Electrophoresis Or Electro-osmosis Processes And Electrolyte Compositions Therefor When Not Provided For Elsewhere Patents (Class 204/450)
  • Patent number: 10188967
    Abstract: A filter arrangement with a top element and a bottom element and a filter element therebetween captures oversized particles on the upper surface of the filter element and tangentially rinses these particles using an elution fluid to provide a concentration of particles in a relatively low volume of fluid for further analysis. A configuration using a slider valve may also be utilized. Additionally, an arrangement of supply and receiving containers may be used to minimize the number of containers required. A mass flow meter may be incorporated to measure the flow of elution fluid. Finally, a wash stage of the filtering process may be used to introduce stain onto the particles for further analysis, such as that associated with Gram staining and these stained particles may be further analyzed.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: January 29, 2019
    Assignee: POCARED DIAGNOSTICS LTD.
    Inventors: Gal Ingber, Scott Castanon
  • Patent number: 10180442
    Abstract: A sample consumable that carries a microvolume of sample to a sample loader. The consumable is precisely aligned utilizing a double-alignment feature to the loader. The loader is based on a crank-slider geometry and allows for simple, one-handed operation for the user. Overall, the consumable and sample loader increase reproducibility of in-line sample loading and offers ease-of-use.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: January 15, 2019
    Assignee: DNA Medicine Institute, Inc.
    Inventor: Eugene Y. Chan
  • Patent number: 10172994
    Abstract: The invention relates to a device for hemodiafiltration with an extracorporeal circulation (10) for receiving blood to be purified and having a hemodialyzer and/or hemofilter (20) which is connected to the blood circulation (10), such that the blood circulation (10) has at least one inlet line (12, 14) for the supply of a replacement fluid upstream and downstream from the hemodialyzer and/or hemofilter (20), characterized in that the apparatus also comprises measurement apparatuses for recording the transmembrane pressure and/or hematocrit (HKT) and/or blood density, such that the measurement apparatuses are connected to a control unit (100) for controlling one or more of the transmembrane pressure and/or the hematocrit (HKT) and/or the blood density, the control unit (100) being constructed so that the control is implemented with the help of at least one of the infusion rates (Qspre, Qspost) of the replacement fluid (13, 15), and the blood to be purified is exposed to a high-frequency electromagnetic field a
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: January 8, 2019
    Assignee: FRESENIUS MEDICAL CARE DEUTSCHLAND GMBH
    Inventors: Ulrich Tschulena, Joachim Jankowski, Anselm Fabig, Carsten Mueller
  • Patent number: 10166543
    Abstract: Provided is a cell capturing cartridge. According to an embodiment of the inventive concept, the cell capturing cartridge may include a substrate and structures provided on an upper surface of the substrate and constituting a plurality of rows that are parallel to a row direction. The structures in one row may be offset from the structures in the neighboring rows in the row direction. Each of the substrates may have a first side surface facing one side of the substrate and a second side surface disposed opposite to the first side surface and having a width greater than that of the first side surface.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: January 1, 2019
    Assignees: Electronics and Telecommunications Research Institute, GenoBio Corp.
    Inventors: Dae-Sik Lee, Jeong Won Park, Moon Youn Jung, Do Hyung Kim, Jae Ku Lee, Hun Seok Lee
  • Patent number: 10160145
    Abstract: A method of manufacturing a microfluidic device comprises molding a substrate using a master die having at least one outer stepped formation; and forming at least one microstructured formation having an outer rim, the depth of the outer rim being shallower than that of the microstructured formation.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: December 25, 2018
    Assignee: STRATEC CONSUMABLES GMBH
    Inventor: Gottfried Reiter
  • Patent number: 10161001
    Abstract: Nanochannel arrays that enable high-throughput macromolecular analysis are disclosed. Also disclosed are methods of preparing nanochannel arrays and nanofluidic chips. Methods of analyzing macromolecules, such as entire strands of genomic DNA, are also disclosed, as well as systems for carrying out these methods.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: December 25, 2018
    Assignee: The Trustees of Princeton University
    Inventors: Robert H. Austin, Zhaoning Yu, Jonas O. Tegenfeldt, Stephen Y. Chou, Han Cao
  • Patent number: 10155720
    Abstract: The invention concerns a method for producing toluenediamine by hydrogenation of dinitrotoluene in the presence of a catalyst, a dinitrotoluene being used as starting material and being processed by applying an electrical voltage.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: December 18, 2018
    Assignee: COVESTRO DEUTSCHLAND AG
    Inventors: Bernd Pennemann, Antoni Mairata, Antonia Zock
  • Patent number: 10156563
    Abstract: A measurement chip is for use with a microfluidic resistance network comprising a microfluidic sample preparation stage, a sample outlet and a waste outlet both in fluidic communication with said preparation stage. The measurement chip comprises a sample channel for receiving a sample from the sample outlet, the sample channel comprising measurement means and having a first fluidic resistance; and a waste channel for receiving a waste stream from the waste outlet and having a second fluidic resistance.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: December 18, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Steven Charles Deane
  • Patent number: 10151753
    Abstract: In one aspect, a system for isolating particles includes a first array of magnets, a second array of magnets arranged generally in parallel with and spaced apart from the first array of magnets, and a micro fluidic device. The micro fluidic device includes a substrate, an inlet arranged on the substrate and configured to receive a fluid sample, an outlet arranged on the substrate, a first region of the substrate including a channel connected to the inlet, where the first region of the substrate is arranged to sandwich the channel between the first and second arrays of magnets.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: December 11, 2018
    Assignee: The General Hospital Corporation
    Inventors: Hakho Lee, Ralph Weissleder, Kyungheon Lee, Jun Song
  • Patent number: 10150116
    Abstract: A microfluidic device includes: a first microfluidic channel; a second microfluidic channel extending along the first microfluidic channel; and a first array of islands separating the first microfluidic channel from the second microfluidic channel, in which each island is separated from an adjacent island in the array by an opening that fluidly couples the first microfluidic channel to the second microfluidic channel, in which the first microfluidic channel, the second microfluidic channel, and the islands are arranged so that a fluidic resistance of the first microfluidic channel increases relative to a fluidic resistance of the second microfluidic channel along a longitudinal direction of the first microfluidic channel such that, during use of the microfluidic device, a portion of a fluid sample flowing through the first microfluidic channel passes through one or more of the openings between adjacent islands into the second microfluidic channel.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: December 11, 2018
    Assignee: The General Hospital Corporation
    Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
  • Patent number: 10139417
    Abstract: Embodiments of the present disclosure relate to amino acid, modified amino acid, peptide and protein identification and sequencing, by means of, for example, electronic detection of individual amino acids or small peptides.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: November 27, 2018
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Stuart Lindsay, Peiming Zhang, Yanan Zhao
  • Patent number: 10133381
    Abstract: A display apparatus includes a flexible display panel; an image processing board configured to output a video signal to the display panel; and a support member provided between the display panel and the image processing board and configured to support the display panel, the support member including: at least two plates arranged along one side of the display panel; and at least one artificial muscle connecting the at least two plates and configured to be deformed to change a shape of the support member in accordance with a voltage applied thereto.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: November 20, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae Young Huh, Kyung Wan Park, Hee Seok Jeong, Seung Soo Kang
  • Patent number: 10112193
    Abstract: The present invention is notably directed to methods of fabrication of a microfluidic chip package or assembly (1), comprising: providing (S1) a substrate (10, 30) having at least one block (14, 14a) comprising one or more microfluidic structures on a face (F) of the substrate; partially cutting (S2) into the substrate to obtain partial cuts (10c), such that a residual thickness of the substrate at the level of the partial cuts (10c) enables singulation of said at least one block (14, 14a); cleaning (S4) said at least one block; and applying (S5-S7) a cover-film (62) to cover said at least one block (14, 14a), whereby at least one covered block is obtained, the applied cover film still enabling singulation of each covered block, wherein each covered block corresponds to a microfluidic chip after singulation. The present invention is further directed to microfluidic chips, packing or assembly, obtainable with such methods.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: October 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Patent number: 10081014
    Abstract: Methods for separating cells from a sample (e.g., separating fetal red blood cells from maternal blood) are described. The method begins with the introduction of a sample including cells into one or more microfluidic channels. In one embodiment, the device includes at least two processing steps. For example, a mixture of cells is introduced into a microfluidic channel that selectively allows the passage of a desired type of cell, and the population of cells enriched in the desired type is then introduced into a second microfluidic channel that allows the passage of the desired cell to produce a population of cells further enriched in the desired type. The selection of cells is based on a property of the cells in the mixture, for example, size, shape, deformability, surface characteristics (e.g., cell surface receptors or antigens and membrane permeability), or intracellular properties (e.g., expression of a particular enzyme).
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: September 25, 2018
    Assignee: The General Hospital Corporation
    Inventors: Mehmet Toner, George Truskey, Ravi Kapur
  • Patent number: 10073079
    Abstract: Devices and methods for capture of target particles in a flow. There is a plurality of flow rate-reducing structures in a flow chamber, each structure including a trapping surface shaped to reduce flow rate in a vicinity of the trapping surface. Reduced flow rate in the vicinity of the trapping surface is non-zero and has a magnitude lower than that of flow rate in other regions of the flow chamber. The reduced flow rate is sufficiently low for an attraction force acting on the target particles to overcome drag force on the target particles, to promote capture of particles in the vicinity of the trapping surface. The device may exhibit different sorting zones for capturing particles that experience different amounts and/or types of attraction force. The device may enable sorting of cells according to their level of display of specific protein surface markers.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: September 11, 2018
    Assignee: The Governing Council of the University of Toronto
    Inventors: Shana Olwyn Kelley, Edward Hartley Sargent, Mohamad Reza Mohamadi
  • Patent number: 10067089
    Abstract: The present invention is related to a free-flow electrophoresis method for separating at least one analyte of interest from a mixture of analytes, wherein the method uses a separation medium comprising two or more individual separation media, wherein the two or more individual separation media differ in their pH value, and wherein each of the two or more individual separation media comprise at least one anion of at least one acid and at least one cation of at least one base, wherein the at least one acid is the same in each of the two or more individual separation media and the at least one base is the same in each of the two or more individual separation media.
    Type: Grant
    Filed: July 4, 2014
    Date of Patent: September 4, 2018
    Assignee: FFE SERVICE GMBH
    Inventors: Christoph Weber, Gerhard Weber
  • Patent number: 10061123
    Abstract: Methods for improving the performance of electrophoretic media with the addition of acetylene surfactants comprising hydroxyl groups. In particular, the described acetylene surfactants reduce ghosting while improving the contrast ratio in electrophoretic displays.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: August 28, 2018
    Assignee: E INK CALIFORNIA, LLC
    Inventors: Lin Shao, Haiyan Gu, Ming Wang, Vladimir Sofiyev
  • Patent number: 10060904
    Abstract: In accordance with the disclosure, a method of forming a nanochannel is provided. The method includes depositing a photosensitive film stack over a substrate; forming a pattern on the film stack using interferometric lithography; depositing a plurality of silica nanoparticles to form a structure over the pattern; removing the pattern while retaining the structure formed by the plurality of silica nanoparticles, wherein the structure comprises one or more enclosed nanochannels, wherein each of the one or more nanochannels comprise one or more sidewalls and a roof; and partially sealing the roof of one or more nanochannels, wherein the roof comprises no more than one unsealed nanochannel per squared micron.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: August 28, 2018
    Assignee: STC.UNM
    Inventors: Steven R. J. Brueck, Yuliya Kuznetsova, Alexander Neumann
  • Patent number: 10048252
    Abstract: A method and apparatus for delivering one or more fluids. Fluids may be delivered from a common vessel to a chemical, biological or biochemical process.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: August 14, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Vincent Linder, Samuel K. Sia, George M. Whitesides
  • Patent number: 10035887
    Abstract: A manufacturing method for nanoparticles including an amphiphilic block polymer having a uniform particle diameters has steps of forming a laminar flow of polymer solution by inducing a solution comprising an amphiphilic block polymer having a hydrophilic block and a hydrophobic block in an organic solvent into a polymer solution supply flow passage, a step of forming at least two laminar flows of a water system solution by inducing the water system solution to at least two water system solution supply passages, and a step of forming nanoparticles comprising the amphiphilic block polymer by making a confluence as if at least two laminar flows of water system solution sandwich the laminar flow of the polymer solution.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: July 31, 2018
    Assignee: SHIMADZU CORPORATION
    Inventors: Takashi Kawabe, Elichi Ozeki
  • Patent number: 10034625
    Abstract: A system for measuring and/or monitoring an analyte present on the skin is provided. The system includes a substrate that may be attached to an external skin surface and a reader device. The substrate includes a sensor comprising aptamer conjugates and is configured to obtain one or more measurements related to at least one analyte in the perspiration or interstitial fluid. The reader device is configured to detect the analyte in the least one of perspiration or interstitial fluid via interaction with the substrate.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: July 31, 2018
    Assignee: Verily Life Sciences LLC
    Inventors: Jerrod Joseph Schwartz, Vikram Singh Bajaj, Jason Donald Thompson
  • Patent number: 10024819
    Abstract: Techniques, devices and systems are described for incorporating a printed circuit with a microfluidic device and wirelessly powering the microfluidic device. In one aspect, a microfluidic device includes a substrate with a fluidic channel to provide a path for a fluid with particles. The fluidic channel includes fluid inlet and outlet. A pair of electrodes near the inlet and the outlet guides the particles toward a center of the fluidic channel using negative-dielectrophoresis (DEP) effect in response to an alternating current (AC) frequency voltage received at the pairs of electrodes. Additional pairs of electrodes are disposed along a border of the fluidic channel between the pairs of electrodes near the inlet and the outlet of the fluidic channel to isolate a subpopulation of the particles using positive and negative DEP effects in response to AC voltages of different frequencies received at different ones of the additional pairs of electrodes.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: July 17, 2018
    Assignees: The Regents of the University of California, Industry-Academic Cooperation Foundation of Sunchon National University
    Inventors: Yu-Hwa Lo, Wen Qiao, Gyoujin Cho, Hwiwon Kang
  • Patent number: 10018828
    Abstract: An electrowetting display device comprising a first fluid; a second fluid immiscible with the first fluid; a first support plate having: a surface adjoined by at least one of the first or second fluids, and a first electrode. The device further comprises a second support plate; a second electrode in electrical contact with the second fluid; and a third electrode. The device comprises a protrusion formed as part of at least one of the first support plate or the second support plate. The protrusion has an elongate shape extending from one to the other of the first or second support plates. The protrusion comprises a protrusion surface formed of a material which, without a voltage applied, is less wettable for the first fluid than the surface of the first support plate.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: July 10, 2018
    Assignee: Amazon Technologies, Inc.
    Inventor: Romaric Mathieu Massard
  • Patent number: 9983170
    Abstract: A method is provided for analyzing a sample using capillary electrophoresis. According to the method, an electrophoretic liquid filling step is performed for filling a capillary tube with an electrophoretic liquid. In an introducing step, a predetermined amount of sample is introduced to an introducing tank linked to the capillary tube. In a flow step, performed after the introducing step, the sample is caused to flow in the introducing tank, thereby generating a shear flow at a link portion between the capillary tube and the introducing tank. In an electrophoresis step, electrophoresis is performed in the capillary tube while the sample is continuously supplied.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: May 29, 2018
    Assignee: ARKRAY, Inc.
    Inventor: Naotsugu Onuma
  • Patent number: 9977468
    Abstract: A portable electronic apparatus includes a display panel which is flexible and thus prevents or protects a defect from occurring when the portable electronic apparatus is bent. The portable electronic apparatus includes: a display panel configured to display an image; a window that is disposed over an image display surface of the display panel; a functional plate that is disposed between the display panel and the window; and a first adhesive layer that is patterned and is disposed between the display panel and the functional plate or between the functional plate and the window.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: May 22, 2018
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hoonsik Kim, Hyeeun Park, Dongwoo Seo, Changyong Jeong
  • Patent number: 9977037
    Abstract: Artificial microvascular network (AMVN) devices are provided and related methods of making and methods of using such devices are provided. The present disclosure generally relates to an AMVN device comprising a substrate including a capillary network configured so as to simulate those actually encountered in the circulation of various humans and animal model systems. In certain aspects, the AMVN devices may be used, e.g., to investigate the effect of storing RBCs under aerobic and anaerobic conditions. However, the use of such AMVN devices is not so limited.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: May 22, 2018
    Assignees: New Health Sciences, Inc., The Administrators of the Tulane Educational Fund
    Inventors: Tatsuro Yoshida, Sergey S. Shevkoplyas, Jennie M. Burns
  • Patent number: 9958429
    Abstract: The present invention provides a control substrate for controlling a movement direction of animal cells. The control substrate for controlling a movement direction of animal cells has a surface which includes a plurality of grooves, the grooves are formed from a bottom between opposing walls and the opposing walls forming the grooves wherein the walls include a plurality of columnar protrusions. Vertex parts of the columnar protrusion are formed to face between vertex parts of two columnar protrusions formed in the opposing wall and such vertex parts face the same direction.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: May 1, 2018
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hiroshi Sunami, Ikuko Yokota
  • Patent number: 9952222
    Abstract: A method for analyzing a component using a fluidic device. The method includes the steps of providing a distribution of the component across contacting first and second fluid flows; diverting a part of the first fluid flow, a part of the second fluid flow, or parts of the first fluid flow and the second fluid flow, wherein the diverted part includes the component; and analyzing the component in the diverted part of the fluid flow. Optionally the component may be labelled prior to the analyzing step. A flow apparatus for use in the method is also provided.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: April 24, 2018
    Assignee: Cambridge Enterprise Limited
    Inventors: Emma Yates, Christopher Dobson, Therese Herling, Tuomas Knowles
  • Patent number: 9927398
    Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: March 27, 2018
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
  • Patent number: 9903843
    Abstract: A flow channel module comprises a flow channel plate, a flow channel connection block, and a pressing mechanism. The flow channel plate is provided with a main body and a protrusion section protruding in the circumferential direction from the peripheral edge of the main body, the protrusion section having a port communicating with an inner flow channel. The flow channel connection block is provided with a concave section for being engaged with the protrusion section and having inside a port facing surface for facing the port, and an outer flow channel connection section that is connected to the port facing surface by a flow channel. The pressing mechanism is configured to press the protrusion section inserted in the concave section and the port facing surface against each other so that the flow channel and the port are connected while maintaining air tightness or liquid tightness.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: February 27, 2018
    Assignee: SHIMADZU CORPORATION
    Inventors: Masaki Kanai, Satoshi Matsuoka, Masanori Nishino, Takahiro Nishimoto
  • Patent number: 9895694
    Abstract: A microfluidic device includes a particle sorting region having a first, second and third microfluidic channels, a first array of islands separating the first microfluidic channel from the second microfluidic channel, and a second array of islands separating the first microfluidic channel from the third microfluidic channel, in which the island arrays and the microfluidic channels are arranged so that a first fluid is extracted from the first microfluidic channel into the second microfluidic channel and a second fluid is extracted from the third microfluidic channel into the first microfluidic channel, and so that particles are transferred from the first fluid sample into the second fluid sample within the first microfluidic channel.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: February 20, 2018
    Assignee: The General Hospital Corporation
    Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
  • Patent number: 9885686
    Abstract: An electrophoresis controller for use with an electrophoresis apparatus having a gel matrix disposed between electrodes for separation of particles along with a tracking dye. The electrophoresis controller includes a sensor system and a controller. The sensor system includes a support, a light emitter, and a light receiver. The support includes a first portion positionable on a first side of the gel matrix and a second portion positionable adjacent a second side of the gel matrix. The light emitter is positioned on the first portion of the support for emitting light onto one side of the gel matrix. The light receiver is positioned on the second portion of the support adjacent to the other side of the gel matrix for receiving light from the light source as it is passing through the gel matrix. At least one of the light emitter and the light receiver includes a light guide having a first end and a second end.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: February 6, 2018
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Papa Nii Asare-Okai, Rabi A. Musah, Tony P. Hoang
  • Patent number: 9873129
    Abstract: The present invention provides for microelectrode array devices and method of making and using same for the purpose of isolating and analyzing micro- and nanoparticles contained within a fluid solution. In various aspects, the present invention is designed to take advantage of electrokinetics and the separation of certain forces in order to influence and control small particles in a fluid solution, thereby allowing further analysis to be conducted on such particles.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: January 23, 2018
    Inventor: David Jean Charlot
  • Patent number: 9869628
    Abstract: A method of collecting cells from individual wells of a multi-well plate for use in flow cytometry, the method including adding a suspension of cells to wells of the multi-well plate; and aspirating cells from different wells according to a collection pattern into a flow cytometer, wherein the collection pattern is a sequential ordering of wells beginning at a middle region of the multi-well plate and continuing towards an outer region of the multi-well plate. The method preferably including rotating or agitating the multi-well plate between steps of aspirating cells from different wells. Exemplary collection patterns include spiral-square collection pattern and a nearest well to center collection pattern.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: January 16, 2018
    Assignee: ACEA Biosciences, Inc.
    Inventors: Nan Li, Sean Lee, Kilo Vilayphone, Xiaobo Wang
  • Patent number: 9862987
    Abstract: Methods, systems, and devices are disclosed for capturing, concentrating, isolating, and detecting molecules. In one aspect, a molecular probe device includes a molecular probe having a complimentary base pair region initially zipped and structured to include a binding agent to chemically attach the molecular probe to an outer surface of a magnetic bead, and a binding molecule to chemically attach the molecular probe to a substrate of a microfluidic device, in which the complimentary base pair region is configured to hybridize to a complementary nucleic acid sequence of a DNA or RNA molecule.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: January 9, 2018
    Assignees: The Regents of the University of California, Departments of Veterans Affairs
    Inventors: Yu-Hwa Lo, Wen Qiao, Junlan Song, Longchuan Chen
  • Patent number: 9863912
    Abstract: Provided is a device comprising an upper chamber, a middle chamber and a lower chamber, wherein the upper chamber is in communication with the middle chamber through a first pore, and the middle chamber is in communication with the lower chamber through a second pore, wherein the first pore and second pore are about 1 nm to about 100 nm in diameter, and are about 10 nm to about 1000 nm apart from each other, and wherein each of the chambers comprises an electrode for connecting to a power supply. Methods of using the device are also provided, in particular for sequencing a polynucleotide.
    Type: Grant
    Filed: November 29, 2014
    Date of Patent: January 9, 2018
    Assignee: The Regents of the University of California
    Inventors: William Dunbar, Jungsuk Kim
  • Patent number: 9856471
    Abstract: Disclosed are methods for synthesizing and/or assembling at least one polynucleotide product having a predefined sequence from a plurality of different oligonucleotides. In exemplary embodiments, the methods involve synthesis and/or amplification of different oligonucleotides immobilized on a solid support, release of synthesized/amplified oligonucleotides in solution to form droplets, recognition and removal of error-containing oligonucleotides, moving or combining two droplets to allow hybridization and/or ligation between two different oligonucleotides, and further chain extension reaction following hybridization and/or ligation to hierarchically generate desired length of polynucleotide products.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: January 2, 2018
    Assignee: Gen9, Inc.
    Inventors: Joseph Jacobson, George Church, Larry Li-Yang Chu
  • Patent number: 9855554
    Abstract: According to aspects of the present invention, a cartridge assembly for transporting fluid into or out of one or more fluidic devices includes a first layer and a second layer. The first layer includes a first surface. The first surface includes at least one partial channel disposed thereon. The second layer abuts the first surface, thereby forming a channel from the at least one partial channel. At least one of the first layer and the second layer is a resilient layer formed from a pliable material. At least one of the first layer and the second layer includes a via hole. The via hole is aligned with the channel to pass fluid thereto. The via hole is configured to pass fluid through the first layer or the second layer substantially perpendicularly to the channel. Embossments are also used to define aspects of a fluidic channel.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: January 2, 2018
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Daniel Levner, Guy Thompson, II, Christopher David Hinojosa
  • Patent number: 9851365
    Abstract: Methods and devices for liquid-liquid extraction using digital microfluidic arrays are provided. A polar droplet is transported to a separation region containing a substantially non-polar solvent, where non-polar impurities may be extracted from the polar droplet while maintaining a distinct phase separation. In a preferred embodiment, biological samples containing hormones are dried on a digital microfluidic array, lysed by a lysing solvent, dried, subsequently dissolved in a polar solvent, and further purified in a separation step in which droplets are transported through a volume of non-polar solvent. The method disclosed herein provides the distinct advantage of an automated sample preparation method that is capable of extracting hormones from low sample volumes with high precision and recovery.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: December 26, 2017
    Assignee: THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Noha Ahmed Mousa, Mais J. Jebrail, Mohamed Omar Abdelgawad, Aaron R. Wheeler, Robert Fredric Joseph Casper
  • Patent number: 9835538
    Abstract: A technique relates sorting biopolymers. The biopolymers are introduced into a nanopillar array, and the biopolymers include a first population and a second population. The nanopillar array includes nanopillars arranged to have a gap separating one from another. The biopolymers are sorted through the nanopillar array by transporting the first population of the biopolymers less than a predetermined bumping size according to a fluid flow direction and by transporting the second population of the biopolymers at least the predetermined bumping size according to a bumped direction different from the fluid flow direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the biopolymers.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: December 5, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann A. Astier, Joshua T. Smith, Gustavo A. Stolovitzky, Chao Wang, Benjamin H. Wunsch
  • Patent number: 9810663
    Abstract: The present invention generally relates to devices and methods for containing molecules. In some embodiments, the device comprises a nanopore, a pore, and a cavity capable of entropically containing (e.g., trapping) a molecule (e.g., a biomolecule), e.g., for minutes, hours, or days. In certain embodiments, the method comprises urging a molecule into a cavity of a device by application of an electric field, and/or by deposition of fluids having different ionic strengths. The molecule may comprise, in some cases, nucleic acids (e.g., DNA). The molecule, when present in the cavity and/or the nanopore, may be capable of being analyzed, determined, or chemically modified. In some instances, a second molecule (e.g., a second molecule which interacts the first molecule) may also be urged into the cavity. In some embodiments, the interaction of the second molecule with the first molecule (e.g.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: November 7, 2017
    Assignee: Brown University
    Inventors: Derek M. Stein, Xu Liu, Mirna Mihovilovic Skanata
  • Patent number: 9793477
    Abstract: The present invention provides for a structure comprising a plurality of emitters, wherein a first nozzle of a first emitter and a second nozzle of a second emitter emit in two directions that are not or essentially not in the same direction; wherein the walls of the nozzles and the emitters form a monolithic whole. The present invention also provides for a structure comprising an emitter with a sharpened end from which the emitter emits; wherein the emitters forms a monolithic whole. The present invention also provides for a fully integrated separation of proteins and small molecules on a silicon chip before the electrospray mass spectrometry analysis.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 17, 2017
    Assignee: The Regents of The University of California
    Inventors: Daojing Wang, Pan Mao, Hung-Ta Wang, Peidong Yang
  • Patent number: 9789482
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets, according to another aspect of the invention, for example, through charge and/or dipole interactions. Another aspect of the invention provides the ability to determine droplets, or a component thereof, for example, using fluorescence and/or other optical techniques (e.g., microscopy), or electric sensing techniques such as dielectric sensing.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: October 17, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Darren Roy Link, David A. Weitz, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Patent number: 9759643
    Abstract: An Integrated Circuit (IC) chip with a lab-on-a-chip, a method of manufacturing the lab-on-a-chip and a method of using the lab-on-a-chip for fluid flow analysis in physical systems through combination with computer modeling. The lab-on-a-chip includes cavities in a channel layer and a capping layer, preferably transparent, covering the cavities. Gates control two dimensional (2D) lattice structures acting as heaters, light sources and/or sensors in the cavities, or fluid channels. The gates and two dimensional (2D) lattice structures may be at the cavity bottoms or on the capping layer. Wiring connects the gates and the 2D lattice structures externally.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: September 12, 2017
    Assignee: International Business Machines Corporation
    Inventors: Phaedon Avouris, Michael Engel, Claudius Feger, Ronaldo Giro, Rodrigo Ferreira, Mathias Steiner
  • Patent number: 9759905
    Abstract: An apparatus comprises an electrowetting display device comprising: a first support plate including: a surface; and a first electrode. The apparatus further comprises a second support plate and a protrusion having a protrusion surface. The protrusion is formed as part of at least one of the first support plate or the second support plate. The protrusion has an elongate shape extending from one to the other of the first or second support plates. At least one memory and computer program instructions are configured to, with at least one processor, control a volume of the first fluid adjoining the protrusion surface and a volume of the first fluid adjoining the surface of the first support plate, by controlling a magnitude of a first voltage applied between the first and second electrodes, and by controlling a magnitude of a second voltage applied between the third and second electrodes.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: September 12, 2017
    Assignee: AMAZON TECHNOLOGIES, INC.
    Inventor: Romaric Mathieu Massard
  • Patent number: 9753007
    Abstract: A method and system are presented for fast and efficient isolation, purification and quantitation of nucleic acids from complex biological samples using isotachophoresis in microchannels. In an embodiment, a sieving medium may be used to enhance selectivity. In another embodiment, PCR-friendly chemistries are used to purify nucleic acids from complex biological samples and yield nucleic acids ready for further analysis including for PCR. In another embodiment, small RNAs from biological samples are extracted, isolated, preconcentrated and quantitated using on-chip ITP with a high efficiency sieving medium. The invention enables fast concentration and separation (takes 10s to 100s of seconds) of nucleic acids with high selectivity and using lower volumes of reagents (order of 10s of ?L to focus less than 1 ?g/?L of nucleic acid).
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: September 5, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Robert D. Chambers, Juan G. Santiago, Alexandre Persat, Reto B. Schoch, Mostafa Ronaghi
  • Patent number: 9746476
    Abstract: The present invention is generally directed to compositions, methods, and systems for performing single-molecule, real-time analysis of a variety of different biological reactions, and for determining various characteristics of the different biological reactions. The ability to analyze such reactions provides an opportunity to study those reactions as well as to potentially identify factors and/or approaches for impacting such reactions, e.g., to stimulate, enhance, or inhibit such reactions.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: August 29, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Jonas Korlach, Stephen Turner, Benjamin Flusberg, Mark Chaisson, Eric Schadt, Jeffrey Wegener
  • Patent number: 9744532
    Abstract: Microfluidic devices and methods for using the same are provided. Aspects of the invention include microfluidic devices that include a separation medium and a pan-capture binding medium. The microfluidic devices are configured to subject a sample to two or more directionally distinct electric fields. Also provided are methods of using the devices as well as systems and kits that include the devices. The devices, systems and methods find use in a variety of different applications, including diagnostic and validation assays.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: August 29, 2017
    Assignee: The Regents of the University of California
    Inventors: Amy E. Herr, Dohyun Kim
  • Patent number: 9701549
    Abstract: A three-dimensional micro-channel structure includes a plurality of layers arranged in a stack, each layer having one or more separate micro-channels having first, second, and third ports spatially aligned in the stack so that the first, second, or third ports each form one or more first, second, or third contiguous areas, respectively, that do not include other ports. Each of the contiguous areas includes at least one port from each of two or more layers in the stack. One or more pipes having an open side each covers only one contiguous area.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: July 11, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Ronald Steven Cok
  • Patent number: 9695067
    Abstract: A conductive micro-channel structure includes a layer having layer edges and an electrode having first and second portions formed in or under the layer. One or more fluid micro-channels are formed in the layer, expose the first portion of the electrode, and extend to a layer edge to form a fluid port. A conductor micro-channel includes a solid conductor in the conductor micro-channel. The solid conductor is electrically conductive, is electrically connected to the second portion of the electrode, and extends from the second portion to a layer edge to form a conductor port.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: July 4, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Ronald Steven Cok