Coating Predominantly Nonmetal Substrate Patents (Class 205/159)
  • Patent number: 6755955
    Abstract: A method for producing a catalytic converter includes depositing a layer of catalytically active metallic material by electrochemical deposition on a planar substrate by immersing the substrate in an electrolyte that contains the catalytically active metallic material. A high overvoltage at which a large number of seeds of the metallic material are formed on the substrate is set for a predetermined first time period between the substrate and the opposing electrode. The overvoltage is reduced for a predetermined second time period to a value at which the seeds which are deposited in the first time period grow on the substrate.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: June 29, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Hubertus Biegert, Gabriele Stäb, Gabor Toth, Peter Urban
  • Patent number: 6753251
    Abstract: A method for filling recessed micro-structures at a surface of a semiconductor wafer with metallization is set forth. In accordance with the method, a metal layer is deposited into the micro-structures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed micro-structures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: June 22, 2004
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, Lyndon W. Graham
  • Publication number: 20040112755
    Abstract: The invention relates to a method for the direct electrolytic metallization of electrically non-conducting substrate surfaces comprising bringing the substrate surfaces into contact with a water-soluble polymer; treating the substrate surfaces with a permanganate solution; treating the substrate surfaces with an acidic aqueous solution or an acidic microemulsion of aqueous base containing at least one thiophene compound and at least one alkane sulfonic acid selected from the group comprising methane sulfonic acid, ethane sulfonic acid and ethane disulfonic acid; electrolytically metallizing the substrate surfaces.
    Type: Application
    Filed: September 17, 2003
    Publication date: June 17, 2004
    Inventors: Regina Czeczka, Lutz Stamp
  • Publication number: 20040104121
    Abstract: The present invention provides a method of forming a transparent conductive film at a low temperature that is suitable for use with a synthetic resin substrate. According to the production method of a substrate with an electrode of the present invention, an oxide conductive film composed of an amorphous material or mainly composed of an amorphous material is formed on a substrate at a temperature equal to or less than the crystallization temperature of the film, and subsequently, the formed oxide conductive film is crystallized by heating. The oxide conductive film is processed into the shape of an electrode either before or after crystallization, according to necessity.
    Type: Application
    Filed: November 19, 2003
    Publication date: June 3, 2004
    Applicant: Matsushita Elec. Ind. Co. Ltd.
    Inventors: Naomi Kaneko, Naohide Wakita, Hiroshi Satani, Tsuyoshi Uemura
  • Patent number: 6740220
    Abstract: The present invention relates to a method of producing an electrocatalytic cathode for use in an electrochemical cell system comprising the steps of providing a carbon substrate and simultaneously depositing palladium and iridium on the carbon substrate by cyclic voltammetry or by controlled potential coulometry. The simultaneous deposition of the palladium and iridium is preferably carried out using a solution containing 1.0 mM palladium chloride, 2.0 mM sodium hexachloroiridate, 0.2M potassium chloride, and 0.1M hydrochloric acid.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: May 25, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Maria G. Medeiros, Eric G. Dow, Russell R. Bessette, James M. Cichon
  • Publication number: 20040094424
    Abstract: A method for applying a metal coating to graphite structural members, in which a galvanic metal layer is deposited after said graphite structural members have been anodically etched in an alkaline etchant. The metal coating can serve as a basis for solder connections and can be employed for creating electrical contacts or for mechanically fixing the graphite structural member or it can fulfil other demands on the surface (e.g. abrasion resistance).
    Type: Application
    Filed: November 13, 2003
    Publication date: May 20, 2004
    Applicant: Franz Oberflachentechnik GmbH & Co KG
    Inventor: Wolf-Dieter Franz
  • Publication number: 20040065555
    Abstract: Electroplating processes (e.g. conformable contact mask plating and electrochemical fabrication processes) that include in situ activation of a surface onto which a deposit will be made are described. At least one material to be deposited has an effective deposition voltage that is higher than an open circuit voltage, and wherein a deposition control parameter is capable of being set to such a value that a voltage can be controlled to a value between the effective deposition voltage and the open circuit voltage such that no significant deposition occurs but such that surface activation of at least a portion of the substrate can occur. After making electrical contact between an anode, that comprises the at least one material, and the substrate via a plating solution, applying a voltage or current to activate the surface without any significant deposition occurring, and thereafter without breaking the electrical contact, causing deposition to occur.
    Type: Application
    Filed: May 7, 2003
    Publication date: April 8, 2004
    Applicant: University of Southern California
    Inventor: Gang Zhang
  • Patent number: 6712948
    Abstract: A process for the metallization of a plastic surface, whereby the following process steps are performed in sequence, one after another. The plastic surface is subjected to an etching treatment under mild etching conditions. Subsequently, the plastic surface is treated with a metal salt solution, containing at least one salt from the following group: cobalt salt, silver salt, tin salt, and lead salt. The plastic surface is treated with a sulfide solution. Finally, the plastic surface is metallized in a metallizing bath.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: March 30, 2004
    Assignee: Enthone Inc.
    Inventors: Leonas Naruskevicius, Grigorijus Rozovskis, Jonas Vinkevicius, Mykolas Baranauskas, Andreas Mobius, Peter Pies
  • Publication number: 20040055893
    Abstract: A method and apparatus for electrochemically plating on a production surface of a substrate are provided. The apparatus generally includes a plating cell having a plating solution reservoir configured to contain a volume of an electrochemical plating solution, and a substrate support member positioned above the plating solution reservoir, the substrate support member being configured to electrically engage a non-production side of a substrate secured thereto.
    Type: Application
    Filed: September 23, 2002
    Publication date: March 25, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Michael X. Yang, Sheshraj Tulshibagwale, Yezdi Dordi, Howard E. Grunes, Jick M. Yu, Fusen Chen
  • Publication number: 20040040859
    Abstract: A method of forming a surface finish of trivalent chromium on metal or plastics substrates by electrodeposition from an aqueous plating solution of trivalent chromium ions in which the trivalent chromium is deposited on a layer of silver or silver alloy whereby the color and/or corrosion resistance of the trivalent chromium is comparable to surface finishes of hexavalent chromium. The invention avoids the health and safety risks associated with the electrodeposition of hexavalent chromium surface finishes.
    Type: Application
    Filed: June 9, 2003
    Publication date: March 4, 2004
    Inventors: Paul Averell William Lansdell, John Peter Farr
  • Patent number: 6695976
    Abstract: In a water-continuous system and a polymerization method, the water-continuous system comprises a polymerizable aromatic compound as an oil, water and a non-ionic surfactant, wherein the polymerizable aromatic compound is a component from the group consisting of: thiophene, furan and alkyl, alkoxy or alkylenedioxy derivatives of thiophene and furan. The non-ionic surfactant is an alkyl polyethoxylate and/or an alkyl polyglucoside.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: February 24, 2004
    Inventors: Franz-Hubert Haegel, Julia Schlüpen, Joachim Walter Schultze, Stephan Winkels
  • Publication number: 20040026258
    Abstract: Disclosed is a method for forming a high reflective micropattern, comprising forming a micropattern using an organometallic compound in a photoreaction or with thermal energy; and growing crystal, using the pattern as the nucleus for growing crystal, by an electro or electroless plating process. The method forms a high reflective metal pattern rapidly and efficiently without using conventional chemical vapor deposition or physical deposition methods such as sputtering.
    Type: Application
    Filed: June 26, 2003
    Publication date: February 12, 2004
    Inventors: Chang Ho No, Soon Taik Hwang, Young Hun Byun, Byong Ki Yun, Jin Young Kim
  • Patent number: 6656339
    Abstract: Methods of forming a nano-supported catalyst on a substrate and at least one carbon nanotube on the substrate are comprised of configuring a substrate with an electrode (102), immersing the substrate with the electrode into a solvent containing a first metal salt and a second metal salt (104) and applying a bias voltage to the electrode such that a nano-supported catalyst is at least partly formed with the first metal salt and the second metal salt on the substrate at the electrode (106). In addition, the method of forming at least one carbon nanotube is comprised of conducting a chemical reaction process such as catalytic decomposition, pyrolysis, chemical vapor deposition, or hot filament chemical vapor deposition o grow at least one nanotube on the surface of the nano-supported catalyst (108).
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: December 2, 2003
    Assignee: Motorola, Inc.
    Inventors: Albert A. Talin, Bernard F. Coll, Kenneth A. Dean, Matthew Stainer
  • Publication number: 20030205480
    Abstract: A porous layer having a multilayered structure is formed. An Si substrate (102) to be processed is anodized in a first electrolytic solution (141, 151) while being held between an anode (106) and a cathode (104) in an anodizing bath (101). The first electrolytic solution (141, 151) is exchanged with a second electrolytic solution (142, 152). The Si substrate (102) is anodized again, thereby forming a porous layer having a multilayered structure on the Si substrate (102).
    Type: Application
    Filed: June 11, 2003
    Publication date: November 6, 2003
    Inventors: Kiyofumi Sakaguchi, Nobuhiko Sato
  • Patent number: 6632344
    Abstract: The invention is directed to a process for electroplating a non-conducting surface such as through-hole walls within a printed circuit board substrate. The process comprises formation of a conductive oxide coating over a substrate, preferably by immersion of said substrate in an aqueous oxidative desmear solution for a time sufficient to form a coating containing conductive dielectric oxidation residue and then, in the absence of a step of forming an additional conductive coating over the residue coating or removing the coating, electroplating metal onto said surface by immersion of the substrate having the coating in an electroplating solution.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: October 14, 2003
    Inventors: Robert L. Goldberg, Michael Gulla
  • Publication number: 20030173226
    Abstract: A method is disclosed for the metallization of optical fibers with improved adhesion while using a shorter process cycle.
    Type: Application
    Filed: January 21, 2003
    Publication date: September 18, 2003
    Inventor: John Grunwald
  • Patent number: 6610191
    Abstract: The present invention provides plating solutions, particularly metal plating solutions, designed to provide uniform coatings on substrates and to provide substantially defect free filling of small features, e.g., micron scale features and smaller, formed on substrates with none or low supporting electrolyte, i.e., which include no acid, low acid, no base, or no conducting salts, and/or high metal ion, e.g., copper, concentration. Additionally, the plating solutions may contain small amounts of additives which enhance the plated film quality and performance by serving as brighteners, levelers, surfactants, grain refiners, stress reducers, etc.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: August 26, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Uziel Landau, John J. D'Urso, David B. Rear
  • Publication number: 20030155249
    Abstract: A process for applying a metallization interconnect structure to a semiconductor workpiece having a barrier layer deposited on a surface thereof is set forth. The process includes the forming of an ultra-thin metal seed layer on the barrier layer. The ultra-thin seed layer having a thickness of less than or equal to about 500 Angstroms. The ultra-thin seed layer is then enhanced by depositing additional metal thereon to provide an enhanced seed layer. The enhanced seed layer has a thickness at all points on sidewalls of substantially all recessed features distributed within the workpiece that is equal to or greater than about 10% of the nominal seed layer thickness over an exteriorly disposed surface of the workpiece.
    Type: Application
    Filed: November 22, 2002
    Publication date: August 21, 2003
    Applicant: Semitool, Inc.
    Inventors: Linlin Chen, Thomas Taylor
  • Publication number: 20030143453
    Abstract: The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.
    Type: Application
    Filed: November 27, 2002
    Publication date: July 31, 2003
    Inventors: Zhifeng Ren, Jian Wen, Jinghua Chen, Zhongping Huang, Dezhi Wang
  • Patent number: 6565731
    Abstract: A process for electroplating a substrate by coating the substrate with a coating of conductive particles. The process is characterized by a pretreatment sequence that includes contact of the substrate with a single solution containing a reducing agent and a polyelectrolyte. The use of the single solution decreases the incidence of interconnect defects in printed circuit manufacture.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: May 20, 2003
    Assignee: Shipley Company, L.L.C.
    Inventors: Edward C. Couble, Mark J. Kapeckas, Steven M. Florio, David L. Jacques
  • Patent number: 6541080
    Abstract: Process for the direct metallizing of the surface of a plastic object. The surface of the plastic object is roughened by pickling. The surface is activated with the aid of a colloidal or ionogenic aqueous solution of a first precious metal, which colloidal or ionogenic aqueous solution also contains a second base metal. This forms an activation coat on the surface containing the first precious and the second base metals. Electron conductivity of the activation coat is provided with the aid of a treatment solution, with which the second base metal is at least partially dissolved out of the activation coat and an electron conducting substance is adsorb in the activation coat. Then the electron-conductive activation coat is metallized. Before the electron conducting activation coat is metallized, the sequence of steps “activation of the surface and establishment of electronic conductivity” is repeated at least once.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: April 1, 2003
    Assignee: Enthone Inc.
    Inventor: Peter Pies
  • Publication number: 20030047458
    Abstract: A combined adhesion promotion method of a metal to a non-conductive substrate and directly metallizing the non-conductive substrate with the metal. The method involves texturing a non-conductive substrate with a cobalt etch followed by applying a sulfide to the textured non-conductive substrate to provide an electrically conductive surface on the non-conductive substrate. After the surface of the non-conductive substrate has been made electrically conductive, the surface of the non-conductive substrate can be directly metallized. The method reduces the number of process steps for direct metallization of a non-conductive substrate. Thus, the method is more efficient in contrast to conventional methods of metallizing a non-conductive substrate.
    Type: Application
    Filed: August 2, 2002
    Publication date: March 13, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: Zatoon Begum, Martin T. Goosey, John E. Graves, Mark A. Poole, Amrik Singh
  • Patent number: 6512040
    Abstract: This invention relates to a carbon black modified by a two step process in which carbon black is initially treated with functional monomers by an electropolymerization process to form a functionalized carbon black having an initial polymer attached to, of grafted to, the carbon black following which (A) at least one diene monomer, or (B) living anionic catalysis prepared polymer, is introduced to the functionalized carbon black to continue the polymerization, starting from a living end of the initially formed polymer, and thereby form an extended diene-based polymer. By the addition of the diene monomer or the live anionic polymer to form the associated extended diene-based polymer, it is contemplated that the modified carbon black is rendered more compatible with diene-based elastomers. Such modified carbon black may be used, for example, as reinforcement for component(s) of various articles of manufacture, including tires.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: January 28, 2003
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Thierry Florent Edme Materne, Giorgio Agostini
  • Publication number: 20020193040
    Abstract: A method of reducing electronic work function, reducing threshold field emission values, converting semiconducting behavior to metallic behavior, increasing the electron density state at the Fermi level, and increasing electron emission site density, of nanostructure or nanotube-containing material, the method including: forming openings in the nanotube-containing material; introducing a foreign species such as an alkali metal into at least some of the openings; and closing the openings, thereby forming capsules filled with the foreign species, and forming field emission cathode and flat panel displays using these capsules.
    Type: Application
    Filed: June 18, 2001
    Publication date: December 19, 2002
    Inventor: Otto Z. Zhou
  • Patent number: 6471847
    Abstract: The present invention is directed to a method and apparatus for plating a surface of a semiconductor workpiece (wafer, flat panel, magnetic films, etc.) using a liquid conductor that makes contact with the outer surface of the workpiece. The liquid conductor is stored in a reservoir and pump through an inlet channel to the liquid chamber. The liquid conductor is injected into a liquid chamber such that the liquid conductor makes contact with the outer surface of the workpiece. An inflatable tube is also provided to prevent the liquid conductor from reaching the back face of the workpiece. A plating solution can be applied to the front face of the workpiece where a retaining ring/seal further prevents the plating solution and the liquid conductor from making contact with each other.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: October 29, 2002
    Assignee: Nutool, Inc.
    Inventors: Homayoun Talieh, Bulent Basol
  • Patent number: 6468593
    Abstract: Provided is a method of plating a non-conductive product comprising the steps of: forming a coating film on a surface of the non-conductive product with a conductive paint having the following composition of solid ingredients: (a) a resin vehicle in 20 to 80 weight %, and (b) a conductive whisker in 80 to 20 weight %; and executing electroless plating on a surface of the coating film. Also provided are products produced by this method.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: October 22, 2002
    Assignees: Kanto Kasei Co., Ltd., Tanabe Chemical Industry Co., Ltd.
    Inventors: Tsutomu Iizawa, Takuya Ishida, Tamotsu Murayama, Takayuki Yagi
  • Patent number: 6447561
    Abstract: An abrasive body for grinding optical glass, precious and natural stones such as marble, or other material such as wood, metal, plastic or the like is provided. The abrasive body comprises a base body of woven, knitted or embroidered fabric made of carbon fibers, or of a graphite foil. A uniform, homogeneous diamond or boron nitride coating is deposited on the base body as a grinding layer.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 10, 2002
    Assignee: Winter CVD Technik GmbH
    Inventors: Ernst Michael Winter, Hans-Joachim Wiemann
  • Patent number: 6413405
    Abstract: An environmentally functional active carbon and its method of manufacturing is provided. The active carbon has improved adsorption capability against disease-source bacteria and microbes with prominent anti-bacterial and sterilizing effect as well as against organic and inorganic contaminants due to the process of electro-depositing Ag—I to the surface of active carbon and active carbon fiber. This invention creates functional active carbon having outstanding sterilizing effect for disease-source bacteria from known bacteria such as Gram positive bacteria including Staphylococcus, Bacillus subtillis and Gram negative bacteria including Escherichia coli, Pseudomonas Aeruginosa, Klebsiella Pneumonie, Candida Albicans causing albicans as yeast fungus, Trichophyton interdigital causing athlete's foot as a kind of mold.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: July 2, 2002
    Assignee: Sol Nanochem Ltd.
    Inventor: Woo Young Jung
  • Patent number: 6383357
    Abstract: A three-dimensional formed metallic structure with varying thickness including sloping flanks is formed on a substrate. A conductive layer is applied to the substrate initially, in the form of laterally spaced electrically isolated conductive islands. A cathodic potential is connected to at least one of the islands, leaving others unconnected, and deposition proceeds due to the cathodic potential. As metallic material is deposited and builds up, it eventually contacts adjacent islands, thereby coupling the cathodic potential to a wider area where deposition commences. Deposition is thickest at the at least one island initially coupled to the cathodic potential and thinner progressing away, forming flanks that are linearly sloped, curved or similarly formed by thickness variations the vary proceeding away from the initially coupled island or islands.
    Type: Grant
    Filed: December 29, 1998
    Date of Patent: May 7, 2002
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung, E.V.
    Inventor: Andreas Maciossek
  • Patent number: 6375821
    Abstract: The invention concerns a method for forming a coating on conductive particles by grafting a polymer and/or a copolymer of the particles from a bath containing at least a monomer from which the polymer and/or copolymer is formed. The method consists of producing the grafting by electrochemical reduction of the monomer in an electrolytic solution, where at least a cathode and an anode are provided, and containing an aprotic solvent, a support electrolyte and the monomer(s) required for polymerizing or copolymerizing the coating, by suspending the particles and moving the solution so as to produce an intermittent contact between the particles and the cathode, and to form, by polymerization or copolymerization, the coating on the particles by applying an electric potential.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: April 23, 2002
    Assignee: Cipari S.A.
    Inventors: Robert Jerome, Lucien Martinot, Marc Mertens, Isabelle Bodart, Philippe Dubois
  • Publication number: 20020034676
    Abstract: Disclosed herein is a method of fabricating a catalyzed porous electrode for fuel cell, which electrode can be fabricated in a simple and easy manner without forming a catalyst support layer of carbon particles, and has an excellent, stable catalytic efficiency. The method comprises treating an electrically conductive, porous carbon substrate with an oxidizing agent; making one face of the porous carbon substrate in contact with an electrodeposition solution As containing ions of a catalytic metal; applying a pulsed potential to the electrodeposition solution to deposit the catalytic metal on the porous substrate, thereby catalyzing the porous substrate; and heat-treating the catalyzed porous substrate.
    Type: Application
    Filed: June 22, 2001
    Publication date: March 21, 2002
    Inventors: Dong-Il Kim, Chang-Hyeong Lee, Dong-Chun Kim
  • Patent number: 6340422
    Abstract: The present invention is directed to processes and devices for performing the processes comprising electroplating one or more metallic or non-metallic continuous products with metals or metal alloys in a continuous process from aprotic electrolytes free of water and oxygen, wherein the continuous product is passed through a lock system (1) into an encapsulated coating plant under inert gas atmosphere, and the following steps are performed at temperatures ≦120° C.: activating the continuous product to be coated; rinsing the continuous product to be coated; contacting the continuous product to be coated; electroplating the continuous product to be coated using a metal or metal alloy; drying the coated continuous product; discharge of the coated continuous product from the plant through a lock system.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: January 22, 2002
    Assignee: Aluminal Oberflachentechnik GmbH
    Inventors: Hans de Vries, Jörg Heller
  • Publication number: 20020004145
    Abstract: The invention relates to use of capture compounds such as a crown ether to facilitate selected compositions and processes employed in manufacture of electronic packaging devices such as printed circuit boards, semiconductor integrated circuit systems, multichip modules, lead frames and other interconnection devices, flat panel display substrates, and the like.
    Type: Application
    Filed: May 8, 2001
    Publication date: January 10, 2002
    Applicant: Shipley Company, L.L.C.
    Inventors: Steven M. Florio, Gary S. Calabrese, Jeffrey Doubrava
  • Patent number: 6325910
    Abstract: The invention relates to a palladium colloid solution, which, in addition to a palladium compound, a protective colloid for stabilizing the colloid and a reducing agent, additionally contains noble metals from the group rhodium, iridium and platinum. The solution can be used to treat electrically non-conductive substrate surfaces, particularly in order to metallize the substrate surfaces directly and electrolytically. By means of this method, the nonconductive areas of the holes in printed circuit boards can be directly electrolytically metallized.
    Type: Grant
    Filed: June 3, 1998
    Date of Patent: December 4, 2001
    Assignee: Atotch Deutschland GmbH
    Inventors: Heinrich Meyer, Lutz Stamp
  • Patent number: 6325911
    Abstract: A method for making composites uses electrochemical polymer or copolymer coating of a carbon-based support by using a reaction system including (a) at least a monomer capable of forming a polymer on said support, (b) an aprotic solvent and (c) an electrolyte providing the resulting organic medium with an electrical conductivity for conducting therein electrolysis. The carbon support permanently forms the cathode, by applying either a potential or an electric current bringing the reaction system into the passivation zone corresponding to the first inhibition peak. The method forms a polymer grafted on the support.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: December 4, 2001
    Assignee: Cipari, SA
    Inventors: Marc Mertens, Lucien Martinot, Robert Jerome
  • Publication number: 20010045363
    Abstract: A electrolyte for use in electrolytic platinum plating that results in reduced Cl, S, or P contaminant production. The bath comprises 0.01 to 320 g/lit of platinum in the form of the platinum salt dinitrodiammine platinum, [Pt(NH3)2(NO2)2] or variants thereof and 0.1 to 240 g/lit of alkali metal carbonate M2CO3 or bicarbonate MHCO3 where M is selected from a group comprising lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs). A method of improving oxidation resistance of a platinum modified aluminide diffusion coating on a substrate, comprises electroplating the substrate using this electrolyte and then aluminizing the electroplated substrate at an elevated temperature to grow a platinum modified aluminide diffusion coating.
    Type: Application
    Filed: June 29, 2001
    Publication date: November 29, 2001
    Applicant: Honeywell International, Inc.
    Inventors: Thomas E. Strangman, Derek Raybould, Alex Kozlov
  • Patent number: 6303181
    Abstract: A method of applying a conductive carbon coating to a nonconductive surface, conductive carbon compositions for that purpose, and a printed wiring board having through holes or other nonconductive surfaces treated with such carbon compositions are disclosed. A conditioning agent, made (for example) by condensing a polyamide and epichlorohydrin, is applied to the nonconductive surface to form a conditioned surface. A liquid dispersion of electrically conductive carbon (for example, graphite) having a mean particle size no greater than about 50 microns is coated on the conditioned surface to form an electrically conductive carbon coating. The conductive carbon coating is then optionally fixed on the (formerly) nonconductive surface. Fixing may be accomplished, for example, by applying a fixing liquid such as a dilute aqueous acid to the carbon-coated surface. The coating is then dried.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: October 16, 2001
    Assignee: Electrochemicals Inc.
    Inventors: Charles Edwin Thorn, Frank Polakovic, Charles A. Mosolf
  • Patent number: 6284679
    Abstract: A cloth web is prepared by providing a plastic cloth with a metallic casing layer on both sides thereof by vapor deposition, plasma spraying or cathode sputtering, and then galvanically coating the resultant material with a metal coating.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: September 4, 2001
    Assignee: Sefar AG
    Inventors: Christian Schilling, Hugo Gmür, Martin Lehner
  • Patent number: 6258241
    Abstract: A process for electroplating metal on a resistive substrate and the article of manufacture produced therefrom are disclosed. The metal layer is electroplated onto the resistive substrate in an electroplating bath having a polarization parameter &xgr; less than approximately 10 such that the metal layer is of substantially uniform thickness. The polarization parameter &xgr; of less than approximately 10 for the electroplating bath can be achieved by numerous means, such as by providing a low metal ion concentration in the electroplating bath or by adding one or more additives to the electroplating bath. The present invention may be used with a variety of metals and resistive substrates.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: July 10, 2001
    Assignee: Lucent Technologies, Inc.
    Inventor: Ken M. Takahashi
  • Patent number: 6251249
    Abstract: Formulations and procedures for the deposition of precious metals onto solid substrates are disclosed wherein the formulations are iodide-free and contain an organosulfur compound and/or a carboxylic acid and a source of soluble precious metal ion which is one or more precious metal alkanesulfonates, precious metal alkanesulfonamides and/or precious metal alkanesulfonimides. The formulations and processes may be cyanide-free, and the deposition may be effected by electrolytic, electroless and/or immersion plating techniques.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: June 26, 2001
    Assignee: Atofina Chemicals, Inc.
    Inventors: Jean W. Chevalier, Michael D. Gernon, Patrick K. Janney
  • Patent number: 6241869
    Abstract: An apparatus and a method for electroplating for forming a metal film by an electroplating method. The apparatus comprises a plating bath provided in a non-oxidative atmosphere, and in the method, an article to be plated is immersed in a plating bath through a non-oxidative atmosphere.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: June 5, 2001
    Assignee: Sony Corporation
    Inventor: Keiichi Maeda
  • Patent number: 6235182
    Abstract: A solution for the pretreatment of electrically non-conductive surfaces and a method for coating surfaces with solid matter particles, for example carbon black, graphite, silicon dioxide, aluminum oxides, transition metal chalcogenides and titanium dioxide. Furthermore, the invention relates to a production method for the solution also. The solution contains a solvent, polyelectrolytic compound as a coagulation trigger, and a charged surfactant which has opposite polarity relative to the polyelectrolytic compound. After pretreatment of surfaces with the solution, the surfaces are then brought into contact with a dispersion containing the solid matter particles.
    Type: Grant
    Filed: July 9, 1998
    Date of Patent: May 22, 2001
    Assignee: Atotech Deutschland GmbH
    Inventors: Marjan Bele, Jürgen Otto Besenhard, Stane Pejovnik, Heinrich Meyer
  • Patent number: 6228243
    Abstract: A new method to synthesize crystalline films, superlattices and multilayered devices based on metallic or semiconductor compounds or alloys in electrolyte media on non-crystalline substrates. An automated sequence of flow, equilibration and underpotential electrodeposition from a single electrolyte comprising the film constituents leads to the synthesis of stoichiometric, epitaxial layers. The invention process is based on a new concept of electrochemical molecular layer epitaxy; it provides a relatively simple, fast and inexpensive method to fabricate a wide range of high quality technological materials, ranging from large-area single phase films to multiple quantum-well structures.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: May 8, 2001
    Inventor: Shalini Menezes
  • Patent number: 6197182
    Abstract: A plating apparatus and methodology is disclosed that is particularly useful in improving the plating rate, improving the plating of via holes, improving the uniformity of the plating deposition across the surface of the wafer, and minimizing damage to the wafer. With regard to improving the plating rate and the plating of via holes, the plating apparatus and method immerses a wafer in a plating fluid bath and continuously directs plating fluid towards the surface of the wafer. Immersing the wafer in a plating fluid bath reduces the occurrence of trapped gas pockets within via holes which makes it easier to plate them. The continuous directing of plating fluid towards the surface of the wafer increases the ion concentration gradient which is, in turn, increases the plating rate.
    Type: Grant
    Filed: July 7, 1999
    Date of Patent: March 6, 2001
    Assignee: Technic Inc.
    Inventors: Robert Kaufman, Gary C. Downes, Daniel J. Gramarossa
  • Patent number: 6171468
    Abstract: A method of applying a conductive carbon coating to a non-conductive surface, conductive carbon compositions for that purpose, and a printed wiring board having through holes or other nonconductive surfaces treated with such carbon compositions are disclosed. A liquid dispersion of electrically conductive carbon (for example, graphite) having a mean particle size no greater than about 50 microns is coated on the non-conductive surface to form an electrically conductive carbon coating. The conductive carbon coating is then fixed on the (formerly) nonconductive surface. Fixing may be accomplished in a variety of different ways. For example, the fixing step can be carried out by applying a fixing liquid to the carbon-coated surface. One example of a suitable fixing liquid is a dilute aqueous acid. Fixing may also be carried out by removing the excess carbon dispersion with an air knife or other source of compressed air.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: January 9, 2001
    Assignee: Electrochemicals Inc.
    Inventors: Charles Edwin Thorn, Frank Polakovic, Charles A. Mosolf
  • Patent number: 6110346
    Abstract: In electroplating a metal layer on a semiconductor wafer, the resistive voltage drop between the edge of the wafer, where the electrical terminal is located, and center of the wafer causes the plating rate to be greater at the edge than at the center. As a result of this so-called "terminal effect", the plated layer tends to be concave. This problem is overcome by first setting the current at a relatively low level until the plated layer is sufficiently thick that the resistive drop is negligible, and then increasing the current to improve the plating rate. Alternatively, the portion of the layer produced at the higher current can be made slightly convex to compensate for the concave shape of the portion of the layer produced at the lower current. This is done by reducing the mass transfer of the electroplating solution near the edge of the wafer to the point that the electroplating process is mass transfer limited in that region.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: August 29, 2000
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Robert J. Contolini, Edward C. Opocensky, Evan E. Patton, Eliot K. Broadbent
  • Patent number: 6110347
    Abstract: A method for forming an indium oxide film on an electrically conductive substrate by immersing the substrate and a counter electrode in an aqueous solution containing at least nitrate and indium ions and flowing an electric current between the substrate and the couter electrode, thereby causing indium oxide film formation on the substrate, is provided. A substrate for a semiconductor element and a photovoltaic element produced using the film forming method are also provided. An aqueous solution for the formation of an indium oxide film by an electroless deposition process, containing at least nitrate and indium ions and tartrate, is also disclosed. A film-forming method for the formation of an indium oxide film on a substrate by an electroless deposition process, using the aqueous solution, and a substrate for a semiconductor element and a photovoltaic element produced using the film-forming method are further provided.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: August 29, 2000
    Assignee: Canon Kabushiki Kashia
    Inventors: Kozo Arao, Katsumi Nakagawa, Yukiko Iwasaki
  • Patent number: 6074544
    Abstract: In electroplating a metal layer on a semiconductor wafer, the resistive voltage drop between the edge of the wafer, where the electrical terminal is located, and center of the wafer causes the plating rate to be greater at the edge than at the center. As a result of this so-called "terminal effect", the plated layer tends to be concave. This problem is overcome by first setting the current at a relatively low level until the plated layer is sufficiently thick that the resistive drop is negligible, and then increasing the current to improve the plating rate. Alternatively, the portion of the layer produced at the higher current can be made slightly convex to compensate for the concave shape of the portion of the layer produced at the lower current. This is done by reducing the mass transfer of the electroplating solution near the edge of the wafer to the point that the electroplating process is mass transfer limited in that region.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: June 13, 2000
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Robert J. Contolini, Edward C. Opocensky, Evan E. Patton, Eliot K. Broadbent
  • Patent number: 6045680
    Abstract: A polymeric yarn to be coated with electroless nickel is pretreated with an acid and a surfactant to render the yarn surfaces water wettable and not substantially mechanically degraded. All surfaces of yarn formed of polymeric monofilament fibers are coated with a layer of electroless nickel which can also include an electrolytic metal such as copper on the nickel. The yarn is passed through an electroless Ni aqueous bath under little or no tension so that the electroless Ni can coat all of the monofilament surface substantially uniformly. The nickel coated yarn then can be coated with electrolytic metal such as copper in an electrolytic metal plating step.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: April 4, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: John D. Cawston, Merwin F. Hoover, Thomas F. Burke, Thomas H. Stearns
  • Patent number: 6039859
    Abstract: The invention relates to a conductive dispersions used for diverse purposes such a base for electroplating nonconductors. The dispersion are characterized by use of a stabilizing quantity of a stabilizer having repeating alylkene oxide groups and a hydrophilic--lipophilic balance in excess of 12. It has been found that the stabilizers utilized in the subject compositions does result in a significant loss of conductivity in coatings formed from the dispersion.
    Type: Grant
    Filed: May 20, 1998
    Date of Patent: March 21, 2000
    Assignee: Shipley Company, L.L.C.
    Inventors: Wade Sonnenberg, Patrick J. Houle, Thong B. Luong, James G. Shelnut, Gordon Fisher