Moving Magnetic Field Or Target Patents (Class 204/298.2)
  • Patent number: 11239064
    Abstract: A magnet unit for a magnetron sputtering apparatus is disposed above the target has: a yoke made of magnetic material and is disposed to lie opposite to the target; and plural pieces of magnets disposed on a lower surface of the yoke, wherein a leakage magnetic field in which a line passing through a position where the vertical component of the magnetic field becomes zero is closed in an endless manner, is caused to locally act on such a lower space of the target as is positioned between the center of the target and a periphery thereof, the magnet unit being driven for rotation about the center of the target. In a predetermined position of the yoke there is formed a recessed groove in a circumferentially elongated manner along an imaginary circle with the center of the target serving as a center.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: February 1, 2022
    Assignee: ULVAC, INC.
    Inventors: Yoshinori Fujii, Shinya Nakamura
  • Patent number: 11155921
    Abstract: An apparatus for the vacuum treatment of substrates in a vacuum chamber includes a substrate support device with a pylon which can be rotated about a longitudinal axis and has holding means for substrates and a plasma discharge device assigned to the pylon. The plasma discharge device includes more than two plate-shaped electrodes having excitation areas, the excitation areas of which are all oriented in the direction of the pylon and a power supply device for the excitation of a plasma discharge, by at least one electrical voltage applied to at least two of the electrodes, is provided, the excited plasma acting at least on parts of the pylon and on substrates that can be arranged on them. A process performs the vacuum coating by the apparatus.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: October 26, 2021
    Assignee: BÜHLER ALZENAU GMBH
    Inventors: Torsten Schmauder, Ludger Urban, Wilfried Dicken, Jutta Trube
  • Patent number: 10934616
    Abstract: A cathode device includes a rotation plate to which a magnetic circuit is fixed, a rotation mechanism including a rotation shaft that rotates the rotation plate when receiving power from a motor, and a linear motion parallel link mechanism. The parallel link mechanism includes an end effector, six links each having a distal end and a proximal end, and three linear motion mechanisms. The end effector rotationally supports the rotation shaft, the distal ends of the links are connected to the end effector, the links radially extend from the end effector, and the linear motion mechanisms move the proximal ends of adjacent two of the links in one direction when receiving power from respective linear actuators. A controller controls a change in position of the rotation shaft performed by a cooperative operation of the linear actuators, and controls rotation of the rotation shaft operated by the motor.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: March 2, 2021
    Assignee: ULVAC, Inc.
    Inventors: Yukihito Tashiro, Katsuaki Nakano
  • Patent number: 10707062
    Abstract: A microwave generator system for use in a microwave plasma enhanced chemical vapour deposition (MPECVD) system, the microwave generator system comprising: a microwave generator unit configured to produce microwaves at an operating power output suitable for fabricating synthetic diamond material via a chemical vapour deposition process; a fault detection system configured to detect a fault in the microwave generator unit which results in a reduction in the operating power output or a change in frequency; and a re-start system configured to restart the microwave generator unit in response to a fault being detected and recover the operating power output or frequency in a time period of less than 10 seconds after the fault in the microwave generator unit which caused the reduction in the operating power output or the change in frequency.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: July 7, 2020
    Assignee: Element Six Technologies Limited
    Inventors: John Robert Brandon, Neil Perkins
  • Patent number: 10309007
    Abstract: Some embodiments of the present disclosure provide a sputtering apparatus including a magnetron structure configured to erode a target according to a predetermined erosion rate profile symmetric to a central axis of the magnetron structure. The predetermined erosion rate profile includes a first peak rate in proximity to the central axis; and a second peak rate located at about from 0.7 to 0.75 of a radius of the target from the central axis.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: June 4, 2019
    Assignee: BEIJING NAURA MICROELECTRONICS EQUIPMENT CO., LTD.
    Inventor: Yujie Yang
  • Patent number: 9982337
    Abstract: The present invention relates to a sputtering method using a sputtering device, wherein entire scan region is defined from one side to the other side of a sputtering target, and the sputtering target is scanned with a magnet moving back and forth along the entire scan region multiple times. The entire scan region of a sputtering target is divided by N parts to be uniformly eroded, such that a magnet moves back and forth along some part of the divided entire scan region. A sputtering method using a sputtering device can therefore extend an alternating cycle of a sputtering target, by virtue of improving utilization efficiency of the sputtering target through uniform erosion of the sputtering target, and can also reduce manufacturing cost.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: May 29, 2018
    Assignee: Hydis Technologies Co., Ltd.
    Inventor: Jai Chun Lee
  • Patent number: 9966234
    Abstract: A film forming device includes a cylindrical evaporation source, closing members, and an auxiliary electrode. The cylindrical evaporation source is configured to accommodate a workpiece in an internal space of the cylindrical evaporation source. The cylindrical evaporation source is configured to discharge ions from the cylindrical evaporation source by arc discharge such that the ions are deposited on a surface of the workpiece. The closing members close the internal space. The auxiliary electrode is disposed along an inner wall surface of the cylindrical evaporation source. The auxiliary electrode is configured to be grounded or to be applied with a positive voltage such that electrons of the internal space flow to the auxiliary electrode.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: May 8, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayasu Sato, Yoji Sato, Kazutaka Tachibana
  • Patent number: 9771647
    Abstract: A cathode assembly for a magnetron sputtering system includes a target comprising sputterable material having an at least partially exposed, substantially planar sputtering or erosion surface and a target support configured to support and move the target during sputtering. In certain exemplary embodiments the cathode assembly further comprises a magnetic field source, e.g., a magnet array behind the target. The target support is configured to move the sputtering surface of the target by rotating or spinning the target in the plane of the sputtering surface, moving the target linearly back-and-forth or otherwise. The target support is configured to move the target relative to the magnetic field source, which may be stationary during sputtering, e.g., relative to the cathode assembly and vacuum chamber in which the sputtering is performed. A sputtering system including such a cathode assembly also is provided. A method of sputtering is further provided, employing such a cathode assembly.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: September 26, 2017
    Inventors: Michael A. Scobey, Shaun Frank McCaffery
  • Patent number: 9380692
    Abstract: Embodiments relate generally to semiconductor device fabrication and processes, and more particularly, to an apparatus and arrangements of magnetic field generators configured to generate rotating magnetic fields to facilitate physical vapor deposition (“PVD”). In one embodiment, a magnetic field generator apparatus can include a rotatable magnetic field and a counterbalance magnetic field generator that rotates about the axis of rotation in opposition to the rotatable magnetic field generator. The rotatable magnetic field generator generates a first magnitude of a magnetic field adjacent to a first circumferential portion of a circular region. The counterbalance magnetic field generator generates a second magnitude of the magnetic field adjacent to a second circumferential portion.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 28, 2016
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SEMICAT, INC.
    Inventors: Jeonghee Park, Jae Yeol Park
  • Patent number: 9347129
    Abstract: A sputtering apparatus includes a template having cells. Removable inserts are disposed within the cells. The cells may be circular, triangular, square, diamond shaped, or hex shaped. The removable inserts may be magnetic or non-magnetic inserts. A cover is connected with a first side of the template. A yoke is connected with a second side of the template. The removable inserts are operable to customize or shape a magnetic field over a target. The yoke is operable to provide a return path for the magnetic field.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: May 24, 2016
    Assignee: Seagate Technology LLC
    Inventor: Toon Hai Foo
  • Patent number: 9281167
    Abstract: A dual magnetron particularly useful for RF plasma sputtering includes a radially stationary open-loop magnetron comprising opposed magnetic poles and rotating about a central axis to scan an outer region of a sputter target and a radially movable open-loop magnetron comprising opposed magnetic poles and rotating together with the stationary magnetron. During processing, the movable magnetron is radially positioned in the outer region with an open end abutting an open end of the stationary magnetron to form a single open-loop magnetron. During cleaning, part of the movable magnetron is moved radially inwardly to scan and clean an inner region of the target not scanned by the stationary magnetron. The movable magnetron can be mounted on an arm pivoting about an axis at periphery of a rotating disk-shaped plate mounting the stationary magnetron so the arm centrifugally moves between radial positions dependent upon the rotation rate or direction.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: March 8, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Thanh X Nguyen, Rongjun Wang, Muhammad M Rasheed, Xianmin Tang
  • Patent number: 9249500
    Abstract: Methods and apparatus for a magnetron assembly are provided herein. In some embodiments, a magnetron assembly includes a first plate having a first central axis, the first plate rotatable about the first central axis, a first open loop magnetic pole coupled to the first plate, a second plate having a second central axis, the second plate rotatable about the second central axis, and a second open loop magnetic pole coupled to the second plate, wherein the first open loop magnetic pole and the second open loop magnetic pole form a closed loop magnetic pole when the first and second open loop magnetic poles are aligned.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: February 2, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Keith A. Miller
  • Patent number: 9218945
    Abstract: A magnetron include a center plurality of magnets and an outer plurality of magnets arranged around the center plurality of magnets in a shape of two long sections and two shorter turnaround sections. The outer plurality of magnets are configured with at least one region of weaker magnetic field strength in at least one of the two long sections and adjacent to one of the two turnaround sections.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: December 22, 2015
    Assignee: APOLLO PRECISION BEIJING LIMITED
    Inventors: Fred Chetcuti, Edward J. McInerney
  • Patent number: 9206503
    Abstract: The present invention relates to a sputtering method using a sputtering device, wherein entire scan region is defined from one side to the other side of a sputtering target, and the sputtering target is scanned with a magnet moving back and forth along the entire scan region multiple times. The entire scan region of a sputtering target is divided by N parts to be uniformly eroded, such that a magnet moves back and forth along some part of the divided entire scan region. A sputtering method using a sputtering device can therefore extend an alternating cycle of a sputtering target, by virtue of improving utilization efficiency of the sputtering target through uniform erosion of the sputtering target, and can also reduce manufacturing cost.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: December 8, 2015
    Assignee: Hydis Technologies Co., Ltd.
    Inventor: Jai Chun Lee
  • Patent number: 9208984
    Abstract: A magnetron includes a cooling block having an annular continuous portion with opposite end portions opposed to each other, the cooling block being secured to an outer peripheral surface of the cylindrical anode body, the cooling block having a coolant circulation pathway defined therein, a tightening member engageable with the opposite end portions of the cooling block to tighten the cooling block by reducing a distance between the opposite end portions of the cooling block, and a pair of pipe joints each connected to a portion of the cooling block adjacent to one of the opposite end portions so as to communicate with the coolant circulation pathway. The tightening member is disposed between connecting portions of the pair of pipe joints with the cooling block so as to extend in a direction inclined with respect to a plane including an annular direction of the cooling block.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: December 8, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kohei Kawata, Takanori Handa
  • Patent number: 9103025
    Abstract: A magnetron sputtering apparatus includes a vacuum chamber, a target and a substrate holder disposed to face one another in the vacuum chamber, a magnetron disposed on the target side which is opposite to where the substrate holder is disposed, and a rotating mechanism for rotating the magnetron about an axis perpendicular to a face of the target. The magnetron includes an inner magnet formed of a sector-shaped frame and an outer magnet formed of a sector-shaped frame, these inner and outer magnets having a different polarity each other, the outer magnet being disposed to surround the inner magnet leaving a gap between the arcuate segments of the inner and outer magnets as well as a gap between straight segments of the inner and outer magnets, the width of these frames being substantially the same with each other.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: August 11, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Katsumi Iyanagi, Shigeki Matsunaka
  • Patent number: 9039872
    Abstract: A method for producing a transparent and conductive metal oxide layer on a substrate, includes atomizing at least one component of the metal oxide layer by highly ionized, high power pulsed magnetron sputtering to condense on the substrate. The pulses of the magnetron have a peak power density of more than 1.5 kW/cm2, the pulses of the magnetron have a duration of ?200 ?s, and the average increase in current density during ignition of the plasma within an interval, which is ?0.025 ms, is at least 106 A/(ms cm2).
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: May 26, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Felix Horstmann, Volker Sittinger, Bernd Szyszka
  • Patent number: 9034156
    Abstract: Provided is a sputtering apparatus which deposits a metal catalyst on an amorphous silicon layer at an extremely low concentration in order to crystallize amorphous silicon, and particularly minimizes non-uniformity of the metal catalyst caused by a pre-sputtering process without reducing process efficiency. This sputtering apparatus improves the uniformity of the metal catalyst deposited on the amorphous silicon layer at an extremely low concentration. The sputtering apparatus includes a process chamber having first and second regions, a metal target located inside the process chamber, a target transfer unit moving the metal target and having a first shield for controlling a traveling direction of a metal catalyst discharged from the metal target, and a substrate holder disposed in the second region to be capable of facing the metal target.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 19, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Yun-Mo Chung, Dong-Hyun Lee, Kil-Won Lee, Jae-Wan Jung, Jong-Ryuk Park, Bo-Kyung Choi, Won-Bong Baek, Byung-Soo So, Jong-Won Hong, Min-Jae Jeong, Heung-Yeol Na, Ivan Maidanchuk, Eu-Gene Kang, Seok-Rak Chang
  • Patent number: 9028659
    Abstract: Embodiments of magnetrons suitable to provide extended target life in radio frequency (RF) plasmas are provided. In some embodiments, apparatus and methods are provided to control film uniformity while extending the target life in an RF plasma. In some embodiments, the present invention may facilitate one or more of very high target utilization, more uniform metal ionization, and more uniform deposition on a substrate. In some embodiments, a magnetron may include a magnet support member having a center of rotation; and a plurality of magnetic tracks, each track comprising a pair of open loop magnetic poles parallel to and spaced apart from each other, wherein one track is disposed near the center of the magnet support member, and wherein a different track is disposed in a position corresponding to an outer edge of a target material to be deposited on a substrate when installed in the PVD process chamber.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: May 12, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Alan Ritchie, Zhenbin Ge, Tza-Jing Gung, Vivek Gupta
  • Patent number: 9005414
    Abstract: The disclosure relates to a magnet arrangement for a sputtering system, wherein the magnet arrangement is adapted for a rotatable target of a sputtering system and includes: a first magnet element extending along a first axis; a second magnet element being disposed around the first magnet element symmetrically to a first plane; wherein the second magnet element includes at least one magnet section intersecting the first plane; and wherein a magnetic axis of the at least one magnet section is inclined with respect to a second plane being orthogonal to the first axis. Further, the disclosure relates to a target backing tube for a rotatable target of a sputtering system, a cylindrical rotatable target for a sputtering system, and a sputtering system.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: April 14, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Andreas Lopp, Juergen Grillmayer, Wolfgang Krock
  • Patent number: 8992749
    Abstract: Provided is a sputtering apparatus which deposits a metal catalyst on an amorphous silicon layer at an extremely low concentration in order to crystallize amorphous silicon, and particularly minimizes non-uniformity of the metal catalyst caused by a pre-sputtering process without reducing process efficiency. This sputtering apparatus improves the uniformity of the metal catalyst deposited on the amorphous silicon layer at an extremely low concentration. The sputtering apparatus includes a process chamber having first and second regions, a metal target located inside the process chamber, a target transfer unit moving the metal target and having a first shield for controlling a traveling direction of a metal catalyst discharged from the metal target, and a substrate holder disposed in the second region to be capable of facing the metal target.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: March 31, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Yun-Mo Chung, Dong-Hyun Lee, Kil-Won Lee, Jae-Wan Jung, Jong-Ryuk Park, Bo-Kyung Choi, Won-Bong Baek, Byung-Soo So, Jong-Won Hong, Min-Jae Jeong, Heung-Yeol Na, Ivan Maidanchuk, Eu-Gene Kang, Seok-Rak Chang
  • Publication number: 20150075982
    Abstract: A magnetic field forming apparatus includes a support member having a first side and a second side coupling a first end to a second end and an axis of rotation between the first end and the second end; a first body coupled to the first end of the support member and extending away from the first side of the support member, wherein the first body has a plurality of first magnets coupled to a bottom of the first body; a second body rotatably coupled to the second end of the support member and extending away from the second side of the support member, wherein the second body has a plurality of second magnets coupled to a bottom of the second body, wherein the plurality of the first magnets are disposed about 180 degrees from the plurality of second magnets with respect to the axis of rotation of the support member.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 19, 2015
    Inventors: GOICHI YOSHIDOME, FUHONG ZHANG
  • Patent number: 8968536
    Abstract: A sputtering target for a sputtering chamber comprises a backing plate with a sputtering plate mounted thereon. In one version, the backing plate comprises a circular plate having a front surface comprising an annular groove. The sputtering plate comprises a disk comprising a sputtering surface and a backside surface having a circular ridge that is shaped and sized to fit into the annular groove of the backing plate.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: March 3, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Adolph Miller Allen, Ki Hwan Yoon, Ted Guo, Hong S. Yang, Sang-Ho Yu
  • Patent number: 8961756
    Abstract: A magnetron assembly including one or more magnetrons each forming a closed plasma loop on the sputtering face of the target. The target may include multiple strip targets on which respective strip magnetrons roll and are partially supported on a common support plate through a spring mechanism. The strip magnetron may be a two-level folded magnetron in which each magnetron forms a folded plasma loop extending between lateral sides of the strip target and its ends meet in the middle of the target. The magnets forming the magnetron may be arranged in a pattern having generally uniform straight portions joined by curved portion in which extra magnet positions are available near the corners to steer the plasma track. Multiple magnetrons, possibly flexible, may be resiliently supported on a scanned support plate and individually partially supported by rollers on the back of one or more targets.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: February 24, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Makoto Inagawa, Hien Minh Huu Le, Akihiro Hosokawa, Bradley O. Stimson, John M. White
  • Patent number: 8956512
    Abstract: A target is provided opposite to a wafer mounted on in a vacuum chamber, and a magnet array body is disposed above the target. In the magnet array body, ring-shaped magnet arrays are arranged to generate annular magnetic fields in the circumferential direction of the wafer, and a sputtering film formation is performed by switching between the magnetic fields.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: February 17, 2015
    Assignee: Tokyo Electron Limited
    Inventor: Shigeru Mizuno
  • Patent number: 8900427
    Abstract: A magnetron actuator for moving a magnetron in a nearly arbitrary radial and azimuthal path in the back of a target in a plasma sputter reactor. The magnetron includes two coaxial rotary shafts extending along the chamber central axis and coupled to two independently controllable rotary actuators. An epicyclic gear mechanism or a frog-leg structure mechanically couple the shafts to the magnetron to control its radial and azimuthal position. A vertical actuator moves the shafts vertically in tandem to vary the magnetron's separation from the target's back surface and compensate for erosion of the front surface. The rotary actuators may be separately coupled to the shafts or a rotatable ring gear may be coupled to the shafts through respectively fixed and orbiting idler gears. Two radially spaced sensors detect reflectors attached to the inner and outer arms of the epicyclic gear mechanism for homing of the controller.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: December 2, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Keith A. Miller, Michael Allen Flanigan, Hari Ponnekanti
  • Patent number: 8894522
    Abstract: A drive end block for a rotatable magnetron comprises a housing, which has a vacuum-tight rotary feedthrough extending through a wall of the housing, and a drive apparatus for generating a torque. An output end of the rotary feedthrough lies outside the housing for connection to the rotatable magnetron and a drive end of the rotary feedthrough lies inside the housing for introducing a torque. The drive apparatus is situated outside the housing of the drive end block and is connected using a torque transmission apparatus to the drive end of the rotary feedthrough so that the drive apparatus is electrically insulated from the housing and the rotary feedthrough of the drive end block.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: November 25, 2014
    Assignee: VON ARDENNE Anlagentechnik GmbH
    Inventors: Hans-Juergen Heinrich, Goetz Grosser, Thorsten Sander
  • Patent number: 8882976
    Abstract: A magnetron unit moving apparatus for preventing magnetization and magnetron sputtering equipment having the same. The magnetron unit moving apparatus includes a magnetron unit disposed adjacent to a target, to generate a specific magnetic field, and a movement unit to space the magnetron unit and the target apart such that a strength of a magnetic field generated over the target is within a predetermined reference strength range. It is possible to space the target and the magnetron unit apart so as to prevent the target from being magnetized when a process is not performed.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 11, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yun-Mo Chung, Min-Jae Jeong, Jong-Won Hong, Eu-Gene Kang, Heung-Yeol Na, Ki-Yong Lee
  • Patent number: 8852412
    Abstract: A magnetron source comprises a target (39) with a sputtering surface and a back surface. A magnet arrangement (30, 32, 19a, 19b) is drivingly moved along the backside of the target (39). A tunnel-shaped magnetron magnetic field is generated between an outer loop (30) and an inner loop (32) of the magnet arrangement. Elongated pivotable or rotatable permanent magnet arrangements (19a, 19b) of the magnet arrangement are provided in an interspace between the outer and inner loops (30, 32) of the overall arrangement.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: October 7, 2014
    Assignee: Oerlikon Advanced Technologies AG
    Inventor: Juergen Weichart
  • Patent number: 8845868
    Abstract: A seal and fixation assembly includes a cylindrical target having an inside surface with a shoulder that forms a stop within the target. A target retaining ring is disposed about the target. A seal plate is disposed within the target and engages the stop and the inside surface of the target. An end cap is disposed on the end of the target and includes a portion with a beveled surface within the target. A sealing element is disposed between the inside surface of the target, the seal plate, and the beveled surface of the end cap. A clamp is disposed over the end cap and the target retaining ring. Engagement of the end cap and the target retaining ring with the clamp causes the end cap to move within the target toward the stop to compress the sealing element between the target, the seal plate, and the beveled surface.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: September 30, 2014
    Assignee: Angstrom Sciences, Inc.
    Inventor: Richard Newcomb
  • Publication number: 20140238843
    Abstract: A dual magnetron particularly useful for RF plasma sputtering includes a radially stationary open-loop magnetron comprising opposed magnetic poles and rotating about a central axis to scan an outer region of a sputter target and a radially movable open-loop magnetron comprising opposed magnetic poles and rotating together with the stationary magnetron. During processing, the movable magnetron is radially positioned in the outer region with an open end abutting an open end of the stationary magnetron to form a single open-loop magnetron. During cleaning, part of the movable magnetron is moved radially inwardly to scan and clean an inner region of the target not scanned by the stationary magnetron. The movable magnetron can be mounted on an arm pivoting about an axis at periphery of a rotating disk-shaped plate mounting the stationary magnetron so the arm centrifugally moves between radial positions dependent upon the rotation rate or direction.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Thanh X. Nguyen, Rongjun Wang, Muhammad M. Rasheed, Xianmin Tang
  • Publication number: 20140216923
    Abstract: Methods and apparatus for a magnetron assembly are provided herein. In some embodiments, a magnetron assembly includes a first plate having a first central axis, the first plate rotatable about the first central axis, a first open loop magnetic pole coupled to the first plate, a second plate having a second central axis, the second plate rotatable about the second central axis, and a second open loop magnetic pole coupled the second plate, wherein the first open loop magnetic pole and the second open loop magnetic pole form a closed loop magnetic pole when the first and second open loop magnetic poles are aligned.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 7, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventor: KEITH A. MILLER
  • Patent number: 8795487
    Abstract: Embodiments of the present invention provide improved methods and apparatus for physical vapor deposition (PVD) processing of substrates. In some embodiments, an apparatus for physical vapor deposition (PVD) may include a target assembly having a target comprising a source material to be deposited on a substrate, an opposing source distribution plate disposed opposite a backside of the target and electrically coupled to the target along a peripheral edge of the target, and a cavity disposed between the backside of the target and the source distribution plate; an electrode coupled to the source distribution plate at a point coincident with a central axis of the target; and a magnetron assembly comprising a rotatable magnet disposed within the cavity and having an axis of rotation that is aligned with a central axis of the target assembly, wherein the magnetron assembly is not driven through the electrode.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: August 5, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Alan Ritchie, Keith Miller
  • Patent number: 8778144
    Abstract: Method for manufacturing magnetron coated substrates, in which along the target and on its backside pointing from the substrate, a magnet arrangement is present by which along the sputter surface of the target at least one closed loop of a tunnel shaped magnetron magnetic field is generated, characterized in that for setting the sputter rate distribution the distance of a part of the magnet arrangement to the backside of the target is changed.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: July 15, 2014
    Assignee: Oerlikon Advanced Technologies AG
    Inventor: Jurgen Weichart
  • Patent number: 8778145
    Abstract: When a film is formed by using a sputter method, distribution variation due to a progress of target erosion generated during the film formation is suppressed, and film thickness distribution and resistance value distribution are corrected to an optimal state. In order to maintain the magnetic flux density formed on the target surface at a constant level, the distance between the target surface and the magnet surface (MT distance) is corrected in accordance with the progress of the target erosion. Further, two or more MT distances are set by a process recipe or the like while forming a thin film, and different distribution shapes are combined to form a near flat distribution shape.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: July 15, 2014
    Assignee: Canon Anelva Corporation
    Inventors: Eisaku Watanabe, Tetsuro Ogata
  • Patent number: 8764949
    Abstract: When a magnetron is scanned about the back of a target in a selected complex path having radial components, the erosion profile has a form depending upon the selection of paths. A radial erosion rate profile for a given magnetron is measured. Periodically during scanning, an erosion profile is calculated from the measured erosion rate profile, the time the magnetron spends at different radii, and the target power. The calculated erosion profile may be used to indicate when erosion has become excessive at any location prompting target replacement or to adjust the height of the magnetron above the target for repeated scans. In another aspect of the invention, the magnetron height is dynamically adjusted during a scan to compensate for erosion. The compensation may be based on the calculated erosion profile or on feedback control of the present value of the target voltage for a constant-power target supply.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: July 1, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Keith A. Miller, Daniel C. Lubben
  • Patent number: 8741115
    Abstract: The invention provides devices and methods for depositing uniform coatings using cylindrical magnetron sputtering. The devices and methods of the invention are useful in depositing coatings on non-cylindrical workpiece surfaces. An assembly of electromagnets located within the bore of a hollow cylindrical emitter is used to form a magnetic field exterior to and near the exterior surface of the emitter. The magnet assembly configuration is selected to provide a magnetic field configuration compatible with the workpiece surface contour. The electromagnet assembly may be a plurality of magnet units, each unit having at least one electromagnet. The magnetic field strength from each magnet unit is separately and electrically adjustable. Each electromagnet in the assembly has a coil of electrically conducting material surrounding a specially shaped core of magnetic material.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: June 3, 2014
    Assignee: BH5773 Ltd
    Inventors: Gennady Yumshtyk, Dmitri Ivanov
  • Patent number: 8721847
    Abstract: A control system and method for controlling two motors determining the azimuthal and circumferential position of a magnetron rotating about the central axis of the sputter chamber in back of its target sputtering and capable of a nearly arbitrary scan path, e.g., with a planetary gear mechanism. A system controller periodically sends commands to the motion controller which closely controls the motors. Each command includes a command ticket, which may be one of several values. The motion controller accepts only commands having a command ticket of a different value from the immediately preceding command. One command selects a scan profile stored in the motion controller, which calculates motor signals from the selected profile. Another command instructs a dynamic homing command which interrogates sensors of the position of two rotating arms to determine if the arms in the expected positions. If not, the arms are rehomed.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 13, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Yu Chang, William Kuang, Ronald D. DeDore, Jitendra R. Bhimjiyani, Wesley W. Zhang
  • Patent number: 8715471
    Abstract: To be able to realize a relatively wide magnetron sputter cathode, it is proposed that on the vacuum side of a carrier (2) is disposed the sputter target (4) with a backing plate (3), which maintains a gap (14) from the carrier (2). The backing plate (3) is developed as a cooling plate. In it are located cooling means channels (15), which, via an inlet (16) through the carrier (2), are supplied with cooling fluid, which can flow out again via an outlet (17) through the carrier (2). On the atmospheric side is located a magnet configuration (5).
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: May 6, 2014
    Assignee: Applied Materials GmbH & Co KG
    Inventors: Jörg Krempel-Hesse, Andreas Jischke, Uwe Schüssler, Hans Wolf
  • Patent number: 8696875
    Abstract: A magnetron sputter reactor (410) and its method of use, in which SIP sputtering and ICP sputtering are promoted is disclosed. In another chamber (412) an array of auxiliary magnets positioned along sidewalls (414) of a magnetron sputter reactor on a side towards the wafer from the target is disclosed. The magnetron (436) preferably is a small one having a stronger outer pole (442) of a first polarity surrounding a weaker inner pole (440) of a second polarity all on a yoke (444) and rotates about the axis (438) of the chamber using rotation means (446, 448, 450). The auxiliary magnets (462) preferably have the first polarity to draw the unbalanced magnetic field (460) towards the wafer (424), which is on a pedestal (422) supplied with power (454). Argon (426) is supplied through a valve (428). The target (416) is supplied with power (434).
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: April 15, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Peijun Ding, Rong Tao, Zheng Xu, Daniel C. Lubben, Suraj Rengarajan, Michael A. Miller, Arvind Sundarrajan, Xianmin Tang, John C. Forster, Jianming Fu, Roderick C. Mosely, Fusen Chen, Praburam Gopalraja
  • Patent number: 8685214
    Abstract: Magnetic flux shunting pads for optimizing target erosion in sputtering processes are provided. In one embodiment, the invention relates to a sputtering system for countering uneven wear of a sputter target, the system including a sputter target having an emitting surface and a rear surface opposite to the emitting surface, a moving magnet assembly positioned proximate the rear surface and including a planar base and a magnet fixed to the planar base at a preselected point, the moving magnet assembly configured to be moved such that a position of the magnet relative to the rear surface is varied, and a magnetic shunting pad having a planar shape and positioned between the moving magnet assembly and the target, wherein the shunting pad includes uneven magnetic shunting characteristics.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: April 1, 2014
    Assignee: WD Media, LLC
    Inventors: Chee Boon Moh, Chun Chek Chin, Kok Soon Teh, Jium Yie Lai
  • Patent number: 8685215
    Abstract: A continuously variable multi-position magnetron that is rotated about a central axis in back of a sputtering target at a freely selected radius. The position is dynamically controlled from the outside, for example, through a hydraulic actuator connected between a pivoting arm supporting the magnetron and an arm fixed to the shaft, by two coaxial shafts independent controllable from the outside and supporting the magnetron through a frog-leg mechanism, or a cable connected between the pivoting arms and moved by an external slider. The magnetron can be rotated at two, three, or more discrete radii or be moved in a continuous spiral pattern.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: April 1, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Keith A. Miller, Anantha K. Subramani, Maurice E. Ewert, Tza-Jing Gung, Hong S. Yang, Vincent E. Burkhart
  • Patent number: 8673124
    Abstract: The present invention provides a magnet unit and a magnetron sputtering apparatus which can suppress the consumption amount of a target by efficiently consuming the target and can easily cause erosion on the target to progress uniformly regardless whether the target size is small or large and whether the target is made of magnetic material or not.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: March 18, 2014
    Assignee: Canon Anelva Corporation
    Inventors: Tetsuya Endo, Einstein Noel Abarra
  • Patent number: 8663432
    Abstract: A magnetron sputtering apparatus of the invention includes: a sputtering chamber in which a target can be opposed to an object to be subjected to film formation; a gas introduction port facing the sputtering chamber; a magnet provided outside the sputtering chamber and opposite to the target and being rotatable about a rotation center which is eccentric with respect to center of the magnet; a sensor configured to detect a circumferential position of the magnet in a plane of rotation of the magnet; and a controller configured to start voltage application to the target to cause electrical discharge in the sputtering chamber on the basis of the circumferential position of the rotating magnet and gas pressure distribution in the sputtering chamber.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: March 4, 2014
    Assignees: Shibaura Mechatronics Corporation, Sony DADC Corporation
    Inventors: Masaaki Iwasaki, Yoshifumi Oda, Takehiro Sato
  • Patent number: 8647484
    Abstract: A sputtering chamber has a sputtering target comprising a backing plate and a sputtering plate. The backing plate has a groove. The sputtering plate comprises a cylindrical mesa having a plane, and an annular inclined rim surrounding the cylindrical mesa. In one version, the backing plate comprises a material having a high thermal conductivity and a low electrical resistivity. In another version, the backing plate comprises a backside surface with a single groove or a plurality of grooves.
    Type: Grant
    Filed: November 12, 2006
    Date of Patent: February 11, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Alan Alexander Ritchie, Donny Young, Ilyoung (Richard) Hong, Kathleen A. Scheible, Umesh Kelkar
  • Patent number: 8617363
    Abstract: A magnetron sputtering apparatus where a target is disposed to face a substrate installed in a vacuum chamber and magnets are disposed on a rear surface of the target, including a power supply unit configured to apply a voltage to the target; and a magnet array body including a magnet group arranged on a base body provided at the rear surface of the target. In the magnet array body, rod-shaped magnets each having different polarities at opposite ends thereof are disposed in a mesh shape on a surface of the base body facing the target; the mesh has a 2n polygonal shape (n being an integer greater than or equal to 2); permeable core members are disposed at intersection points of the mesh surrounded by the ends of the rod-shaped magnets; and end portions of the rod-shaped magnets which surround each of the core members have a same polarity.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: December 31, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Shigeru Mizuno, Hiroyuki Toshima
  • Patent number: 8597479
    Abstract: A magnetron sputtering system generates a high density plasma on a target by applying magnetic fields intersecting an electric field by using a plurality of magnets that are rotatably supported. The respective magnets are revolved and rotated so that the time variation of regions where a magnetic field (line of magnetic force) generated by the each magnet is orthogonal to an electric field is prevented from becoming monotonous. Further, the respective magnets are arranged to make the distances between the center of rotation and the center of revolution of the respective magnets different from each other, so that the regions where the magnetic field (line of magnetic force) generated by the each magnet is orthogonal to the electric field are dispersed in the radial direction of a target.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: December 3, 2013
    Assignee: Tohoku Seiki Industries, Ltd.
    Inventors: Keitaro Harada, Masayoshi Yokoo, Norikazu Kainuma, Yoshinobu Takano, Isao Tanikawa
  • Patent number: 8585872
    Abstract: A sputtering apparatus for ensuring high target utilization efficiency is provided. The sputtering apparatus 1 of the present invention comprises a moving means 28a, 28b so that first and second magnet members 23a, 23b can be moved by the moving means 28a, 28b in planes parallel to the surfaces of first and second targets 21a, 21b. When the first and second magnet members 23a, 23b move, magnetic field lines as well as deeply eroded regions on the surfaces of the first and second targets 21a, 21b also move, whereby large areas on the surfaces of the first and second targets 21a, 21b are sputtered.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: November 19, 2013
    Assignee: ULVAC, Inc.
    Inventors: Satoru Takasawa, Sadayuki Ukishima, Noriaki Tani, Satoru Ishibashi
  • Patent number: 8580094
    Abstract: Methods and apparatus to improve target life and deposition uniformity in PVD chambers are provided herein. In some embodiments, a magnetron assembly includes a shunt plate having a central axis, the shunt plate rotatable about the central axis, a first open loop magnetic pole arc coupled to the shunt plate at a first radius from the central axis, and a second open loop magnetic pole arc coupled the shunt plate at a first distance from the first open loop magnetic pole arc, wherein at least one of the first radius varies along the first open loop magnetic pole arc or the first distance varies along the second open loop magnetic pole arc. In some embodiments, a first polarity of the first open loop magnetic pole arc opposes a second polarity of the second open loop magnetic pole arc.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: November 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Rongjun Wang, Sally Lou, Muhammad Rasheed, Jianxin Lei, Xianmin Tang, Srinivas Gandikota, Ryan Hanson, Tza-Jing Gung, Keith A. Miller, Thanh X. Nguyen
  • Patent number: 8574412
    Abstract: A magnetron sputtering device includes a main body and a magnet mounting system for receiving magnets. The magnet mounting system comprises a first annular member, a second annular member coaxially encasing the first member, a third annular member coaxially encasing the second member, a first driving device connected to the first annular member, a second driving device connected to the second annular member, and a third driving device connected to the third annular member. The first driving device, the second driving device, and the third driving device are respectively configured for driving the first annular member, the second annular member, and the third annular member to move along an axis of the first annular member.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: November 5, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Shao-Kai Pei