Analysis And Testing Patents (Class 204/400)
  • Patent number: 8133369
    Abstract: A potentiostat is provided for a biosensor circuit and permits sequential and simultaneous measurements to be performed at different cells across a matrix of biosensing devices. Accordingly, a potentiostat comprises a first differential amplifier for receiving a scanning voltage at a first input terminal and a voltage at the reference electrode at a second input terminal and for generating an output voltage at an output terminal to be applied to the working electrode, wherein, when in use, a feedback loop of the potentiostat circuit is closed between the reference electrode and the working electrode.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: March 13, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Simon Tam
  • Patent number: 8128794
    Abstract: A water pollution sensor for detecting a heavy metal, the water pollution sensor including: a base member; a conductive layer formed at a portion of one of surfaces of the base member and consisting of a conductive material; an insulating layer formed on the conductive layer to enable a portion of the conductive layer to be exposed; and a bismuth layer formed on a portion of the exposed conductive layer and including bismuth powders.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: March 6, 2012
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Chang Kyu Rhee, Gyoung-Ja Lee, Hi Min Lee, Min Ku Lee, Sang-Hoon Lee, Sung Mo Hong, Jong Keuk Lee, Ju Myoung Kim
  • Publication number: 20120048747
    Abstract: In order to provide a method of electrochemically detecting a target substance, a method of electrochemically detecting an analyte, and a detection set which have a theoretical advantage in the measurement sensitivity obtained by a conventional electrochemical detection method using a working electrode with a trapping substance immobilized, can reuse the working electrode, and can detect an analyte regardless of the size thereof, there is provided a method including: attracting the target substance containing a labeling substance in a liquid sample to a working electrode in which a trapping substance for trapping the target substance containing a labeling substance is not present; and electrochemically detecting the target substance containing a labeling substance.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 1, 2012
    Applicant: SYSMEX CORPORATION
    Inventors: Masayoshi SEIKE, Nobuyasu HORI, Seigo SUZUKI, Shigeki IWANAGA, Hiroya KIRIMURA
  • Publication number: 20120048748
    Abstract: Air quality in a workplace can be monitored to ensure worker safety.
    Type: Application
    Filed: August 29, 2011
    Publication date: March 1, 2012
    Inventors: Charles E. Wickersham, JR., Gerhard Meyer
  • Patent number: 8124368
    Abstract: The present invention relates to kinase sensors comprising a metal chelator and a fluorophore, where the chelator comprises a quinoline group and where the fluorophore is conjugated to the chelator. The invention also relates to methods of using these kinase sensors as well as kits comprising the kinase sensors.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: February 28, 2012
    Assignee: Life Technologies Corporation
    Inventor: Kyle Gee
  • Publication number: 20120043225
    Abstract: The present invention includes methods and compositions having at least one nanoparticle for analyzing a chemical analyte. The device includes an electrochemical cell connected to a measuring apparatus, wherein the electrochemical cell comprises a container and at least one electrode comprising a surface modification; a solution within the container comprising one or more chemical analytes and one or more metal nanoparticles in the solution, wherein one or more electrocatalytic properties are generated by the one or more metal nanoparticles at the at least one electrode and the contact of individual nanoparticles can be measured.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 23, 2012
    Applicant: Board of Regents, The University of Texas System
    Inventors: Hongjun Zhou, Allen J. Bard, Fu-Ren F. Fan
  • Publication number: 20120037505
    Abstract: A microlectrode comprising a diamond layer formed from electrically non-conducting diamond and containing one or more pins or projections of electrically conducting diamond extending at least partially through the layer of non-conducting diamond presenting areas of electrically conducting diamond.
    Type: Application
    Filed: July 25, 2011
    Publication date: February 16, 2012
    Inventors: Charles Simon James Pickles, Clive Edward Hall, Li Jiang, Neil Perkins, Richard Antonius Kleijhorst
  • Publication number: 20120036875
    Abstract: A storage container with a sensor device and a refrigerator having the same. A pair of electrode terminals is exposed from the lower surface of a sensor plate installed on the inner surface of the bottom of the storage container, thereby improving reliability in measurement.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kwon Chul YUN, Seok Gin KANG, Hak Gyun BAE, Young Gwi PARK
  • Publication number: 20120031774
    Abstract: An electrode for an electrochemical device includes a conductor, and an active layer formed on the conductor and including a polybenzimidazole polymer that contains at least one of the functional group of the following formula:
    Type: Application
    Filed: May 11, 2011
    Publication date: February 9, 2012
    Applicant: Chang Gung University
    Inventors: Mu-Yi Hua, Hsiao-Chien Chen, Rung-Ywan Tsai, Kong-Wei Cheng
  • Patent number: 8110158
    Abstract: A system and method for preventing or reducing unwanted heat in a microfluidic of the device while generating heat in selected regions of the device. In one example, current is supplied to a heating element through electric leads, wherein the leads are designed so that the current density in the leads is substantially lower than the current density in the heating element. This maybe accomplished using conductive leads which have a cross-sectional area which is substantially greater than the cross-sectional area of the heating element. In another example, unwanted heat in the microfluidic complex is reduced by thermally isolating the electric leads from the microfluidic complex. This maybe accomplished by running each lead directly away from the microfluidic complex, through a thermally isolating substrate. After the leads pass through the thermally isolating substrate, they are then routed to the current source.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: February 7, 2012
    Assignee: HandyLab, Inc.
    Inventor: Kalyan Handique
  • Publication number: 20120029331
    Abstract: The present invention relates to devices and methods of use thereof for detection of biomolecules, in vitro, in vivo, or in situ. The invention relates to methods of diagnosing and/or treating a subject as having or being at risk of developing a disease or condition that is associated with abnormal levels of one or more biomolecules including, but not limited to, inter alia, epilepsy, diseases of the basal ganglia, athetoid, dystonic diseases, neoplasms, Parkinson's disease, brain injuries, spinal cord injuries, and cancer. The invention also provides methods of differentiating white matter from gray matter. In some embodiments, regions of the brain to be resected or targeted for pharmaceutical therapy are identified using sensors. The invention further provides methods of measuring the neurotoxicity of a material by comparing microvoltammograms of a neural tissue in the presence and absence of the material using the inventive sensors.
    Type: Application
    Filed: April 11, 2011
    Publication date: February 2, 2012
    Applicants: New York University School of Medicine, Research Foundation of the City University of New York
    Inventors: Patricia A. Broderick, Steven V. Pacia
  • Patent number: 8105846
    Abstract: The invention relates to a method of identifying an individual nucleotide, comprising (a) contacting the nucleotide with a transmembrane protein pore so that the nucleotide interacts with the pore and (b) measuring the current passing through the pore during the interaction and thereby determining the identity of the nucleotide. The invention also relates to a method of sequencing nucleic acid sequences and kits related thereto.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: January 31, 2012
    Assignee: Isis Innovation Limited
    Inventors: Hagan Bayley, Yann Astier, Orit Braha
  • Patent number: 8105538
    Abstract: Compositions for sensor films used for detecting chemical analytes within sensors, such as polymer-absorption chemiresistors (i.e., conductometric sensors) are provided. Robust sensor film compositions that have low resistance, high conductivity, and greater temperature stability and sensitivity to chemical analytes are provided, as well as methods of making these sensor films. Such sensor film compositions include a matrix having a polymer resin and a plurality of conductive particles comprising an axial-geometry conductive particle. Exemplary axial-geometry conductive particles comprise graphene, such as a carbon nanotube. Blends of conductive particles are also contemplated, including blends of axial-geometry conductive particles, such as carbon nanotubes, and carbon black.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: January 31, 2012
    Assignee: Therm-O-Disc Incorporated
    Inventors: Praveen C. Ramamurthy, Blase S. Amadio
  • Patent number: 8105475
    Abstract: A method includes identifying first data associated with cyclic voltammetry measurements of a material being examined. The cyclic voltammetry measurements include applying a varying first voltage to the material and measuring a first current. The method also includes identifying second data associated with impedance measurements. The impedance measurements include applying a second voltage to the material and measuring a second current. The second data includes a scaling factor. The method further includes adjusting at least part of the first data using the scaling factor and identifying a composition of the material using the adjusted first data. The first data could include a current versus voltage curve that associates values of the first current to values of a sweep voltage. The first data could be adjusted by normalizing the curve using the scaling factor, and the normalized curve could be used to generate a current derivative curve.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: January 31, 2012
    Assignee: Honeywell International Inc.
    Inventors: Sébastien Tixier, Dan Bizzotto
  • Patent number: 8101056
    Abstract: A hollow electrochemical cell is provided. In one exemplary embodiment, a hollow electrochemical cell includes two sets of electrodes and an opening for admitting an analyte to the cell. At least one of the two sets of electrodes can be in fluid communication with the opening. Further, a first set of electrodes can include a working electrode spaced from a counter or counter/reference electrode by less than 500 ?m one embodiment the working and counter or counter/reference electrodes are not co-planer. In another embodiment the working and counter or counter/reference electrodes are of substantially corresponding area. In yet another embodiment the working and counter or counter/reference electrodes are spaced from 100 to 200 ?m apart. The first set of electrodes and the second set of electrodes can be spaced apart by greater than about 500 ?m. Other embodiments of a hollow electrochemical cell are also provided, as are several embodiments of a glucose sensor.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: January 24, 2012
    Assignee: LifeScan, Inc.
    Inventors: Alastair McIndoe Hodges, Thomas William Beck, Oddvar Johansen
  • Publication number: 20120006693
    Abstract: In vitro electrochemical sensors that provide accurate and repeatable analysis of a sample of biological fluid are provided. Embodiments include sensors that include a sample chambers having overhangs extending therefrom.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 12, 2012
    Inventors: Benjamin J. Feldman, Yi Wang
  • Publication number: 20120006694
    Abstract: A pushpen electrode is provided for electrophysiology measurements. The pushpen operation is used to impale a cell membrane in cell-attached configuration to go whole-cell without disruption of the gigaseal. The pushpen electrode has advantages over the conventional patch clamp electrode in reducing tip series resistance, increasing signal bandwidth, permitting longer-term recordings and reducing diffusion between the cytosol and the electrode solution.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 12, 2012
    Inventors: John B. Troy, Samsoon Inayat, Donald R. Cantrell, Yan Zhao, Dmitriy A. Dikin
  • Publication number: 20110315563
    Abstract: Disclosed herein is a sensor comprising a conduit; the conduit comprising an organic polymer; a working electrode; the working electrode being etched and decorated with a nanostructured material; a reference electrode; and a counter electrode; the working electrode, the reference electrode and the counter electrode being disposed in the conduit; the working electrode, the reference electrode and the counter electrode being separated from each other by an electrically insulating material; and wherein a cross-sectional area of the conduit that comprises a section of the working electrode, a section of the reference electrode and a section of the counter electrode is exposed to detect analytes.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 29, 2011
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Liangliang Qiang, Santhisagar Vaddiraju, Fotios Papadimitrakopoulos
  • Patent number: 8083913
    Abstract: An electrochemical cell for testing the electrochemical behavior of a plurality of materials comprises: a first electrode; a counter-electrode bearing an electrochromic material having a visual or measurable property which changes in a manner proportional to the total charge passed through it; and an electrolyte between and in electrical contact with the first electrode and the counter-electrode; wherein one of the first electrode and the electrolyte comprises a plurality of regions, each region comprising a sample of material to be tested, the regions being, in the case of the first electrode, electrically connected to a common terminal. Such a cell can be used for a “combinatorial chemistry” approach to testing the properties of possible cell components.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: December 27, 2011
    Assignee: University of Southampton
    Inventors: John Robert Owen, Philip Nigel Bartlett, Brian Elliot Hayden, Andrea Elizabeth Russell, Karen Marie Brace
  • Patent number: 8083821
    Abstract: System for modifying the chemical composition of atmosphere within an enclosed space and incubator system including such a system. The concentration of oxygen within the enclosed space may be either increased or decreased using an electrochemical device. The concentration of carbon dioxide within the enclosed space may be increased using an electrochemical or chemical device. As necessary, purging of the system with ambient air can be a part of the process of controlling the chemical composition of the atmosphere. The present invention obviates the need to use pressurized gas cylinders to supply atmospheric gases to the enclosed space.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: December 27, 2011
    Assignee: Giner, Inc.
    Inventors: Linda A. Tempelman, Monjid Hamdan, Matthew P. Steinbroner
  • Publication number: 20110312715
    Abstract: A microfluidic test module for detecting target nucleic acid sequences in a fluid, the test module having an outer casing having an inlet for receiving the fluid containing the target nucleic acid sequences, electrode pairs for receiving an electrical pulse, electrochemiluminescent (ECL) probe spots in contact with each of the electrode pairs respectively, the ECL probe spots containing ECL probes having an ECL luminophore for emitting photons when in an excited state and a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer, such that the electrical pulse to the electrode pair excites the ECL luminophores, wherein, the mass of the ECL probes in each of the probe spots is less than 270 picograms.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Mehdi Azimi
  • Publication number: 20110308943
    Abstract: A tool for a sensor includes a first portion having an elongated channel that extends therealong for accommodating the sensor, and a second portion with an end slot that accommodates an end portion of the sensor, the sensor having one or more wire electrodes embedded between two substrates. One or both of the substrates has transaxial scoring for facilitating the snapping off of segments to expose a clean portions of the wire electrodes. One or both of the tool portions has a rounded end portion. The end slot of the second portion is dimensioned to correspond to an axial dimension of a segment that is to be snapped off from the sensor. The first tool portion has a shoulder and handle portions, the shoulder portion having a greater thickness than the handle portion, and the handle portion having a thickness that is less than the width of the sensor.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 22, 2011
    Inventor: Donald B. Nuzzio
  • Publication number: 20110308942
    Abstract: In a first aspect, the present invention is directed to a microelectrode array for detecting heavy metals in an aqueous solution. The microelectrode array can comprise a layer of a doped carbon film and a patterning layer arranged on the doped carbon film for defining multiple microelectrodes in the doped carbon film to form the microelectrode array. The size, and shape, and arrangement of each of the multiple microelectrodes can be defined by the size, and shape, and arrangement of each of the openings in the patterning layer which expose the underlying doped carbon film. Furthermore, the ratio of the maximal width of a microelectrode relative to the shortest distance between the neighboring microelectrodes (center to center) in the microelectrode array is between about 1:1.2 and about 1:6. The present invention is also directed to an apparatus using the microelectrode array and methods of manufacturing the same.
    Type: Application
    Filed: July 23, 2010
    Publication date: December 22, 2011
    Applicant: Nanyang Technological University
    Inventors: Erjia Liu, Wenguang Ma, Guocheng Yang, Aiping Liu, Nay Win Khun, Zhaomeng Wang
  • Patent number: 8080142
    Abstract: There is provided a sample preparation device and method for preparing a sample of liquid for detection of impurities. First (40) and second (38) electrodes are provided, located for immersion in a liquid under test. A semipermeable membrane (42) is positioned to protect the first electrode (40) from a body of liquid under test (32). The semipermeable membrane allows the liquid under test to pass therethrough to reach the first electrode, while preventing solids carried in the liquid from reaching the first electrode, the first electrode being positioned to affect the liquid under test in the vicinity of a sensor (36). Particular embodiments feature a hydrophilic membrane to protect the electrodes from suspended solids in the sample, a thin electrode assembly to achieve a faster response and the addition of a heater for temperature control to achieve consistent detection conditions and improved anti-fouling properties.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: December 20, 2011
    Assignee: Water Security and Technology, Inc.
    Inventor: David Robert Vincent
  • Patent number: 8080205
    Abstract: Analyte meter protectors, meters that include the same, and methods. In one example, a ketone monitoring system is provided wherein a port protector is used in combination with a meter.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: December 20, 2011
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Frederic Arbogast, Paul Strasma, Lawrence Azzano, Kenneth Gary
  • Patent number: 8080152
    Abstract: An electrochemical sensor and method of its production comprising a microfluidic channel and an electronic sensing device on a first substrate, and a second substrate bonded to the first substrate so as to close the microfluidic channel, wherein a functional part of the electronic sensing device is exposed at the surface of the microfluidic channel and wherein the microfluidic channel is formed by embossing. In one embodiment the electronic device is a vertical-channel field-effect transistor.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: December 20, 2011
    Assignee: Cambridge Enterprise Ltd.
    Inventor: Henning Sirringhaus
  • Publication number: 20110303537
    Abstract: Novel transition metal complexes of iron, cobalt, ruthenium, osmium, and vanadium are described. The transition metal complexes can be used as redox mediators in enzyme based electrochemical sensors. In such instances, transition metal complexes accept electrons from, or transfer electrons to, enzymes at a high rate and also exchange electrons rapidly with the sensor. The transition metal complexes include at least one substituted or unsubstituted biimidazole ligand and may further include a second substituted or unsubstituted biimidazole ligand or a substituted or unsubstituted bipyridine or pyridylimidazole ligand. Transition metal complexes attached to polymeric backbones are also described.
    Type: Application
    Filed: August 22, 2011
    Publication date: December 15, 2011
    Inventors: Fei Mao, Adam Heller
  • Publication number: 20110297556
    Abstract: An electrode for electrochemical analysis is described, the electrode comprising: an insulating surface; a three-dimensional network of carbon nanotubes situated on the insulating surface; and an electrically conducting material in electrical contact with the carbon nanotubes; wherein the carbon nanotubes are oriented substantially parallel to the insulating surface. Also described is a method of manufacturing the electrode, and a method of electrochemically analysing a solution using electrodes of this type, and an associated assay device or kit.
    Type: Application
    Filed: December 11, 2009
    Publication date: December 8, 2011
    Inventors: Patrick Unwin, Julie Macpherson, Ioana Dumitrescu, Jonathan P. Edgeworth
  • Publication number: 20110297555
    Abstract: An analyte test element for determining the concentration of at least one analyte in a physiological sample fluid having a first and a second surface in a predetermined distance opposite from each other, said both surfaces are provided with two substantially equivalent patterns forming areas of high and low surface energy which are aligned mostly congruent, whereby the areas with high surface energy create a sample distribution system with at least two detection areas, characterized in that the detection areas of first and second surface are also provided with two corresponding patterns of working and reference electrodes of electrochemical detection means.
    Type: Application
    Filed: July 22, 2011
    Publication date: December 8, 2011
    Applicant: EGOMEDICAL TECHNOLOGIES AG
    Inventors: Matthias STIENE, Ingrid Rohm
  • Publication number: 20110297539
    Abstract: A water quality analyzer comprises: sensor electrodes 1a, 1b made of different metals from each other, the electrodes in a liquid of inspecting object generating a sense voltage in proportion to the liquid's impurities concentration; an operational amplifier OP1 amplifying the sense voltage without inverting to provide for a CPU 3; a resistor R0 whose one end is connected to the electrode 1a; and a voltage divider 2 applying a voltage obtained by dividing the sense voltage by a prescribed division ratio to R0's another end. The CPU 3 calculates input signal from OP1 to obtain chlorine concentration and displays the calculated result on a LCD 4 in a measurement mode, and sets the division ratio of the divider 2 so that sense voltage across electrodes 1a, 1b soaked in a liquid including prescribed concentration chloride approximately agrees with a reference voltage of prescribed concentration in a sense-voltage calibration mode.
    Type: Application
    Filed: August 18, 2011
    Publication date: December 8, 2011
    Applicants: FIS Inc., Tanita Corporation
    Inventors: Kiyoshi Sagawa, Shinichi Harima, Kazuo Onaga, Junko Yanagitani, Osamu Inazawa
  • Publication number: 20110290673
    Abstract: A method is provided for determining analyte concentrations, for example glucose concentrations, that utilizes a dynamic determination of the appropriate time for making a glucose measurement, for example when a current versus time curve substantially conforms to a Cottrell decay, or when the current is established in a plateau region. Dynamic determination of the time to take the measurement allows each strip to operate in the shortest appropriate time frame, thereby avoiding using an average measurement time that may be longer than necessary for some strips and too short for others.
    Type: Application
    Filed: August 9, 2011
    Publication date: December 1, 2011
    Applicant: AGAMATRIX, INC.
    Inventors: Steven Diamond, Ian Harding, Sridhar G. Iyengar, Baoguo Wei
  • Publication number: 20110290669
    Abstract: The present invention relates to an apparatus for conducting a variety of assays for the determination of analytes in liquid samples, and relates to the methods for such assays. In particular, the invention relates to a single-use cartridge designed to be adaptable to a variety of real-time assay protocols, preferably assays for the determination of analytes in biological samples using immunosensors or other ligand/ligand receptor-based biosensor embodiments. The cartridge provides novel features for processing a metered portion of a sample, for precise and flexible control of the movement of a sample or second fluid within the cartridge, for the amending of solutions with additional compounds during an assay, and for the construction of immunosensors capable of adaptation to diverse analyte measurements.
    Type: Application
    Filed: August 4, 2011
    Publication date: December 1, 2011
    Applicant: Abbott Point of Care Inc.
    Inventors: Graham Davis, Imants R. Lauks, Chao Lin, Cary James Miller
  • Publication number: 20110284393
    Abstract: An electrochemical-based analytical test strip for the determination of an analyte (e.g., glucose) in a bodily fluid sample (such as a whole blood sample) includes an electrically insulating base layer and a patterned conductor layer (for example, a gold patterned conductor layer) disposed over the electrically-insulating layer. The patterned conductor layer includes at least one electrode with the electrode having electrochemically inert areas and an electrochemically active area(s). Moreover, the electrochemically inert areas and electrochemically active area(s) are of a predetermined size and a predetermined distribution such that electrochemical response of the electrode during use of the electrochemical-based analytical test strip is essentially equivalent to a predetermined electrochemical response.
    Type: Application
    Filed: May 19, 2010
    Publication date: November 24, 2011
    Applicant: LifeScan Scotland Limited
    Inventors: Gavin MACFIE, Craig Redpath, James Iain Rodgers, Neil Whitehead
  • Patent number: 8062502
    Abstract: In order to avoid problems caused by baseline drift, it is expedient in a method of an embodiment of the present application not to measure a signal rise in a detection space, but to allow a certain time period to elapse in order to enrich a detectable product (enrichment phase), then to measure a first detection signal, and to measure the baseline signal as second detection signal only after rinsing out the detection space and removing the enriched product. In at least one embodiment, the enriched product is not detected from a signal rise with reference to a baseline, but from a signal difference of first and second detection signals.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: November 22, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Walter Gumbrecht, Peter Paulicka
  • Publication number: 20110278168
    Abstract: A composite material for use in a sensing electrode. The composite material comprises a first phase and a second phase. The first phase consists essentially of Bi2Ru2O7+x wherein x is a value between 0 and 1 and the second phase consists essentially of RuO2.
    Type: Application
    Filed: May 8, 2009
    Publication date: November 17, 2011
    Applicant: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventor: Serge Zhuiykov
  • Patent number: 8058077
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: November 15, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Henning Groll, Michael J. Celentano
  • Patent number: 8057753
    Abstract: A test strip ejection mechanism, for use with a test strip receiving port and a test strip, includes a framework, an elongated shape memory alloy (SMA) strip (e.g., a SMA wire), a slider, and a heating module. The SMA strip has first and second ends that are attached to the framework and exhibits a solid state transition temperature. The slider is configured to travel along the framework. The heating module is configured to heat the SMA strip from a temperature below the solid state transition temperature to a temperature above the solid state transition temperature. Moreover, the SMA strip and slider are configured such that the slider travels along the framework under an applied force exerted on the slider by the SMA strip as the shape memory strip is heated from a temperature below the solid state transition temperature to a temperature above the solid state temperature by the heating module.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: November 15, 2011
    Assignee: LifeScan Scotland Limited
    Inventors: Marco DeAngeli, Luca Valsecchi
  • Publication number: 20110272290
    Abstract: Embodiments of methods for electrochemical analysis of arsenic are described. In one embodiment, a method includes detecting arsenic (III) by, at least in part, applying electrolytic current to an arsenic compound that has not been reduced with a reducing agent. In another embodiment, a method for electrochemical analysis of arsenic includes detecting arsenic (V) by, at least in part, applying electrolytic current to an arsenic compound that has not been reduced with a reducing agent.
    Type: Application
    Filed: April 4, 2011
    Publication date: November 10, 2011
    Inventors: Purnendu K. Dasgupta, Mrinal K. Sengupta
  • Patent number: 8052855
    Abstract: A carbon nanotube (“CNT”) gas sensor includes a substrate, an insulating layer formed on the substrate, electrodes formed on the insulating layer, and CNT barriers that protrude higher than the electrodes in spaces between the electrodes to form gas detecting spaces. A method of manufacturing the gas sensor includes forming an insulating layer on a substrate, forming an electrode pattern on the insulating layer, coating CNT paste having a thickness greater than a thickness of electrodes in the electrode pattern on the electrodes and the insulating layer, and patterning and firing the carbon nanotube paste, including using a photolithography method, to retain only portions of the CNT paste coated on spaces between the electrodes.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-im Han, Soo-hyung Choi, Jeong-hee Lee, Soo-suk Lee, Jeong-na Heo
  • Publication number: 20110269648
    Abstract: A electrochemical sensor system is provided. An example system utilizes electrical and steric properties of contaminants, such as pesticides, herbicides, and heavy metals to measure an ongoing concentration of multiple contaminants simultaneously in real time. An example system has a sensor array including sensors tuned to specific contaminants, each sensor having at least two conducting elements arranged in a capacitive relationship, for example, on a printed circuit board. A binding layer on the conducing elements of each sensor selectively binds a specific contaminant, which produces a signature change in a measureable electrical property, such as impedance. Enclosed sensors and chemical buffers preserve the chemical and physical environment of the contaminants for ongoing real-time measurement of dynamic concentrations. A delivery system enables samples containing contaminants to be automatically delivered to the array of sensors without adulterating the natural state of the samples.
    Type: Application
    Filed: May 2, 2011
    Publication date: November 3, 2011
    Inventor: ANNE M. SCHWARTZ
  • Publication number: 20110253546
    Abstract: A molecular detection device for use in electrochemical detection assays includes at least two electrodes, and has a film deposited on at least one of the electrodes. The film includes a conductive polymer and conductive particles, having mean diameters between 1 and 100 nm, within the conductive polymer. Probe molecules may be attached on or to the conductive polymer, or be included in the conductive polymer. The device may be used to detect specific target molecules in a sample, for example, protein, peptide, nucleic acid or small molecule target molecules.
    Type: Application
    Filed: November 18, 2010
    Publication date: October 20, 2011
    Inventors: Changming Li, Wei Chen
  • Patent number: 8034222
    Abstract: Conducting polymer nanowires can be doped with analyte-binding species to create a nanowire that has a different conductivity depending on the presence or absence of the analyte.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: October 11, 2011
    Assignee: The Regents of the University of California
    Inventors: Nosang V. Myung, Ashok Mulchandani, Wilfred Chen
  • Publication number: 20110233066
    Abstract: A pressure transducer for measuring pressure may include an all-polymer chamber that has no dimension greater than 1 mm. There may be fluid within the chamber, a gaseous bubble trapped within the fluid, and electrodes in contact with the fluid. The electrodes may enable a measurement of changes in the impedance of the fluid caused by changes in the volume of the gaseous bubble caused by changes in the pressure to be measured. The pressure transducer may be made by depositing the chamber, placing the fluid within the chamber, and generating the gaseous bubble within the fluid with electrolysis.
    Type: Application
    Filed: March 21, 2011
    Publication date: September 29, 2011
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: CHRISTIAN A. GUTIERREZ, ELLIS MENG
  • Publication number: 20110233059
    Abstract: The invention relates to a microfluidic sensor which comprises a planar base sensor and a structured polymer film. The underside of the film, which faces the base sensor, comprises varyingly recessed geometric shapings and compartments which are produced, for example photolithographically, in micro injection molding, thermoforming or hot stamping processes. The microfluidic sensor according to the invention is particularly suitable for the production of biosensors in the form of single-use enzyme and affinity sensors, wherein the recessed geometries form sample collection, sample processing, incubation, buffer, mixing, reaction, reagent deposit, measurement, waste and aeration chambers, and distributing and/or connecting ducts, of which the outer peripheral contours are configured as narrow peripheral wall webs at the zero plane of the film and with a width between 50 ?m and 500 ?m; to which a recessed face or subsequent peripheral joining assembly with a spacing from 0.1 mm to 1.0 mm is outwardly attached.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 29, 2011
    Applicant: SensLab Gesellschaft zur Entwicklung und Herstellung bioelektrochemischer Sensoren mbH
    Inventors: Bernd GRÜNDIG, Heiko Wedig
  • Patent number: 8025789
    Abstract: An electrochemical method for measuring the concentration of an anionically-charged and non-electroactive polymer in an aqueous solution is provided. The method comprises immobilizing a cationic dye material on an electrically conductive substrate form a working electrode; contacting the working electrode with the aqueous solution including the anionically-charged and non-electroactive polymer to be measured, and transmitting electrical power to the working electrode; measuring a current of the working electrode under a determined electric potential; and calculating a concentration or quantity of the anionically-charged polymer in the aqueous solution according to the measured current of the working electrode.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: September 27, 2011
    Assignee: General Electric Company
    Inventors: Jianyun Liu, Zhixin Zheng, Yangang Liang, Wei Cai, Su Lu, Li Zhang
  • Patent number: 8025779
    Abstract: A water quality analyzer comprises: sensor electrodes 1a, 1b made of different metals from each other, the electrodes in a liquid of inspecting object generating a sense voltage in proportion to the liquid's impurities concentration; an operational amplifier OP1 amplifying the sense voltage without inverting to provide for a CPU 3; a resistor R0 whose one end is connected to the electrode 1a; and a voltage divider 2 applying a voltage obtained by dividing the sense voltage by a prescribed division ratio to R0's another end. The CPU 3 calculates input signal from OP1 to obtain chlorine concentration and displays the calculated result on a LCD 4 in a measurement mode, and sets the division ratio of the divider 2 so that sense voltage across electrodes 1a, 1b soaked in a liquid including prescribed concentration chloride approximately agrees with a reference voltage of prescribed concentration in a sense-voltage calibration mode.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: September 27, 2011
    Assignees: Tanita Corporation, FIS Inc.
    Inventors: Kiyoshi Sagawa, Shinichi Harima, Kazuo Onaga, Junko Yanagitani, Osamu Inazawa
  • Patent number: 8021529
    Abstract: A measurement/calibration cell for potentiometrically measuring ion concentration in a fluid interposes a barrier between measuring and reference electrodes and positions the measuring electrode at a sufficiently higher gravimetric potential above the reference electrode that seepage of electrolyte from the latter to the former is effectively precluded. A controller associated with the cell displays instructions and other desired information on a scrolling display such that a substantial amount of information can be presented in a relatively small display window.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: September 20, 2011
    Assignee: Thermo Orion, Inc.
    Inventors: Steven J. West, Armin Kusig, Stephen Olsted, Jonathan Lowe, Xiaowen Wen
  • Publication number: 20110223681
    Abstract: A mobile water analyzing system for determining an analyte in a water sample includes a basic unit and a test element configured to be inserted into the basic unit. The test element includes a sample line with an inlet opening configured to receive the water sample, a measuring section forming a measuring track and configured to allow the determination of an analyte, a pump opening, and a key reagent disposed inside the sample line. The basic unit includes a test element receptacle configured to hold the inserted test element, an analyzer with an analyzer measuring track formed by the measuring section, and a pump actuator cooperatively connected with the pump opening.
    Type: Application
    Filed: September 28, 2009
    Publication date: September 15, 2011
    Applicant: HACH LANGE GMBH
    Inventors: Ulrich Lundgreen, Aria Farjam, Rolf Uthemann, Andreas Mitreiter, Isabel Huenig, Markus Lenhard, Rainer Froemel, Hans-Joachim Kumpch
  • Patent number: 8016992
    Abstract: Disclosed herein is a reference electrode including an electrolyte containing an optically-active material, including: an electrode body provided at an end thereof with an electrolyte separation membrane and charged therein with an optically-active material and an electrolyte solution; an inner electrode disposed in the electrode body to be immersed in the electrolyte solution; and an absorbance measurement probe for transmitting light to the electrolyte solution and collecting reflected light waves, which is disposed in the electrode body to be immersed in the electrolyte solution. Since the concentration of an electrode reaction material, such as Cl?, in the electrolyte is calculated using the absorbance of the electrolyte solution containing the optically-active material, the change in potential of the reference electrode can be properly corrected even when the reference electrode is exposed to a test environment for a long period of time and thus the concentration of the electrolyte changes.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: September 13, 2011
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
    Inventors: Jei-Won Yeon, In-Kyu Choi, Won-Ho Kim, Kyuseok Song
  • Patent number: 8012420
    Abstract: Compositions for sensor films used for detecting chemical analytes within sensors, such as polymer-absorption chemiresistors (i.e., conductometric sensors) are provided. Robust sensor film compositions that have low resistance, high conductivity, and greater temperature stability and sensitivity to chemical analytes are provided, as well as methods of making these sensor films. Such sensor film compositions include a matrix having a polymer resin and a plurality of conductive particles comprising an axial-geometry conductive particle. Exemplary axial-geometry conductive particles comprise graphene, such as a carbon nanotube. Blends of conductive particles are also contemplated, including blends of axial-geometry conductive particles, such as carbon nanotubes, and carbon black.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: September 6, 2011
    Assignee: Therm-O-Disc, Incorporated
    Inventors: Praveen C Ramamurthy, Blase S Amadio