Metallic Patents (Class 204/292)
  • Patent number: 7232508
    Abstract: An electrolytic electrode having an interlayer having more excellent peeling resistance and corrosion resistance and longer electrolytic life than conventional electrolytic electrodes and capable of flowing a large amount of current at the industrial level and a process of producing the same are provided. The electrolytic electrode includes a valve metal or valve metal alloy electrode substrate on the surface of which is formed a high-temperature oxidation film by oxidation, and which is coated with an electrode catalyst. The high-temperature oxidation film is integrated with the electrode substrate, whereby peeling resistance is enhanced. Further, by heating the high-temperature oxidation film together with the electrode catalyst, non-electron conductivity of the interlayer is modified, thereby making it possible to flow a large amount of current.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: June 19, 2007
    Assignee: Permelec Electrode Ltd.
    Inventor: Masashi Hosonuma
  • Patent number: 7232509
    Abstract: Highly active hydrogen evolving cathode using a platinum group metal catalyst in an amount smaller than that used in the conventional hydrogen evolving cathode. The hydrogen evolving cathode includes a conductive substrate, and a catalyst layer comprising at least one selected from the group consisting of silver and a silver oxide compound, and at least one selected from the group consisting of a platinum group metal, a platinum group metal oxide and a platinum group metal hydroxide, formed on a surface of the conductive substrate.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: June 19, 2007
    Assignee: Permelec Electrode Ltd.
    Inventors: Miwako Nara, Yoshinori Nishiki, Tsuneto Furuta
  • Patent number: 7229536
    Abstract: An electrode for use in hydrogen generation comprising a conductive base and a coating layer formed thereon of a composition obtainable by thermally decomposing, in the presence of an organic acid, a mixture comprising at least one type of platinum compound.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: June 12, 2007
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Hiroyoshi Houda, Yasuhide Noaki, Kentaro Sako
  • Patent number: 7214296
    Abstract: Object of the invention is an anodic structure for mercury cathode cells for the industrial electrolysis of sodium chloride. The new structure is constituted by a grid array comprising a multiplicity of vertically disposed and mutually parallel titanium blades, covered by an electrocatalytic coating specific for the discharge of chlorine. The ratio between the thickness and the height of the blades is comprised between 1:16 and 1:100 and the ratio between the surface of free passage between the blades and the projected surface is comprised between 15:17 and 25:30. The new grid array is perpendicularly fixed to new or existing frames having the function of mechanical support and current conduction to the grid array. Scope of the invention is simultaneously reducing the energetic consumption of the cell and the costs for restoring the exhausted electrocatalytic coating.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: May 8, 2007
    Assignee: De Nora Elettrodi, S.p.A.
    Inventor: Giovanni Meneghini
  • Patent number: 7195696
    Abstract: The present invention provides a novel system, apparatus, and method to deposit conductive films on a workpiece. A system for electroplating a surface of a workpiece using a process solution is disclosed. The system comprises a solution housing configured to house an electrode and to contain the process solution, a filter element disposed in the solution housing configured to partition the solution housing into a lower chamber and an upper chamber, and an upper inlet port coupled to the solution housing configured to deliver the process solution to the upper chamber of the solution housing to fill the upper chamber and the lower chamber immersing the electrode in the lower chamber.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: March 27, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Cyprian E. Uzoh, Bulent M. Basol
  • Patent number: 7189341
    Abstract: The invention is directed to conductive polymer compositions, catalytic ink compositions (e.g., for use in screen-printing), electrodes produced by deposition of an ink composition, as well as methods of making, and methods of using such compositions and electrodes. An exemplary ink material comprises a metal catalyst (e.g., platinum black and/or platinum-on-carbon), graphite as a conducting material, a polymer binding material, and an organic solvent. In one aspect, the polymer binding material comprises a polymer binder blend comprising first and second polymers, wherein the first polymer has a glass transition temperature higher than the second polymer. In a second aspect, the polymer binding material comprises a hydrophilic acrylic polymer, copolymer, or terpolymer. The conductive polymer compositions of the present invention may be used, for example, to make electrochemical sensors. Such sensors may be used, for example, in a variety of devices to monitor analyte amount or concentrations in subjects.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: March 13, 2007
    Assignee: Animas Technologies, LLC
    Inventors: Huawen Li, Michael J. Tierney
  • Patent number: 7169270
    Abstract: An improved electrical connection between an inert anode and a conductor rod is disclosed. The conductor rod has a smaller diameter than a hole in the anode such that a gap is provided between the conductor rod and the anode. The gap is filled with an electrically conductive particulate material, such as Cu, Ni and/or Ag. The particulate conductor material is at least partially sintered before or during operation of the anode. To ensure a good connection between the conductor rod and the anode, the particle size distribution of the particulate connector material may be controlled.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: January 30, 2007
    Assignee: Alcoa, Inc.
    Inventors: LeRoy E. D'Astolfo, Jr., R. Lee Troup
  • Patent number: 7156968
    Abstract: An electrode comprises a catalyst and material to help stabilize an oxide of the catalyst. The electrode for one embodiment may be used for an electrochemical sensor or sensor cell.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: January 2, 2007
    Assignee: MST Technology GmbH
    Inventors: Serguei Tsapakh, Kathrin Keller, Andreas Röhrl
  • Patent number: 7156962
    Abstract: There are provided an electrode for electrolysis which takes into consideration safety to human bodies and environmental pollution upon disposal of the electrode, produces ozone with high efficiency and has excellent durability, a production process of the electrode, and an active oxygen producing device using the electrode. In an electrode 5 for electrolysis which has an electrode catalyst at least on the surface and produces ozone or active oxygen in for-treatment water by electrolysis, the electrode catalyst contains a dielectric which constitutes more than 70% of the surface area of the electrode catalyst.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: January 2, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Tomohito Koizumi, Naoki Hiro, Tsuyoshi Rakuma, Katsuhiko Mushiake, Masahiro Iseki, Hiroyuki Umezawa, Yurika Koizumi, Yasuhito Kondo
  • Patent number: 7138040
    Abstract: An electrolytic copper plating method characterized in employing phosphorous copper as the anode upon performing electrolytic copper plating, and performing electrolytic copper plating upon making the crystal grain size of the phosphorous copper anode 10 to 1500 ?m when the anode current density during electrolysis is 3 A/dm2 or more, and making the grain size of the phosphorous copper anode 5 to 1500 ?m when the anode current density during electrolysis is less than 3 A/dm2. The electrolytic copper plating method and phosphorous copper anode used in such electrolytic copper plating method is capable of suppressing the generation of particles such as sludge produced on the anode side within the plating bath, and is capable of preventing the adhesion of particles to a semiconductor wafer. A semiconductor wafer plated with the foregoing method and anode having low particle adhesion are provided.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: November 21, 2006
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Takeo Okabe, Akihiro Aiba, Junnosuke Sekiguchi, Hirohito Miyashita, Ichiroh Sawamura
  • Patent number: 7118665
    Abstract: The present invention discloses a surface treatment process for enhancing both the release rate of metal ions from a sacrificial electrode, and the working life of the electrode. A high density of micro pores are formed on the surface of the sacrificial electrode. Chlorine ions are then implanted into the pores. The chlorine ions prevent a passive film from forming on the sacrificial electrode during use, in which an electric current flows through the sacrificial electrode.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: October 10, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Kon-Tsu Kin, Hong-Shiang Tang, Shu-Fei Chan, Wen-Tsang Chen
  • Patent number: 7118728
    Abstract: A method for making ferrite powder may include providing ferrite feed materials in a form of particles having different sizes and irregular shapes, and exposing the ferrite feed materials to a plasma to provide a more spherical shape to irregularly shaped particles to thereby make the ferrite powder. An apparatus for making ferrite powder may include a feeder for ferrite feed materials and a plasma generator for exposing the ferrite feed materials to a plasma.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: October 10, 2006
    Assignee: Steward Advanced Materials, Inc.
    Inventors: Henry G. Paris, Danny R. Smith
  • Patent number: 7077937
    Abstract: A large surface area electrode well-suited to electrochemical applications is produced by winding many turns of a metallic fiber tow on to a sheet metal rectangle. In the preferred embodiment, an anode that can be used to purify water by electrochemical production of hydroxyl free radical is made by winding titanium fiber tow on to a rectangular substrate made of titanium sheet, and applying a suitable multilayered electrocatalytic coating. Made of other metals, an electrode of this description can also serve as the cathode of an electrochemical cell, or as a battery plaque.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: July 18, 2006
    Inventors: Oleh Weres, Henry Edward O'Donnell
  • Patent number: 7052600
    Abstract: The inventive method and apparatus for treating water and water systems. The apparatus and method also assures the retention of calcium in drinking water provided to an animal by suppling water to a water feed line which is connected to a drinking device, oxidizing the water to retain calcium in the water in solution, ionizing the water using copper/zinc electrodes, the ionization sanitizing the water and providing residual copper and zinc ions which act as an algicide and a biocide, and providing the ionized oxidized drinking water which retains calcium in solution to the animal for drinking.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: May 30, 2006
    Assignee: Enproamerica, Inc.
    Inventor: Scott McKay
  • Patent number: 7033700
    Abstract: A zinc electrode is provided for use in electrochemical cells having an alkaline electrolyte and high cycle life. The zinc electrode comprises a mixture of zinc oxide together with an inorganic fibre which contains silica and alumina. Preferably, the composition of the inorganic fibre is in the range of 80% to 99% alumina, and 1% to 20% silica. Typically, the zinc electrode will further comprise an inorganic fibre additive in the range of 2% to 15% by weight of the zinc oxide electrode. Also, the zinc electrode will typically further include 2% up to 10% of bismuth oxide.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: April 25, 2006
    Assignee: PowerGenix Systems, Inc.
    Inventor: Jeffrey Phillips
  • Patent number: 7029558
    Abstract: The purpose is to provide a cathode electrode for manufacturing an electrodeposited copper foil which is possible to be continuously and stably usable for a long duration of 3000 hours or longer to subsequently lessen the frequency of maintenance work execution as low as possible and to contribute to lower the running cost of the electrodeposited copper foil manufacture. As the means for achieving the purpose, a cathode electrode made of a titanium material is employed for obtaining an electrodeposited copper foil using an electrolytic copper solution and the titanium material having 7.0 or higher crystal grain size number and 35 ppm or lower initial hydrogen content is used for manufacturing the cathode electrode for manufacturing an electrodeposited copper foil. Further, also provided is a manufacturing method of the titanium material to be employed for the cathode electrode made of a titanium material.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: April 18, 2006
    Assignees: Mitsui Mining & Smelting Co., LTD, Nippon Stainless Steel Kozai Co., LTD, Sumitomo Metal Industries, LTD
    Inventors: Sakiko Tomonaga, Satoru Fujita, Hiroshi Tanaka, Yutaka Kiminami, Isamu Kanekatsu, Atsuhiko Kuroda
  • Patent number: 7018568
    Abstract: The invention is directed to conductive polymer compositions, catalytic ink compositions (e.g., for use in screen-printing), electrodes produced by deposition of an ink composition, methods of making, and methods of using thereof. An exemplary ink material comprises platinum black and/or platinum-on-carbon as the catalyst, graphite as a conducting material, a polymer binding material, and an organic solvent. The polymer binding material is typically a copolymer of hydrophilic and hydrophobic monomers. The conductive polymer compositions of the present invention can be used, for example, to make electrochemical sensors. Such sensors can be used in a variety of analyte monitoring devices to monitor analyte amount or concentrations in subjects, for example, glucose monitoring devices to monitor glucose levels in subjects with diabetes.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: March 28, 2006
    Assignee: Animas Technologies LLC
    Inventor: Michael J. Tierney
  • Patent number: 7014739
    Abstract: An electroplating anode including a substantially convex oxidizing surface for oxidation of metal atoms in a semiconductor wafer electroplating process. The electroplating anode of the present invention substantially prolongs the lifetime of the anode and contributes to the prevention of wafer contamination due to generation of potential wafer-contaminating precipitate particles during a wafer electroplating process.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: March 21, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tro-Hsu Lin, Tien-Chen Hu, Hong-Jin Pu, Zhi-Zan Zhuang
  • Patent number: 6972078
    Abstract: A catalytic powder comprising a plurality of support metal particles with a porous coating (12) surrounding the metal particles (11), the porous coating comprising either an electrocatalytic metal or an electrocatalytic metal continuous phase in admixture with a particulate material (14). An electrode made with the catalytic powder and a method to make the electrode is also disclosed. The present invention is advantageous because the porous coating mixture is first applied to a powder rather than being applied directly to a metal substrate, thereby creating a large internal surface area on the electrode and accordingly, lower overpotential requirements.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: December 6, 2005
    Assignee: The Dow Chemical Company
    Inventors: Yu-Min Tsou, Edmond L. Manor
  • Patent number: 6866768
    Abstract: Electrolysis of alumina dissolved in a molten salt electrolyte employing inert anode and cathodes, the anode having a box shape with slots for the cathodes.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: March 15, 2005
    Inventors: Donald R Bradford, Robert J. Barnett, Michael B. Mezner
  • Patent number: 6855234
    Abstract: A sintered electrode assembly is made of an inert electrode (15) containing a sealed metal conductor (20) having a surface feature (30) such as a coating or wrapping which aids in bond formation with the inert electrode (15) at their interface (45), where the metal conductor (20) is directly contacted by and is substantially surrounded by the inert electrode (15) without the use of metal foam or metal powders.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: February 15, 2005
    Assignee: Alcoa Inc.
    Inventor: Leroy E. D'Astolfo, Jr.
  • Patent number: 6852209
    Abstract: An apparatus and method for plating a metal onto a substrate. The apparatus generally includes an anode electrode disposed in the electrochemical cell and a cathode electrode disposed opposite the anode electrode in the electrochemical cell. The apparatus further includes an electrode lid having more than one aperture disposed between the anode electrode and the cathode electrode, the apertures configured to electrically connect the cathode electrode and the anode electrode.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: February 8, 2005
    Assignee: Applied Materials, Inc.
    Inventor: Nicolay Kovarsky
  • Patent number: 6852204
    Abstract: A wall construction for an electrolytic cell to separate oxygen from an oxygen containing gas in which an electrolyte layer of less than 200 microns and a cathode layer of less than 500 microns are supported by an anode that can have a sufficient thickness to also contain the separated oxygen at pressure. The cathode is formed from the same material as the electrolyte and also a noble metal or noble metal alloy and a mixed conductor. The cathode contains a sufficient amount of the noble metal or noble metal allow and the mixed conductor that the total resistance thereof is not greater than about 70 percent of the total resistance of the anode and the cathode. In a preferred embodiment, first and second porous interfacial layers are situated between an anode layer and the electrolyte and the electrolyte and a cathode layer, respectively.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: February 8, 2005
    Assignee: Praxair Technology, Inc.
    Inventors: Weitung Wang, Hancun Chen, Jack C. Chen
  • Patent number: 6846392
    Abstract: A plating tool cell anode for venting unwanted gases from a fluid plating solution. In a first embodiment, the solution is introduced into a chamber, defined by the plating tool cell (10), by fluid inlet (12) and contacts the anode (50). The fluid encounters a hydrophobic membrane (14) and a hydrophilic membrane (15) spaced from the hydrophobic membrane. A driving force, such as a vacuum, is applied to the gap (16) between the membranes to remove unwanted gases therein. In a second embodiment, a single membrane is used that is both hydrophobic and hydrophilic. Preferably, the hydrophobic portion of the membrane is located at or near the perimeter of the chamber and gas to be vented is directed toward the hydrophobic portion(s).
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: January 25, 2005
    Assignee: Mykrolis Corporation
    Inventor: David W. Stockbower
  • Patent number: 6843896
    Abstract: The invention encompasses a method and apparatus for producing high-purity metals (such as, for example, high-purity cobalt), and also encompasses the high-purity metals so produced. The method can comprise a combination of electrolysis and ion exchange followed by melting to produce cobalt of a desired purity. The method can result in the production of high-purity cobalt comprising total metallic impurities of less than 50 ppm. Individual elemental impurities of the produced cobalt can be follows: Na and K less than 0.5 ppm each, Fe less than 10 ppm, Ni less than 5 ppm, Cr less than 1 ppm, Ti less than 3 ppm and O less than 450 ppm.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: January 18, 2005
    Assignee: Honeywell International Inc.
    Inventors: Guangxin Wang, Daniel M. Hydock, John Lehman
  • Patent number: 6841046
    Abstract: A system is for supplying a generator with hydrogen, in particular a generator of a power generating plant. The system offers a high level of safety while at the same time making handling easy. The system includes a closed system cycle for carrying water and/or gas and a hydrogen feed line, branching off from the system cycle, for the generator. The system cycle includes an electrolysis unit designed as a membrane electrolyzer.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: January 11, 2005
    Assignee: Siemens Aktiengesellschaft
    Inventors: Anwer Puthawala, Peter Schönfeld
  • Patent number: 6830673
    Abstract: A higher applied potential may be provided to a consumable anode to reduce sludge formation during electroplating. For example, a higher applied potential may be provided to a consumable anode by decreasing the exposed surface area of the anode to the electrolyte solution in the electroplating cell. The consumable anode may comprise a single anode or an array of anodes coupled to the positive pole of the power source in which the exposed surface area of the anode is less than an exposed surface area of the cathode to the electrolyte solution. In another example, a higher applied potential may be provided to a consumable anode by increasing the potential of the electroplating cell.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: December 14, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Yahalom, David Starosvetsky, Joseph Hazan
  • Publication number: 20040231978
    Abstract: The invention relates to electroplating. In particular, the invention relates to an improved anode for electroplating metals onto substrates, and to a method of electroplating metals onto substrates utilizing the anode. The anode has a solid metal portion, and a metal electrode shaft having one or more barbs projecting outwardly from a periphery of the shaft at one end of the shaft. The barbs are fixed through the body extend a distance therethrough.
    Type: Application
    Filed: March 9, 2004
    Publication date: November 25, 2004
    Inventor: Tamara L White
  • Patent number: 6821312
    Abstract: A method of making cermet inert anodes for the electrolytic production of metals such as aluminum is disclosed. The method includes the step of spray drying a slurry comprising ceramic phase particles and metal phase particles. The resultant spray dried powder, which comprises agglomerates of both the ceramic phase and metal phase particles, may then be consolidated by techniques such as pressing and sintering to produce a cermet inert anode material. The ceramic phase may comprise oxides of Ni, Fe and at least one additional metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths. The metal phase may comprise Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The consolidated cermet inert anode material exhibits improved properties such as reduced porosity. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: November 23, 2004
    Assignee: Alcoa Inc.
    Inventors: Siba P. Ray, Xinghua Liu, Frankie E. Phelps, Joseph M. Dynys, Douglas A. Weirauch, Jr.
  • Publication number: 20040226817
    Abstract: An electrolytic electrode having an interlayer having more excellent peeling resistance and corrosion resistance and longer electrolytic life than conventional electrolytic electrodes and capable of flowing a large amount of current at the industrial level and a process of producing the same are provided. The electrolytic electrode includes a valve metal or valve metal alloy electrode substrate on the surface of which is formed a high-temperature oxidation film by oxidation, and which is coated with an electrode catalyst. The high-temperature oxidation film is integrated with the electrode substrate, whereby peeling resistance is enhanced. Further, by heating the high-temperature oxidation film together with the electrode catalyst, non-electron conductivity of the interlayer is modified, thereby making it possible to flow a large amount of current.
    Type: Application
    Filed: May 6, 2004
    Publication date: November 18, 2004
    Applicant: PERMELEC ELECTRODE LTD.
    Inventor: Masashi Hosonuma
  • Patent number: 6818105
    Abstract: A fluorine gas generating apparatus for generating fluorine gas of high purity by electrolysis of a mixed molten-salt comprising hydrogen fluoride, the fluorine gas generating apparatus comprising an electrolytic cell which is separated into an anode chamber 5 and a cathode chamber 7 by a partition wall 28, and pressure keeping means 50 for supplying gas to the anode chamber 5 and the cathode chamber 7, respectively, to keep an interior of the anode chamber 5 and an interior of the cathode chamber 7 at a certain pressure.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: November 16, 2004
    Assignee: Toyo Tanso Co., Ltd.
    Inventors: Tetsuro Tojo, Jiro Hiraiwa, Hitoshi Takebayashi, Yoshitomi Tada
  • Publication number: 20040216995
    Abstract: An anode of a cell for the electrowinning of aluminium has a nickel-iron alloy outer portion which during use is covered with an integral iron-based oxide surface layer. The nickel-iron alloy outer portion comprises one or more rare earth metals that are substantially insoluble in nickel and iron. These rare earth metals are present in the outer portion in an amount which provides during use controlled diffusion of iron from the outer portion to the integral iron-based oxide surface layer.
    Type: Application
    Filed: June 15, 2004
    Publication date: November 4, 2004
    Inventors: Thinh T Nguyen, Vittorio De Nora
  • Patent number: 6805777
    Abstract: An inert anode (10) for use in an electrolysis process to make metals such as aluminum, contains a hollow interior with an open top portion (16), an interior closed bottom (18) and interior walls (19) where the top interior side walls (16) have at least one interior groove (20) which helps relieve stress on the anode material and helps provide locking and support of the anode.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: October 19, 2004
    Assignee: Alcoa Inc.
    Inventor: Leroy E. D'Astolfo, Jr.
  • Publication number: 20040200727
    Abstract: The present invention pertains to an electrolytic copper plating method characterized in employing pure copper as the anode upon performing electrolytic copper plating, and performing electrolytic copper plating with the pure copper anode having a crystal grain diameter of 10 &mgr;m or less or 60 &mgr;m or more or a non-recrystallized anode.
    Type: Application
    Filed: February 6, 2004
    Publication date: October 14, 2004
    Inventors: Akihiro Aiba, Takeo Okabe, Junnosuke Sekiguchi
  • Patent number: 6770186
    Abstract: A hydrogen-fueled motor vehicle including at least one hydrogen-fueled locomotion subsystem and at least one refuelable hydrogen generator operative to supply hydrogen fuel to the hydrogen-fueled locomotion subsystem on demand. The refuelable hydrogen generator includes at least one electrochemical reactor operative to generate the hydrogen fuel from water on demand and a refueling subsystem providing at least one of water, electrolyte, hydrogen, a metal containing material and electrical power to the electrochemical reactor. A refueling method is also provided.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: August 3, 2004
    Assignee: Eldat Communication Ltd.
    Inventors: Oren Rosenfeld, Jonathan Russell Goldstein, Nimrod Sandeerman
  • Patent number: 6761808
    Abstract: An electrode structure for use, for example, in a bipolar electrolyser comprising (i) a pan with a dished recess and a flange around the periphery thereof for supporting gasket means for sealing a separator between the flanges in adjacent electrode structures, which separator is disposed between the surface of the anode of a first electrode structure and the cathode of a second electrode structure such that the anode surface is substantially parallel to and faces but is insulated and spaced apart from the cathode surface by the separator and is hermetically-sealed to the separator, (ii) an electrically conductive plate spaced from the pan, (iii) a plurality of electrically-conductive members to which the electrically conductive plate is electroconductively attached and which provide electrically-conductive pathways between the pan and the electrically conductive plate, (iv) inlet for electrolyte and (v) outlets for liquids and gases wherein where the electrode structure is an anode structure the dished recess
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: July 13, 2004
    Assignee: Ineos Chlor Limited
    Inventors: Brian K Revill, Michael F Dutton, Keith A Stanley, Alan R Naylor
  • Publication number: 20040084303
    Abstract: An electrochemical device (18) for generating a desired gas of the type includes an ionically conductive electrolyte layer (20), a porous electrode layer (22), and a current collector layer (16) that has a high electrical conductivity and is porous to a desired gas (24) generated by the electrochemical device (18). The current collector layer (16) is substantially formed as a film comprised of a layer of spherical refractory material objects (26) having a conductive coating (12) of a precious metal. The coated spherical objects (26) have a desired diameter (28) making them suitable for forming into the film.
    Type: Application
    Filed: December 2, 2002
    Publication date: May 6, 2004
    Applicant: Litton Systems, Inc.
    Inventors: Scott R. Sehlin, Courtney J. Monzyk
  • Publication number: 20040045819
    Abstract: An anode structure comprising a ruthenium catalyst is disclosed. The catalyst consists essentially of ruthenium deposited on a conducting support wherein the ruthenium is in metallic form or in a form that is readily reducible to the metallic form at temperatures of 25° C. to 150° C. The anode structure is particularly of use in proton exchange membrane fuel cell to prevent poisoning of the electrocatalyst by impurities in the fuel stream to the anode.
    Type: Application
    Filed: March 18, 2003
    Publication date: March 11, 2004
    Inventors: Sarah Ball, David Thompsett
  • Patent number: 6695962
    Abstract: An anode assembly by which a solution can be supplied to a surface of a semiconductor substrate includes a housing defining an internal housing volume into which the solution can flow. A closure is provided for the internal housing volume, and the solution can be discharged from the internal housing volume through the closure towards the surface of the semiconductor substrate. A filter divides the internal housing volume into a first chamber and a second chamber located between the first chamber and the closure. During supply of the solution to the surface, a flow of the solution into the second chamber occurs at a higher rate than a flow of the solution into the first chamber, and the flows are blended in the second chamber.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: February 24, 2004
    Assignee: NuTool Inc.
    Inventors: Cyprian E. Uzoh, Homayoun Talieh, Bulent M. Basol
  • Patent number: 6695957
    Abstract: A plating cell base design that utilizes a single connection that provides both fluid communication and electrical communication to the cell. The design eliminates many of the components previously necessary to effectuate fluid and electrical seals. With fewer connections, material cost is reduced, reliability is enhanced, and downtime is reduced.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: February 24, 2004
    Assignee: Mykrolis Corporation
    Inventors: David W. Stockbower, Peter V. Kimball, Iraj Gashgaee, Geoffrey W. Kaiser
  • Patent number: 6685819
    Abstract: A galvanic cell system (50) in fluid communication with a dewatering system (40) of an inhibited oxidation scrubber (20) removes an oxidation catalyst, i.e., solution phase iron (98), from the process liquor (42) produced by the dewatering system (40) and replaces the iron (98) with magnesium (104) in an oxidation-reduction reaction. An electrolytic cell system (154) in fluid communication with a dewatering system (144) of a forced oxidation scrubber (128) removes an oxidation inhibitor, i.e., solution phase aluminum (174), from the process liquor (146) produced by the dewatering system (144) and replaces the aluminum (174) with iron (170) in an oxidation-reduction reaction. The process liquor (42, 146) is subsequently returned to the scrubber (20, 128) with the solution phase metal (98, 174) selectively removed, thereby enhancing the scrubbing efficiency of the scrubber (20, 128).
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: February 3, 2004
    Assignee: Pinnacle West Capital Corporation
    Inventors: Bruce A. Salisbury, Kelly L. Baird, Calvin C. Webb
  • Patent number: 6682647
    Abstract: Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: January 27, 2004
    Assignee: New Mexico State University Technology Transfer Corporation
    Inventor: Joseph Wang
  • Patent number: 6679985
    Abstract: An electrochemical discharge machining method may include electrolytically machining a tool fed by a three-dimensional tool feeder which can accurately feed a tool in three dimensions. The electrolytic machining may be performed in a current controlled mode, during which a concentration and a height of an electrolyte may be regulated. Further, the method may include performing electrochemical discharge machining of the workpiece using the machined tool in a voltage controlled mode.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: January 20, 2004
    Inventors: Soo Hyun Kim, Young-Mo Lim, Hyung-Jun Lim
  • Patent number: 6679982
    Abstract: An oxygen sensor is disposed downstream from a catalyst for purifying exhaust gas from an internal combustion engine and which can suppress an influence of unburnt hydrocarbon on an output voltage. After forming a platinum thin film on the outer periphery of a zirconia ceramic body, only a detection electrode of the ceramic body is dipped in a silver nitrate aqueous solution of 0.1 mol/l, and the silver nitrate is pyrolyzed through a heat treatment. Subsequently, a platinum reference electrode is formed on the inner periphery of the ceramic body. To protect the silver-doped detection electrode, a protective layer is formed on the surface of the detection electrode. By the exposure to combustion gas and through aging, a detection element is formed, and set into a metal case together with a cylindrical heater, to complete an oxygen sensor to be disposed downstream from a CNG engine catalyst.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: January 20, 2004
    Assignees: NGK Spark Plug Co., Ltd., Honda Motor Co., Ltd.
    Inventors: Hiroshi Matsuzaki, Keiji Suzuki, Teppei Ookawa, Hiroshi Kubota, Seiichi Hosogai, Hiroyuki Fujita, Katsunori Nakamura
  • Patent number: 6675452
    Abstract: The invention provides methods and devices that enable the nesting of metal units. One method generally identifies a nesting location on the metal unit, and applies a force at the nesting location to create a nesting feature. In another embodiment, the invention is a nestable metal sheet. The nestable metal sheet is generally a metal sheet, such as a copper cathode, having a nesting feature.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: January 13, 2004
    Inventor: Richard A. Smith
  • Patent number: 6673223
    Abstract: The present invention discloses a gas sensing device, an oxygen pumping cell, and a gas detection apparatus using the same for detecting lower ranges of gas concentration with high accuracy and stability. An under layer made of oxygen-ion-conductive solid electrolyte was formed between an electrolyte substrate and a sensing electrode, a conversion electrode or a gas treatment electrode. This allows the physical and chemical adhesion between these electrodes and the electrolyte substrate, thereby improving the sensing properties and stability.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: January 6, 2004
    Assignee: Kabushiki Kaisha Riken
    Inventors: Akira Kunimoto, Yongtie Yan, Takashi Ono
  • Patent number: 6669828
    Abstract: A cathode is made of an electrically conducting support with a coating of electrochemically deposited lead with a density between 0.001 and 2 g/cm3.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: December 30, 2003
    Assignee: Consortium für Elektrochemische Industrie GmbH
    Inventor: Elke Fritz-Langhals
  • Patent number: 6663756
    Abstract: Disclosed is a microchip-based differential-type potentiometric oxygen gas sensor, which comprises a working electrode and a reference electrode. The working electrode is composed of a cobalt-plated electrode, a buffered hydrogel, and an ion sensitive gas permeable membrane while the reference electrode is composed of an oxygen non-sensitive silver chloride electrode and the same ion-selective gas-permeable membrane of working electrode. By taking advantage of the corrosion potential, the microchip-based oxygen gas sensor can accurately and quickly detect the content of dissolved oxygen in a sample solution. With this structure, the oxygen gas sensor is applied to a microchip-based all potentiometric multi-sensor capable of detecting two or more ions and gas species on a single chip.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: December 16, 2003
    Assignee: i-Sens Inc.
    Inventors: Dong Kwon Lee, Tae Young Kang, Sung Hyuk Choi, Jae Seon Lee, Hakhyun Nam, Geun Sig Cha
  • Patent number: 6656870
    Abstract: A tungsten-containing fuel cell catalyst having high electrochemical activity and its method of making are described. The tungsten-containing catalyst may be formed in situ in a fuel cell after the fuel cell is assembled.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: December 2, 2003
    Assignee: Osram Sylvania Inc.
    Inventors: Joel B. Christian, Robert G. Mendenhall
  • Patent number: 6638716
    Abstract: Rapid electrochemical verification of the amplification of DNA by a polymerase chain reaction in a small sample of the PCR product.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: October 28, 2003
    Assignee: TheraSense, Inc.
    Inventors: Adam Heller, Thierry de Lumley-Woodyear, George Georgiou, Amihay Freeman