family is provided. The process comprises at least one step of preparing a mixture of one or more compounds of the BIMEVOX family with one or more chemically inert compounds, at least one step of compacting the mixture obtained, and at least one sintering step during which the temperature reached, over a nonzero time interval, has a value greater than the optimum sintering temperature for the compound of the BIMEVOX family.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: March 27, 2001
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitaion des Procedes Georges Claude
    Inventors: César Marlu Steil, Jacques Fouletier, Michel Kleitz, Gilles Lagrange, Pascal Del Gallo, Gaëtan Mairesse, Jean-Claude Boivin
  • Patent number: 6207313
    Abstract: Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and batteries and effect transport and separation of different chemical species. Devices utilizing the composites include an electrode and improved fuel cells and batteries. Some composites, disposed on the surface of electrodes, prevent passivation of those electrodes and enable direct reformation of liquid fuels. Methods involving these composites provide distinct ways for these composites to be utilized.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: March 27, 2001
    Assignee: The University of Iowa Research Foundation
    Inventors: Johna Leddy, Lois Anne Zook, Sudath Amarasinghe
  • Patent number: 6200445
    Abstract: A sulfur dioxide gas sensor having a high selectivity of SO2 gas, and an operability at a high temperature which comprises: a solid electrolyte having oxygen ion conductivity; a detecting electrode for measuring sulfur dioxide gas, electrically connected to at least a part of a surface of the solid electrolyte and containing glass and either gold or a gold alloy; and a basic electrode for measuring sulfur dioxide gas, electrically connected to at least a part of a surface of the solid electrolyte and containing Pt.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: March 13, 2001
    Assignee: NGK Insulators, Ltd.
    Inventors: Minoru Yokota, Takao Murase
  • Patent number: 6200457
    Abstract: The present invention relates to an electroactivated material comprising fibers and a binder and additionally having an electrocatalytic agent in the form of particles comprising a precious metal oxide or in the form of particles comprising a support and a coating based on such an oxide. The electroactivated material can be used especially as cathode component of an electrolysis cell and in particular of a cell for the electrolysis of aqueous sodium chloride solutions. The present invention also relates to a composite material comprising the said material and to processes for the preparation of each of the two materials.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: March 13, 2001
    Assignee: Rhone-Poulenc Chimie
    Inventors: Robert Durand, Jean-Guy Le Helloco
  • Patent number: 6187168
    Abstract: An electrolytic cell and electrolytic process for producing a metal by reduction of a metal oxide dissolved in a molten salt bath containing at least one chloride and at least one fluoride. A solid conductor of oxide ions is interposed between the anode and the cathode. The solid conductor preferably comprises zirconia, stabilized in cubic form by addition of a divalent or trivalent metal oxide such as yttria.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: February 13, 2001
    Assignee: Aluminum Company of America
    Inventors: Alfred F. LaCamera, Siba P. Ray
  • Patent number: 6180277
    Abstract: In a dispersoid-reinforced electrode with a net-like open pore structure and a ceramic and a metallic meshwork, ceramic particles with an average particle diameter of less than 100 nm are homogeneously distributed in the metallic network thereby reinforcing the electrode.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: January 30, 2001
    Assignee: Forschungszentrum J{umlaut over (u)}lich GmbH
    Inventors: Rolf Wilkenhöner, Robert Vassen, Detlev Stöver, Hans Peter Buchkremer, Werner Mallener
  • Patent number: 6174421
    Abstract: Sensor for measuring the concentration of oxidizable constituents in a gas mixture, in particular for measuring one or more NOx, CO, H2 gases, and preferably unsaturated hydrocarbons, by measuring the voltage between a measuring electrode a reference electrode or by measuring the voltage between two measuring electrodes. A porous solid electrolyte makes it possible to dispense with a reference gas atmosphere, thus providing greater miniaturization and simplifying the design. The selectivity toward individual measuring gas constituents can be improved by selecting the measuring electrode materials, in particular by using semiconductors.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: January 16, 2001
    Assignee: Robert Bosch GmbH
    Inventor: Bernd Schumann
  • Patent number: 6171460
    Abstract: Conductive ceramics are useful in the construction of electrochemical electrodes that are used in a wide variety of applications because of their inherent chemical resistance. When porous forms of these ceramics are employed as electrodes in even dilute corrosive solutions, corrosive ionic species are caused to diffuse from the solutions into the porous electrode and to concentrate in the vicinity of the electrical connection by means of electromigration. The resulting corrosive degradation of the electrode and the electrical connection ultimately causes electrical failure. The present invention uses polymers to impregnate and selectively coat the ceramic so as to create a barrier seal against the migration of corrosives into the electrode while allowing the ceramic electrode to maintain electrical contact with its environment. Methods for achieving such impregnation are disclosed.
    Type: Grant
    Filed: January 4, 1999
    Date of Patent: January 9, 2001
    Inventor: John L. Bill
  • Patent number: 6168694
    Abstract: Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m2/g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725° C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: January 2, 2001
    Assignee: Chemat Technology, Inc.
    Inventors: Yuhong Huang, Oiang Wei, Chung-tse Chu, Haixing Zheng
  • Patent number: 6162334
    Abstract: An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: December 19, 2000
    Assignee: Alcoa Inc.
    Inventors: Siba P. Ray, Xinghua Liu
  • Patent number: 6149782
    Abstract: The invention relates to a novel rhodium sulfide catalyst for the reduction of oxygen in industrial electrolyzers. The catalyst is highly resistant towards corrosion and poisoning by organic species, thus resulting particularly suitable for use in aqueous hydrochloric acid electrolysis, when technical grade acid containing organic contaminants is employed.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: November 21, 2000
    Assignee: De Nora S.p.A
    Inventors: Robert J. Allen, James R. Giallombardo, Daniel Czerwiec, Emory S. De Castro, Khaleda Shaikh
  • Patent number: 6146513
    Abstract: The present invention includes uranium-bearing ceramic phase electrodes and electrolysis apparatus and electrolysis methods featuring same, including methods of metal production and the like by the electrolytic reduction of oxides or salts of the respective metals. More particularly, the invention relates to an inert type electrode composition, and methods for fabricating electrode compositions, useful in the electrolytic production of such metals. The present invention also includes an inert-type electrode composition, and methods for fabricating electrode compositions, used in processes for generating energy from fossil fuels.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: November 14, 2000
    Assignee: The Ohio State University
    Inventors: Kenneth H. Sandhage, Robert L. Snyder
  • Patent number: 6143162
    Abstract: Process for separating oxygen from a gas mixture containing it employs a solid-electrolyte electrochemical cell, where the cell includes a homogeneous structure of one or more BIMEVOX derivatives, with dynamic electrodes created "in situ" that are reversible and self-adaptive, and at least two current collectors.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: November 7, 2000
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Jean-Claude Boivin, Pascal Del Gallo, Jacques Fouletier, Michel Kleitz, Philippe Labrune, Gilles Lagrange, Gaetan Mairesse, Guy Nowogrocki, Marlu Cesar Steil
  • Patent number: 6126799
    Abstract: A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: October 3, 2000
    Assignee: Alcoa Inc.
    Inventors: Siba P. Ray, Robert W. Woods, Robert K. Dawless, Robert B. Hosler
  • Patent number: 6123875
    Abstract: The present invention relates to a process for producing a styrene-maleic acid polyethyleneoxy ester copolymer from compositions comprising a styrene-maleic anhydride copolymer, polyethyleneglycol and polyethyleneglycol monoalkyl ether (in a weight ratio of from 0 to 100% relative to the polythyleneglycol), the copolymer produced therefrom, an ion-conducting thin membrane composition produced with an electrolytic salt, an ion-conducting thin membrane containing the copolymer and a process for producing the same, a solid electrochemical material containing the copolymer. The copolymer according the present invention has a high solubility in organic solvent, a good rubber elasticity. The ion-conducting thin membrane comprising this copolymer and an electrolytic salt as major components has an excellent mechanical property, a high adhesive strength and a high ion conductivity at room temperature.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: September 26, 2000
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Eun Kyoung Kim, Wee Jin, Suh Bong Rhee, Chang Jin Lee
  • Patent number: 6103090
    Abstract: A non-carbon, metal-based high temperature resistant anode of a cell for the production of aluminium has a metal-based substrate coated with one or more electrically conductive adherent applied layers, at least one electrically conductive layer being electrochemically active. The electrochemically active layer contains one or more electrocatalysts fostering the oxidation of oxygen ions as well as fostering the formation of biatomic molecular gaseous oxygen to inhibit ionic and/or monoatomic oxygen attack of the metal-based substrate. The electrocatalyst can be iridium, palladium, platinum, rhodium, ruthenium, silicon, tin, zinc, Mischmetal oxides and metals of the Lanthanide series. The applied layer may further comprise electrochemically active constituents from oxides, oxyfluorides, phosphides, carbides, in particular spinels such as ferrites.
    Type: Grant
    Filed: July 30, 1998
    Date of Patent: August 15, 2000
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jean-Jacques Duruz
  • Patent number: 6103093
    Abstract: A new electrocatalytic coating to be applied onto a titanium matrix, suitable for oxygen evolution from acid electrolytes containing manganese and fluorides, comprising:a) an external coating for oxygen evolution at controlled potential, immune to manganese electrochemical precipitation and capable of promoting the spontaneous removal of the same during operation, consisting of ruthenium and iridium as the major components (60-85%), tin and cobalt (2-10%) and titanium and tantalum at intermediate concentrations with respect to the previous groups of components.b) an optional interlayer acting as an electroconductive system and protecting the titanium matrix against corrosion caused by fluorides, made of titanium and tantalum as the major components (<95%) and iridium (>5%) as the minor component.At least part of the above elements are in the form of oxides.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: August 15, 2000
    Assignee: De Nora S.p.A.
    Inventors: Antonio Nidola, Ulderico Nevosi, Ruben Jacobo Ornelas, Federico Zioni
  • Patent number: 6099704
    Abstract: This invention covers a cathodic element free from asbestos fibres that can be obtained by deposition after filtration through a porous medium of an aqueous suspension comprising electrically conductive fibres, at least one cationic polymer, at least one electocatalytic agent, at least one pore-forming agent and at least one binder selected from among the fluoropolymers. The invention also covers a method for preparing such a cathodic element.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: August 8, 2000
    Assignee: Chloralp
    Inventors: Gerard Bacquet, Frederic Kuntzburger
  • Patent number: 6090249
    Abstract: The invention relates to an electrode material for potentiometric or amperometric electrochemical sensors with the chemical composition Ln.sub.1-2 A.sub.1-x B.sub.x O.sub.3, where Ln is at least a lanthanide cation or a mixture of rare earth cations, A is at least a trivalent transitional material, and B is at least a trivalent or bivalent redox-stable cation.
    Type: Grant
    Filed: June 24, 1998
    Date of Patent: July 18, 2000
    Assignee: Heraeus Electro-Nite International
    Inventor: Ulrich Guth
  • Patent number: 6086733
    Abstract: A high performance electrochemical cell is useful for recovery of metal from aqueous solutions. The electrochemical cell has a cathode assembly that includes a nonporous support member, a primary cathode, and a nonconductive or conductive porous material covering the primary cathode. An anode is spaced apart from the cathode assembly. Fluid is caused to flow through the porous material to the primary cathode, through openings or fluid collection channels in the nonporous support member, and uniformly out of the cell. Uniform and efficient deposition of metal is accomplished over the entire primary cathode because of modulation of fluid flow and increased mass transfer.
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: July 11, 2000
    Assignee: Eastman Kodak Company
    Inventors: James J. Carey, Gary P. Wainwright, Stephen N. Lowery, Robert B. Call, Peter J. Kelch
  • Patent number: 6060196
    Abstract: A zinc alloy anode-based electrochemical cell, which generates gases and/or energy, is disclosed. The structure of the cell is such that a zinc alloy anode material is the integral part of housing and is in contact with an alkaline electrolyte containing minor amounts of corrosion inhibitors. The electrolyte which contains no zinc powder metal, may be in direct contact with the cathode thereby simplifying cell construction by elimination of a separator material. The cell is environmentally friendly, containing no mercury or cadmium or other toxic metals and is cost effective as it eliminates expensive amalgamated zinc powder and separator material.
    Type: Grant
    Filed: January 12, 1998
    Date of Patent: May 9, 2000
    Assignee: Ceramtec, Inc.
    Inventors: John H. Gordon, John J. McEvoy, Strahinja K. Zecevic, Ashok V. Joshi
  • Patent number: 6030518
    Abstract: Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.
    Type: Grant
    Filed: September 10, 1997
    Date of Patent: February 29, 2000
    Assignee: Aluminum Company of America
    Inventors: Robert K. Dawless, Siba P. Ray, Robert B. Hosler, Robert L. Kozarek, Alfred F. LaCamera
  • Patent number: 6025092
    Abstract: This invention concerns substantially fluorinated, but not perfluorinated, ionomers consisting of a polyethylene backbone having pendant groups of fluoroalkoxy sulfonic acids and metal salts thereof. Such ionomers are useful for electrochemical applications.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: February 15, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Christopher Marc Doyle, William Brown Farnham, Andrew Edward Feiring, Peter Arnold Morken, Mark Gerrit Roelofs
  • Patent number: 6022464
    Abstract: A sensor for determining the concentration of oxidizable constituents in a gas mixture includes a substrate which is planar and electrically insulating; a reference electrode which is positioned on a surface of the substrate and which catalyzes equilibrium adjustment of the gas mixture; a solid electrolyte which is ion-conducting and which is provided on at least the reference electrode; and at least one measuring electrode which is positioned on the ion-conducting solid electrolyte, which is one of not capable of catalyzing equilibrium adjustment of the gas mixture or is capable of catalyzing equilibrium adjustment of the gas mixture only to a small degree, which includes at least 50% of at least one of rutile and zirconium dioxide, and which is doped with acceptors and donors in which the acceptor contains at least one transition element, rare earth element, and mixtures thereof, and in which the donor is at least one of tantalum and niobium.
    Type: Grant
    Filed: February 11, 1998
    Date of Patent: February 8, 2000
    Assignee: Robert Bosch GmbH
    Inventor: Bernd Schumann
  • Patent number: 6019880
    Abstract: Two types of HgO-modified electrodes are disclosed. The HgO-modified electrode according to the present invention comprises, HgO particles as precursor of mercury, which can be exposed on the surface of the said electrode and then can be reduced electrochemically into micro-droplets of mercury; and electro-conductive material to maintain optimal conductivity of the said modified electrode. In the HgO-modified electrode according to the present invention, built-in mercury precursor, HgO can be utilized feasibly for the generation of the surface mercury droplets by in situ electrochemical treatment or pretreatment without necessity of Hg.sup.2+ solution. The electrode surface can be renewed easily either by a simple polishing process for the bulk-modified electrode type-I or by simple exchange for the screen-printed disposable type modified electrode type-II. So further simplification of anodic stripping analysis process is possible by employing the HgO-modified electrodes according to the present invention.
    Type: Grant
    Filed: June 17, 1998
    Date of Patent: February 1, 2000
    Assignee: Jongman Park
    Inventors: Jongman Park, Kyoungwon Seo, Jung-Yeun Choi
  • Patent number: 6004697
    Abstract: A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: December 21, 1999
    Assignees: Minnesota Mining & Manufacturing Co., Hydro-Quebec Corporation
    Inventors: Michael M. Thackeray, Arthur J. Kahaian, Donald R. Visser, Dennis W. Dees, Roy Benedek
  • Patent number: 6001176
    Abstract: A device for specific formation of nuclei or crystals on the surface of a dielectric in contact with a solution, especially on the functional groups of a polymer, in which there is a device for generating an electric field in the dielectric.
    Type: Grant
    Filed: September 25, 1996
    Date of Patent: December 14, 1999
    Assignees: Klaus Leiter, Gerhard Walder
    Inventors: Klaus Leiter, Gerhard Walder
  • Patent number: 6001225
    Abstract: Non self-passivating cathodic protection anode materials such as graphite and high silicon iron are treated to improve corrosion resistance. Anodically stable oxide coatings such as cobalt oxide (cobalt spinnel) or precious metal oxides are received on the underlying anode substrate. The rate of consumption of the anode material during the operation of the cathodic protection system is dramatically reduced.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: December 14, 1999
    Inventor: James B. Bushman
  • Patent number: 5993988
    Abstract: An object of the present invention is to provide composite ceramic powder containing composite ceramic particulates as constituent particulates. Each of the composite ceramic particulates is constituted of a group of first particles and a group of second particles in which the first particles are localized around the second particles. A spray pyrolysis is used to localize the first particles around the second particles, thereby producing such composite ceramic particulates.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: November 30, 1999
    Assignee: Japan Fine Ceramics Center
    Inventors: Satoshi Ohara, Takehisa Fukui, Kaseki Kodera
  • Patent number: 5980705
    Abstract: Nitric oxide-specific electrodes are useful for in situ detection of nitric oxide in biomedical applications and have at least a surface region thereof which is capable of forming complexes with nitric oxide, for example, nitrosyl complexes. The nitric oxide complexes formed at the surface of the electrodes apparently increase the concentration of nitric oxide available for detection, thereby leading to significantly improved relative responses as compared to other known nitric oxide electrode materials. Most preferably, the electrode has at least an exterior surface region which contains ruthenium and/or at least one oxide of ruthenium. The electrodes are advantageously conditioned in saline solution at +675 mV for about two hours.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: November 9, 1999
    Assignee: Duke University
    Inventors: Barry W. Allen, Louis A. Coury, Jr., Claude A. Piantadosi
  • Patent number: 5972296
    Abstract: Oxygen sensor for measuring resistance as a function of oxygen partial pressure, made of alkaline-earth-doped perovskitic lanthanum ferrites with the general formulaLa.sub.1-x Me.sub.x FeO.sub.3-.delta.where Me is one of alkaline earth metals, Mg, Ca, Sr, and Ba, x is a degree of doping of the lanthanum ferrites. The oxygen sensor oxygen deficit of anion is 6=0 to 0.25, and the degree of doping of the lanthanum ferrites is x=0.1 to 0.3 and is selected to provide a temperature independent resistance property to the oxygen sensor in a lean range.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: October 26, 1999
    Assignee: Heraeus Electro-Nite International, N.V.
    Inventors: Karl-Heinz Hardtl, Ulrich Schonauer, Andreas Krug
  • Patent number: 5972182
    Abstract: The present invention is an oxygen generator including a stabilized bismuth oxide body and a plurality of first and second channels. The first channels receive a first gas containing some oxygen and the second channels are sealed at the input and outlet openings and extend generally in parallel to the first channels. Electrodes are disposed on the channel walls of the first and second channels, the electrode composition includes LXM, wherein L is lanthanum, M is manganate, and X is strontium, calcium, lead or barium. The oxygen generator may further include silver disposed over the LXM which thereby decreases the resistivity of the electrodes without the electromigration of the silver. The silver may be mixed with glass to thereby provide improved adherence of the silver to the LXM. A method of making an oxygen generator includes forming a stabilized bismuth oxide body having channels extending therethrough and forming LXM electrodes in the channels.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: October 26, 1999
    Assignee: CeramPhysics, Inc.
    Inventor: William N. Lawless
  • Patent number: 5948218
    Abstract: An elongate electrode, usually an anode, is provided, suitable for use in an impressed current corrosion protection system. The electrode comprises a central elongate core, usually a metal such as copper, an optional conductive polymeric composition surrounding the metal core and having a higher electrical resistivity than the core, but being in electrical contact with the core, a flexible jacket, for example, a fabric braid containing within it particulate coke, and tensioning wraps positioned around the flexible jacket. The purpose of the tensioning wraps is to compact the coke particles relative to their compaction in the absence of the tensioning wraps.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: September 7, 1999
    Assignee: N.V. Raychem S.A.
    Inventors: Joseph Kheder, Johannes Maria Cordia
  • Patent number: 5932146
    Abstract: An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: August 3, 1999
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Lewis Kuo, Roswell J. Ruka, Subhash C. Singhal
  • Patent number: 5928810
    Abstract: Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients:(W.times..O slashed.)+X.gtoreq.L.gtoreq.(Y.times..O slashed.)+ZwhereinW=0.16Y=1.69X=202.4 .mu.m andZ=80 .mu.
    Type: Grant
    Filed: December 2, 1997
    Date of Patent: July 27, 1999
    Assignee: Saft
    Inventors: Patrick Bernard, Jean-Michel Dauchier, Olivier Simonneau
  • Patent number: 5922488
    Abstract: The invention is directed towards a CO-tolerant fuel cell electrode formed from a carbon supported, platinum dispersed, non-stoichiometric hydrogen tungsten bronze electrode catalyst. The electrode catalyst is capable of oxidizing CO at very low potentials, and is sequentially formed from stable precursors.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: July 13, 1999
    Assignee: Exxon Research and Engineering Co.,
    Inventors: Elise Marucchi-Soos, David Terence Buckley, Richard James Bellows
  • Patent number: 5882624
    Abstract: A novel crystalline titanium silicate designated ETS-14 molecular sieve is disclosed and characterized. ETS-14 may be prepared by heating ETS-10 molecular sieve in the form of an aqueous gel or incorporating crystals of ETS-10 with an aqueous source of sodium that is essentially free from potassium.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: March 16, 1999
    Assignee: Englehard Corporation
    Inventors: Steven M. Kuznicki, Jacqueline S. Curran, Xiaolin Yang
  • Patent number: 5879522
    Abstract: An electrolysis cell for the efficient production of hydrogen and oxygen is described which comprises a substantially closed housing defining therewithin anode and cathode chambers and having first and second inlets and outlets for flowing electrolyte through the anode and cathode chambers; an ion exchange membrane within the housing separating the anode chamber from the cathode chamber; first and second electrically conductive sheet members disposed within the respective anode and cathode chambers adjacent the membrane and substantially coextensive therewith; discrete electrically conducting ultramicroelectrode particles, preferably in the 5 to 10 micron size range, disposed within the anode and cathode chambers and defining the anode and cathode of the cell; and a source of DC electrical current operatively connected to the first and second sheet members.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: March 9, 1999
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Aly H. Shaaban, Eric K. Dobyne
  • Patent number: 5851504
    Abstract: Provided by the present invention is a new anode material comprised of a carbon obtained by pyrolyzing a polymer of a conjugated vinyl monomer. The carbon is suitable for a lithium intercalated anode as it offers potential advantages of high capacity. The economics of manufacturing such anodes are also beneficial.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: December 22, 1998
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, Ib I. Olsen