Metallic Patents (Class 204/292)
  • Patent number: 8088262
    Abstract: Provided are a low impedance gold electrode, which has increased surface area, and can improve a bonding force with other materials, an apparatus for and a method of fabricating the low impedance gold electrode, and an electrolyte solution for use in the fabrication of the low impedance gold electrode. The gold electrode has a surface roughness that is increased through electrolysis using an acid electrolyte solution, has an impedance that is less than 1/10 of an impedance before the electrolysis and is higher than 0? when the low impedance gold electrode is disposed in the acid electrolyte solution or another electrolyte solution, and has a single-layered structure whose thickness is less than that before the electrolysis.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 3, 2012
    Assignee: Marveldex, Inc.
    Inventors: Seh Jin Choi, Myung Ki Choi
  • Publication number: 20110259737
    Abstract: A permanent cathode that is to be used as electrode in the electro-refining and/or recovery of metals, such as copper, zinc, cobalt or nickel. The permanent cathode comprises a planar mother plate that is made of metal and comprises two sides. The mother plate comprises an edge, which at least partly surrounds the metal plate. The edge comprises a groove portion that is provided with a groove. The groove portion comprises at least one bridging section for joining together, over the groove portion of the edge of the metal plate at the at least one bridging section, the cathode metal halves, such as cathode copper halves, cathode zinc halves, cathode cobalt halves or cathode nickel halves, which are formed on the sides of the mother plate in the electro-refining of the metals.
    Type: Application
    Filed: October 1, 2009
    Publication date: October 27, 2011
    Applicant: OUTOTEC OYJ
    Inventors: Lauri Palmu, Henri Virtanen, Tuomo Kivistö, Ismo Virtanen
  • Publication number: 20110247942
    Abstract: Electrodes are positioned substantially in contact with at least one surface of a solid to generate or absorb alkali metals when a voltage is applied between the electrodes.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 13, 2011
    Inventors: Jonathan J. Bernstein, Mark J. Mescher, William L. Robbins
  • Patent number: 8034221
    Abstract: An electrode for hydrogen generation can maintain a low hydrogen overvoltage for a long period of time even when electrolysis is conducted there not only with a low current density but also with a high current density. The electrode for hydrogen generation has a coating layer formed on a conductive base member by applying a material not containing any chlorine atom prepared by dissolving lanthanum carboxylate in a nitric acid solution of ruthenium nitrate and thermally decomposing the material in an oxygen-containing atmosphere.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: October 11, 2011
    Assignee: Chlorine Engineers Corp., Ltd.
    Inventor: Osamu Arimoto
  • Publication number: 20110233075
    Abstract: Nanostructured microelectrodes and biosensing devices incorporating the same are disclosed herein.
    Type: Application
    Filed: September 1, 2009
    Publication date: September 29, 2011
    Applicant: The Governing Council of the University of Toronto
    Inventors: Leyla Soleymani, Zhichao Fang, Shana Kelley, Edward Sargent, Bradford Taft
  • Publication number: 20110223480
    Abstract: The present invention refers to a nanostructured material comprising nanoparticles bound to its surface. The nanostructured material comprises nanoparticles which are bound to the surface, wherein the nanoparticles have a maximal dimension of about 20 nm. Furthermore, the nanostructured material comprises pores having a maximal dimension of between about 2 nm to about 5 ?m. The nanoparticles bound on the surface of the nanostructured material are noble metal nanoparticles or metal oxide nanoparticles or mixtures thereof. The present invention also refers to a method of their manufacture and the use of these materials as electrode material.
    Type: Application
    Filed: September 7, 2009
    Publication date: September 15, 2011
    Inventors: Tsyh Ying Grace Wee, Nopphawan Phonthammachai, Madhavi Srinivasan, Subodh Mhaisalkar, Yin Chiang Freddy Boey
  • Publication number: 20110198238
    Abstract: An electrode for electrochemical water treatment, the electrode including a nanodiamond and a conducting agent.
    Type: Application
    Filed: September 10, 2010
    Publication date: August 18, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Joo-wook LEE, Hyo-rang KANG, Jae-young KIM, Jae-eun KIM
  • Patent number: 7985327
    Abstract: An electrode for effective ozone production in an electrochemical cell uses a modified electrode design which adopts a novel catalytic component. The catalytic component has a number of elements selected from various metals and metalloids, and is applied to a substrate in multiple coatings or layers. The catalytic component forms a catalytic surface which is at least partially disrupted by the presence of an element which is relatively inactive with respect to oxygen evolution.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: July 26, 2011
    Assignee: Clarizon Limited
    Inventors: Paul Andrew Christensen, Wen Feng Lin
  • Publication number: 20110174614
    Abstract: Disclosed is an electrode for determining an analyte in a liquid medium, such as glucose in body subcutaneous fluids. The electrode includes a conductive surface and a matrix bound thereto. The matrix includes at least two species of components that comprise one or more species of enzymes and one or more species of metal nanonparticle. The components may be covalently bound to one another through one or more first binding moieties and the matrix may be covalently bound to the conductive surface through one or more same or different second binding moieties. The one or more enzyme species can catalyze a reaction in which an analyte is reacted to yield a product. The catalysis may alter the electric properties or response of the electrode.
    Type: Application
    Filed: June 10, 2009
    Publication date: July 21, 2011
    Inventors: Itamar Willner, Ran Tel-Vered, Ilina Baravik
  • Publication number: 20110155571
    Abstract: A catalyst member comprising a blended mixture of nano-scale metal particles compressed with larger metal particles and sintered to form a structurally stable member of any desired shape. The catalyst member can be used in one of many different applications; for example, as an electrode in a fuel cell or in an electrolysis device to generate hydrogen and oxygen.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 30, 2011
    Applicant: QUANTUMSPHERE, INC.
    Inventors: R. Douglas Carpenter, Robert Brian Dopp, Kimberly McGrath
  • Patent number: 7959774
    Abstract: The present invention provides a cathode for hydrogen generation comprising a cathode substrate having provided thereon a catalytic layer, wherein the catalytic layer contains at least three components of platinum, cerium and lanthanum in amounts of 50 to 98 mol %, 1 to 49 mol % and 1 to 49 mol %, respectively, in the form of metal, metal oxide or metal hydroxide.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: June 14, 2011
    Assignee: Permelec Electrode Ltd.
    Inventors: Miwako Nara, Tomohisa Suzuki, Masashi Tanaka, Yoshinori Nishiki
  • Patent number: 7943033
    Abstract: The present invention pertains to an electrolytic copper plating method characterized in employing pure copper as the anode upon performing electrolytic copper plating, and performing electrolytic copper plating with the pure copper anode having a crystal grain diameter of 10 ?m or less or 60 ?m or more. Provided are an electrolytic copper plating method and a pure copper anode for electrolytic copper plating used in such electrolytic copper plating method capable of suppressing the generation of particles such as sludge produced on the anode side within the plating bath upon performing electrolytic copper plating, and capable of preventing the adhesion of particles to a semiconductor wafer, as well as a semiconductor wafer plated with the foregoing method and anode having low particle adhesion.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: May 17, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Akihiro Aiba, Takeo Okabe, Junnosuke Sekiguchi
  • Publication number: 20110048962
    Abstract: Compositions, electrodes, systems, and/or methods for water electrolysis and other electrochemical techniques are provided. In some cases, the compositions, electrodes, systems, and/or methods are for electrolysis which can be used for energy storage, particularly in the area of energy conversion, and/or production of oxygen, hydrogen, and/or oxygen and/or hydrogen containing species. In some embodiments, the water for electrolysis comprises at least one impurity and/or at least one additive which has little or no substantially affect on the performance of the electrode.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 3, 2011
    Applicant: Sun Catalytix Corporation
    Inventors: Steven Y. Reece, Arthur J. Esswein, Kimberly Sung, Zachary I. Green, Daniel G. Nocera
  • Publication number: 20110042227
    Abstract: The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.
    Type: Application
    Filed: August 24, 2010
    Publication date: February 24, 2011
    Inventors: Javier Jesus Concepcion Corbea, Zuofeng Chen, Jonah Wesley Jurss, Joseph L. Templeton, Paul Hoertz, Thomas J. Meyer
  • Publication number: 20110036721
    Abstract: An electrical discharge coating method comprising the steps of: generating pulsed discharge between a green compact electrode 3 and a treatment target surface 20 in a working fluid 10; thereby, depositing a component of the green compact electrode 3 onto the treatment target surface 20 so as to form a coating 21, wherein the generating includes using the green compact electrode 3 which is formed through compression molding of metal powder having an oxide layer on each particle surface 20 thereof, as a main component thereof, the oxide layer being thicker than an oxide film normally obtained in air at normal temperature, whereby the metal component of the green compact electrode 3 is deposited onto the treatment target surface 20 so as to form the coating 21 containing the metal component as a main component thereof.
    Type: Application
    Filed: February 4, 2009
    Publication date: February 17, 2011
    Inventor: Masahiko Kobayashi
  • Patent number: 7887681
    Abstract: An electrode surface coating and method for manufacturing the electrode surface coating comprising a conductive substrate; a surface coating of platinum having a rough configuration and an increase in the surface area of 5 times to 500 times of the corresponding surface area resulting from the basic geometric shape of the electrode. A method for electroplating an electrode surface with platinum coating having a rough surface, comprising electroplating the surface of a conductive substrate at a rate such that the metal particles form on the conductive substrate faster than necessary to form shiny platinum and slower than necessary to form platinum black.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: February 15, 2011
    Assignee: Second Sight Medical Products, Inc.
    Inventor: Dao Min Zhou
  • Publication number: 20110031132
    Abstract: The invention relates to a hydraulic binder, comprising K, Ca, aluminosilicates, as well as optionally Li, Na, and Mg, wherein the binder comprises the following components: a) a latently hydraulic aluminosilicate glass with a ratio of (CaO+MgO+Al2O3)/SiO2>1 and b) an alkali activator of the empirical formula (I) a(M2O)*x(SiO2)*y(H2O)??(I) wherein M=Li, Na, K, a=0-4, and x=0-5 and y=3-20, wherein the molar ratio of Ca/Si is <1, the molar ratio of Al/Si is <1, and the molar ratio of M/Si is >0.1. Furthermore, it relates to binder matrices, mortars, concrete adhesives, and metal anodes made of such binder.
    Type: Application
    Filed: July 29, 2010
    Publication date: February 10, 2011
    Inventor: Wolfgang SCHWARZ
  • Patent number: 7879750
    Abstract: A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: February 1, 2011
    Assignee: General Electric Company
    Inventor: Grigorii Lev Soloveichik
  • Publication number: 20110000797
    Abstract: A method and apparatus measures the presence of total residual oxidant species in aqueous environments. More specifically, the apparatus is operable to measure hypohalites (e.g., hypochlorite and hypobromite) in water containing halide salts using electrochemistry. The apparatus can be a sensor having four electrodes—a reference electrode, a working electrode, and two auxiliary electrodes. The fourth electrode, i.e., the second auxiliary electrode, can be used to generate ionized water near and in contact with the working electrode. The ionized water can clean the working electrode to minimize effects due to scaling or biofilm formation. As such, the working electrode does not need the capability to clean itself. Thus, other elements, originally believed to be unsuitable for use in saline aqueous environments, can be used for the electrodes, for example, gold.
    Type: Application
    Filed: July 6, 2010
    Publication date: January 6, 2011
    Applicant: ADA TECHNOLOGIES, INC.
    Inventor: Kent Douglas HENRY
  • Patent number: 7833395
    Abstract: An electrode system for an electrochemical cell is provided, including a substrate, a measuring electrode connected to the substrate and formed from a number of electrically conducting and mutually connected microdisks, and a generating electrode formed from an electrically conducting sheet and having a diameter that is greater than that of the microdisks. In one implementation, the microdisks are provided in cavities in the substrate.
    Type: Grant
    Filed: January 17, 2005
    Date of Patent: November 16, 2010
    Assignee: Adamant Technologies SA
    Inventors: Jean Gobet, Philippe Niedermann, Philippe Rychen
  • Patent number: 7811431
    Abstract: A nanostructured working electrode of an electrochemical sensor wherein the working electrode is composed of a material in the form of a film and is inserted onto the sensor. The electrode can be prepared from materials the use of which was impossible in the working electrodes known in the art (e.g. metals of defined purity). A method of manufacturing of the nanostructured working electrode and an electrochemical sensor containing the nanostructured electrode is disclosed.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: October 12, 2010
    Assignees: BVT Technologies A.S., Univerzita Jana Evangelisty Purkyne, Prirodovedecka Fakulta
    Inventors: Jan Krejci, Jan Maly, Radka Stejskalova
  • Publication number: 20100243447
    Abstract: A gas sensor including a pump electrode and a method for manufacturing a conductive paste for forming the pump electrode. When the pump electrode constituting an electrochemical pump cell for adjusting an oxygen partial pressure inside a gas sensor to measure a concentration of a gas component in a measurement gas by a current-limiting method is formed of a cermet of a noble metal and an oxide having oxygen ion conductivity, the noble metal contains a first noble metal having a catalytic activity, and a second noble metal having a catalytic activity suppressing ability to suppress the catalytic activity of the first noble metal with respect to an oxide gas except for oxygen, and an abundance ratio of the second noble metal with respect to the first noble metal in a particle surface of the first noble metal existing in the pump electrode is to be 0.01 to 0.3.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 30, 2010
    Applicant: NGK Insulators, Ltd.
    Inventors: Shinji FUJISAKI, Aya Sato, Yukimasa Mori, Sumiko Horisaka
  • Patent number: 7799187
    Abstract: A composite anode assembly is provided, the assembly including a permeation resistant portion and a porous conductive portion circumscribing at least the bottom of the permeation resistant portion. The composite anode assembly reduces corrosion and restricts thermal expansion stresses.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: September 21, 2010
    Assignee: Alcoa Inc.
    Inventors: Robert DiMilia, Frankie Phelps, Lance M. Sworts
  • Patent number: 7799188
    Abstract: The present invention pertains to an electrolytic copper plating method characterized in employing pure copper as the anode upon performing electrolytic copper plating, and performing electrolytic copper plating with the pure copper anode having a crystal grain diameter of 10 ?m or less or 60 ?m or more. Provided are an electrolytic copper plating method and a pure copper anode for electrolytic copper plating used in such electrolytic copper plating method capable of suppressing the generation of particles such as sludge produced on the anode side within the plating bath upon performing electrolytic copper plating, and capable of preventing the adhesion of particles to a semiconductor wafer, as well as a semiconductor wafer plated with the foregoing method and anode having low particle adhesion.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: September 21, 2010
    Assignee: Nippon Mining & Metals Co., Ltd
    Inventors: Akihiro Aiba, Takeo Okabe, Junnosuke Sekiguchi
  • Publication number: 20100167175
    Abstract: A composition useful in electrodes provides higher power capability through the use of nanoparticle catalysts present in the composition. Nanoparticles of transition metals are preferred such as manganese, nickel, cobalt, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These nanoparticle catalysts can substantially replace or eliminate platinum as a catalyst for certain electrochemical reactions. Electrodes, used as anodes, cathodes, or both, using such catalysts have applications relating to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air or oxygen breathing electrochemical systems as well as some liquid diffusion electrodes.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 1, 2010
    Applicant: QUANTUMSPHERE, INC.
    Inventors: Robert Brian Dopp, Kimberly McGrath, R. Douglas Carpenter
  • Patent number: 7744734
    Abstract: A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm2.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: June 29, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Shelly X. Li
  • Patent number: 7731867
    Abstract: The invention is directed to conductive polymer compositions, catalytic ink compositions (e.g., for use in screen-printing), electrodes produced by deposition of an ink composition, as well as methods of making, and methods of using such compositions and electrodes. An exemplary ink material comprises a metal catalyst (e.g., platinum black and/or platinum-on-carbon), graphite as a conducting material, a polymer binding material, and an organic solvent. In one aspect, the polymer binding material comprises a polymer binder blend comprising first and second polymers, wherein the first polymer has a glass transition temperature higher than the second polymer. In a second aspect, the polymer binding material comprises a hydrophilic acrylic polymer, copolymer, or terpolymer. The conductive polymer compositions of the present invention may be used, for example, to make electrochemical sensors. Such sensors may be used, for example, in a variety of devices to monitor analyte amount or concentrations in subjects.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: June 8, 2010
    Assignee: Animas Technologies, LLC
    Inventors: Huawen Li, Michael J. Tierney
  • Publication number: 20100133111
    Abstract: Catalytic materials, photoanodes, and systems for electrolysis and/or formation of water are provided which can be used for energy storage, particularly in the area of solar energy conversion, and/or production of oxygen and/or hydrogen. Compositions and methods for forming photoanodes and other devices are also provided.
    Type: Application
    Filed: October 8, 2009
    Publication date: June 3, 2010
    Applicants: Massachusetts Institute of Technology, Sun Catalytix Corporation
    Inventors: Daniel G. Nocera, Matthew W. Kanan, Yogesh Surendranath, Steven Y. Reece, Arthur J. Esswein
  • Patent number: 7727927
    Abstract: Activation of a tungsten-containing catalyst using water in a PEM-type fuel cell is described as well as cathode operation of the tungsten-containing catalyst.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: June 1, 2010
    Assignee: Global Tungsten & Powders Corp.
    Inventor: Joel B. Christian
  • Patent number: 7666283
    Abstract: The invention relates to an insoluble anode for electrolytic plating, the insoluble anode having two or more phases comprising an anode base body and a screen wherein the anode base body of steel, stainless steel, nickel, nickel alloy, cobalt, and cobalt alloy.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: February 23, 2010
    Assignee: Enthone Inc.
    Inventors: Andreas Möbius, Marc L. A. D. Mertens
  • Publication number: 20100000871
    Abstract: The present invention pertains to an electrolytic copper plating method characterized in employing pure copper as the anode upon performing electrolytic copper plating, and performing electrolytic copper plating with the pure copper anode having a crystal grain diameter of 10 ?m or less or 60 ?m or more. Provided are an electrolytic copper plating method and a pure copper anode for electrolytic copper plating used in such electrolytic copper plating method capable of suppressing the generation of particles such as sludge produced on the anode side within the plating bath upon performing electrolytic copper plating, and capable of preventing the adhesion of particles to a semiconductor wafer, as well as a semiconductor wafer plated with the foregoing method and anode having low particle adhesion.
    Type: Application
    Filed: September 11, 2009
    Publication date: January 7, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Akihiro Aiba, Takeo Okabe, Junnosuke Sekiguchi
  • Publication number: 20090223815
    Abstract: The present invention provides a cathode for hydrogen generation comprising a cathode substrate having provided thereon a catalytic layer, wherein the catalytic layer contains at least three components of platinum, cerium and lanthanum in amounts of 50 to 98 mol %, 1 to 49 mol % and 1 to 49 mol %, respectively, in the form of metal, metal oxide or metal hydroxide.
    Type: Application
    Filed: March 5, 2009
    Publication date: September 10, 2009
    Applicant: PERMELEC ELECTRODE LTD.
    Inventors: Miwako NARA, Tomohisa SUZUKI, Masashi TANAKA, Yoshinori NISHIKI
  • Publication number: 20090223816
    Abstract: Provided are a low impedance gold electrode, which has increased surface area, and can improve a bonding force with other materials, an apparatus for and a method of fabricating the low impedance gold electrode, and an electrolyte solution for use in the fabrication of the low impedance gold electrode. The gold electrode has a surface roughness that is increased through electrolysis using an acid electrolyte solution, has an impedance that is less than 1/10 of an impedance before the electrolysis and is higher than 0? when the low impedance gold electrode is disposed in the acid electrolyte solution or another electrolyte solution, and has a single-layered structure whose thickness is less than that before the electrolysis.
    Type: Application
    Filed: March 5, 2009
    Publication date: September 10, 2009
    Applicant: MARVELDEX INC.
    Inventors: Seh Jin CHOI, Myung Ki CHOI
  • Publication number: 20090194428
    Abstract: The present invention relates to a method of electrochemically desorbing or adsorbing a cryptate [18F] fluoride complex using a substituent substituted cryptand A. The present invention also relates to an apparatus and a kit for performing this method.
    Type: Application
    Filed: June 9, 2007
    Publication date: August 6, 2009
    Inventor: Alan Peter Clarke
  • Patent number: 7569765
    Abstract: An electrode according to the present invention includes a substrate, and a conductive layer containing carbon particles or platinum particles and a conductive binder for binding the carbon particles or platinum particles formed above the substrate. By binding the carbon particles or the platinum particles with the conductive binder, it is possible to form an electrode with a porous structure where spaces that communicate with a surface of the conductive layer are defined between the corresponding carbon particles or platinum particles, thereby increasing the effective area (surface area) of the electrode. The photoelectric conversion elements and the dye-sensitized photovoltaic or solar cells according to the present invention can be manufactured at a low cost and have an increased effective area, making it possible to obtain excellent photoelectric conversion efficiency.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: August 4, 2009
    Assignee: Fujikura Ltd.
    Inventors: Hiroshi Matsui, Nobuo Tanabe
  • Patent number: 7566388
    Abstract: An electrode catalyst comprising a conductive carrier, and a mixture containing a particulate noble metal and at least one particulate rare-earth oxide, the mixture being supported on the conductive carrier wherein the particulate rare-earth oxide has an alkaline-earth metal as solid solution therein.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: July 28, 2009
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takeaki Sasaki, Toshinori Hachiya, Isao Morimoto
  • Publication number: 20090145750
    Abstract: A continuous coal electrolytic cell for the production of pure hydrogen without the need of separated purification units Electrodes comprising electrocatalysts comprising noble metals electrodeposited on carbon substrates are also provided. Also provided are methods of using the electrocatalysts provided herein for the electrolysis of coal in acidic medium, as well as electrolytic cells for the production of hydrogen from coal slurries in acidic media employing the electrodes described herein. Further provided are catalytic additives for the electro-oxidation of coal. Additionally provided is an electrochemical treatment process where iron-contaminated effluents are purified in the presence of coal slurries using the developed catalyst.
    Type: Application
    Filed: May 8, 2006
    Publication date: June 11, 2009
    Inventor: Gerardine Botte
  • Patent number: 7544275
    Abstract: This invention relates to an anode assembly (1) to be used in a fused bath electrolysis aluminium production cell. This assembly comprises one inert anode (2) in the shape of a ladle, one connection conductor (3, 4, 5), mechanical connection means capable of cooperating so as to set up a mechanical link between the conductor and the anode, one metallic joint (31) that is or could be formed by brazing being located between all or part of at least one surface (20, 20?, 20?) of the open end (22) of the anode (2) and all or part of at least one surface (40, 40?, 40?) of the connection end (42) of the conductor (3, 4, 5). The invention simplifies manufacturing of anode assemblies comprising one inert anode.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: June 9, 2009
    Assignee: Aluminium Pechiney
    Inventor: Airy-Pierre Lamaze
  • Patent number: 7504010
    Abstract: The present invention relates to a dimensionally stable oxygen-evolving anode for use in an electrolytic cell for the production of aluminium. The anode comprises of a container made from an alloy comprising aluminium and at least one metal more noble than aluminium; a fluid bath in the bottom of the container having the ability to dissolve aluminium, said fluid having a density that is higher than the density of molten aluminium at the operating temperature of the cell, a pool of molten aluminium floating on top of the fluid bath in the bottom of the container; a refractory layer arranged on the inner sidewalls of the container at least in the area of the pool of molten aluminium, said refractory layer protecting the molten aluminium from contacting the inner sidewalls of the container.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: March 17, 2009
    Assignee: Elkem AS
    Inventors: Jan Arthur Aune, Georg Frommeyer, Kai Johansen, Donald R. Sadoway, Gro Soleng, Elke William Thisted
  • Patent number: 7452451
    Abstract: An electrode plate for electrolysis is composed of a plate-form porous ceramic body for electrolyzing a hydrogen-comprising-compound solution, and a conductive portion provided at a part of the ceramic body, wherein particles for composing the ceramic body are comprised of any of fluoride carbon and an element difficult to react to oxygen, and wherein an outmost-nucleus-orbit electron number of the element is even, and porosity having an energy concentration field is provided between the particles in the ceramic body.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: November 18, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masayoshi Kitada, Kosuke Niki
  • Publication number: 20080257720
    Abstract: An electrode system for an electrochemical cell is provided, including a substrate, a measuring electrode connected to the substrate and formed from a number of electrically conducting and mutually connected microdisks, and a generating electrode formed from an electrically conducting sheet and having a diameter that is greater than that of the microdisks. In one implementation, the microdisks are provided in cavities in the substrate.
    Type: Application
    Filed: January 17, 2005
    Publication date: October 23, 2008
    Inventors: Jean Gobet, Philippe Niedermann, Philippe Rychen
  • Publication number: 20080237061
    Abstract: The present invention is directed to the detection of target analytes using electronic techniques, particularly AC techniques.
    Type: Application
    Filed: October 30, 2007
    Publication date: October 2, 2008
    Applicant: Clinical Micro Sensors, Inc.
    Inventors: Stephen D. O'Connor, Jon Faiz Kayyem, Thomas J. Meade
  • Publication number: 20080217168
    Abstract: There are disclosed an electrode for electrolysis capable of efficiently forming ozone by electrolysis of an electrolytic solution (e.g., water) at ordinary temperature with a low current density, and an electrolysis unit using the electrode. The electrode for electrolysis includes a substrate and a surface layer formed on the surface of the substrate, and the surface layer is made of an amorphous insulator, for example, a thin film of amorphous tantalum oxide, amorphous tungsten oxide or amorphous aluminum oxide.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 11, 2008
    Inventors: Kenta Kitsuka, Kazuhiro Kaneda, Mineo Ikematsu, Katsura Kawata
  • Publication number: 20080210568
    Abstract: An electrolytic copper plating method characterized in employing a phosphorous copper anode having a crystal grain size of 1,500 ?m (or more) to 20,000 ?m in an electrolytic copper plating method employing a phosphorous copper anode. Upon performing electrolytic copper plating, an object is to provide an electrolytic copper plating method of a semiconductor wafer for preventing the adhesion of particles, which arise at the anode side in the plating bath, to the plating object such as a semiconductor wafer, a phosphorous copper anode for electrolytic copper plating, and a semiconductor wafer having low particle adhesion plated with such method and anode.
    Type: Application
    Filed: March 3, 2008
    Publication date: September 4, 2008
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Akihiro Aiba, Takeo Okabe
  • Publication number: 20080202923
    Abstract: The invention relates to a sulphide catalyst for electrochemical reduction of oxygen particularly stable in chemically aggressive environments such as chlorinated hydrochloric acid. The catalyst of the invention comprises a noble metal sulphide single crystalline phase supported on a conductive carbon essentially free of zerovalent metal and of metal oxide phases, obtainable by reduction of metal precursor salts and thio-precursors with a borohydride or other strong reducing agent.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 28, 2008
    Inventors: Andrea F. Gulla, Robert J. Allen
  • Publication number: 20080121520
    Abstract: An improved carbon supported-noble metal sulphide electrocatalyst suitable for being incorporated in gas-diffusion electrode structures, in particular in oxygen-reducing gas diffusion cathodes for aqueous hydrochloric acid electrolysis. The noble metal sulphide particles are monodispersed on the active carbon particles and the surface area ratio of noble metal sulphide particles to active carbon particles is at least 0.20.
    Type: Application
    Filed: November 5, 2007
    Publication date: May 29, 2008
    Inventors: Andrea F. Gulla, Robert J. Allen
  • Patent number: 7374647
    Abstract: A device of an electrode is disclosed, comprising a core and a surface coating of electrically-conductive material, and it is characterized by that the surface coating comprises one or several layers with a pore-free surface, each with a thickness of 0.005 mm to 0.050 mm, and formed by spraying, especially with a vacuum plasma spray technique.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: May 20, 2008
    Assignee: ORO AS
    Inventors: Atle Mundheim, Lasse Kroknes
  • Patent number: 7363110
    Abstract: A gasket having the form of a frame is provided with a curved portion at an inner or outer periphery thereof. When used in combination with a similarly configured gasket, the two gaskets may together, upon compression, form a pinch seal. The curved portion may be provided with a chemically resistant material.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: April 22, 2008
    Assignee: Ineos Chlor Enterprises Limited
    Inventors: Brian K. Revill, Michael F. Dutton, Keith A. Stanley, Alan R. Naylor
  • Patent number: 7291191
    Abstract: Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: November 6, 2007
    Assignee: UltraCell Corporation
    Inventor: Ian W. Kaye
  • Patent number: 7270731
    Abstract: Platinum metal cermet electrodes are described on which the electrochemical reduction of oxygen is made easier compared to known platinum metal cermet electrodes. The ceramic component of a platinum metal cermet electrode contains stabilized ZrO2 as its main constituent, the composition of the electrode being directed toward reducing its polarization resistance.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: September 18, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Dieter Lehmann, Detlef Heimann, Gudrun Oehler, Sabine Thiemann-Handler