Copper-containing Alloy Patents (Class 205/239)
  • Patent number: 7048840
    Abstract: The invention relates to a method for metal coating the surface of high temperature superconductors with a copper-oxygen base structure. The aim of the invention is to achieve a method as above, which requires a low production complexity, serves for the production of contacts with a low electrical and/or thermal transfer resistance and which increases the stability of the metallization. Said aim is achieved whereby copper is applied to give low-ohmic contacts, and the linked achievement of a stable metallization between the HTS and the electrical and/or thermal coupling. Further advantageous effects are achieved with the method whereby the copper is applied in the form of copper alloys, in particular as copper-nickel or copper-zinc alloys. On applying the method it is furthermore of advantage for the creation of fine grained surface coatings to overlay the galvanic cell with a permanent and/or alternating magnetic field.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: May 23, 2006
    Assignee: Adelwitz Technologiezentrum GmbH
    Inventors: Frank Werfel, Uta Flögel-Delor, Rolf Rothfeld, Dieter Wippich
  • Patent number: 6982030
    Abstract: Methods of providing improved metal coatings or metal deposits on a substrate, improvements in plating solutions that are used to provide such metal deposits and articles of the metal-coated substrates. The solderability of the metal coating is enhanced by incorporating trace amounts of phosphorus in the metal coating to reduce surface oxide formation during subsequent heating and thus enhance long term solderability of the metal coating. The phosphorus is advantageously provided in the metal coating by incorporating a source of phosphorus in a solution that is used to provide the metal coating on the substrate, and the metal coating is then provided on the substrate from the solution.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: January 3, 2006
    Assignee: Technic, Inc.
    Inventors: Yun Zhang, Robert A. Schetty, III, Kilnam Hwang
  • Patent number: 6858121
    Abstract: The present invention relates to methods and apparatus for plating a conductive material on a substrate surface in a highly desirable manner. The invention removes at least one additive adsorbed on the top portion of the workpiece more than at least one additive disposed on a cavity portion, using an indirect external influence, thereby allowing plating of the conductive material take place before the additive fully re-adsorbs onto the top portion, thus causing greater plating of the cavity portion relative to the top portion.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: February 22, 2005
    Assignee: NuTool, Inc.
    Inventor: Bulent M. Basol
  • Patent number: 6852210
    Abstract: To provide a plating method, which enables wide industrial use of the redox system electroless plating method having excellent characteristics, and a plating bath precursor which is preferable for the plating method. The plating method comprises a process oxidizing first metal ions of a redox system of a plating bath from a lower oxidation state to a high oxidation state, and second metal ions of said redox system are reduced and deposited onto the surface of an object to be plated, wherein a process is provided in which by supplying the electrical current to the plating bath, the first metal ions are reduced from said lower oxidation state to thereby activate the plating bath. The plating bath precursor is formed stabilizing the plating bath so that reduction and deposition of the second metal ions substantially do not occur in order to improve its storing performance.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: February 8, 2005
    Assignees: Daiwa Fine Chemicals Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Keigo Obata, Dong-Hyun Kim, Takao Takeuchi, Seiichiro Nakao, Shinji Inazawa, Ayao Kariya, Masatoshi Majima, Shigeyoshi Nakayama
  • Patent number: 6783654
    Abstract: A plating bath which accommodates an insoluble anode and a printed-circuit board, and a copper dissolved bath which supplies copper ions are arranged. The insoluble anode is arranged as opposed to the printed-circuit board being a cathode, and a forward/reverse current is applied between both of the electrodes. Iron ions are added to a plating solution.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: August 31, 2004
    Assignee: Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
    Inventors: Toshiki Inoue, Kyoko Kumagai
  • Patent number: 6777108
    Abstract: To control peel strength at an organic release interface between a carrier foil and a copper-microparticle layer which constitute an electrodeposited copper foil with carrier. In the present invention, (1) a barrier copper layer is formed on the release interface layer and copper microparticles are formed on the barrier layer; (2) the anti-corrosion treatment is carried out by use of a plating bath containing a single metallic component or a plurality of metallic components for forming an alloy, the plating bath(s) having a deposition potential less negative than −900 mV (vs. AgCl/Ag reference electrode); and (3) methods (1) and (2) are combined.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: August 17, 2004
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Shin-ichi Obata, Makoto Dobashi
  • Patent number: 6740221
    Abstract: A method of forming a copper layer with increased electromigration resistance. A doped copper layer is formed by controlling the incorporation of a non-metallic dopant during copper electroplating.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: May 25, 2004
    Assignee: Applied Materials Inc.
    Inventors: Robin Cheung, Liang-Yuh Chen
  • Patent number: 6736954
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom organic compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: May 18, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Publication number: 20030205477
    Abstract: An electrode assembly arrangement for improving an electrodeposition process and method for using the same the electrode assembly arrangement including a first electrode assembly and a second electrode assembly positioned to carry a metal containing electrolyte from the first electrode assembly to the second electrode assembly for deposition of the metal upon applying an electrical potential therebetween; at least one additional electrode assembly including a means for selectively applying an electrical potential thereto the at least one additional electrode assembly positioned to attract an electrolyte flow upon applying an electrical potential between the at least one additional electrode assembly and the second electrode assembly.
    Type: Application
    Filed: May 6, 2002
    Publication date: November 6, 2003
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Wei Chou, Ming-Hsing Tsai
  • Publication number: 20030150742
    Abstract: A method of processing a printed wiring board. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from a bath containing nickel and copper and final processing steps are implemented on the printed wiring board.
    Type: Application
    Filed: February 24, 2003
    Publication date: August 14, 2003
    Applicant: The Regents of the University of California
    Inventors: Michael P. Meltzer, Christopher P. Steffani, Ray A. Gonfiotti
  • Patent number: 6562220
    Abstract: The use of alkali metal, alkaline earth metal, ammonium and substituted ammonium salts of alkyl and alkanol sulfonic acids as additives in pure metal and metal alloy sulfate electroplating baths has a number of unexpected benefits including wider useful current density range, improved appearance and in the case of tin improved oxidative stability. The metals and alloys include but are not limited to tin, nickel, copper, chromium, cadmium, iron, rhodium, ruthenium, iron/zinc and tin/zinc.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: May 13, 2003
    Assignee: Technic, Inc.
    Inventors: Hyman D. Gillman, Brenda Fernandes, Kazimierz Wikiel
  • Patent number: 6537683
    Abstract: A method is described for producing composite multilayer materials which exhibit optimum properties throughout their entire service life. The composite multilayer material comprises a backing layer, a bearing metal layer, an intermediate layer and an electrodeposited overlay, which exhibits a hardness which increases continuously from its surface in the direction of the bearing metal layer. The method provides for the electrodeposition as overlay of a lead-free alloy with at least one hard and one soft component, the current density being modified within the range of from 0.3 to 20 A/dm2 during the deposition process and/or the temperature of the electroplating bath being modified within the range of from 15° C. to 80° C.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: March 25, 2003
    Assignee: Federal-Mogul Wiesbaden GmbH & Co. KG
    Inventors: Klaus Staschko, Karl-Heinz Gruenthaler
  • Patent number: 6534116
    Abstract: The present invention relates to methods and apparatus for plating a conductive material on a substrate surface in a highly desirable manner. The invention removes at least one additive adsorbed on the top portion of the workpiece more than at least one additive disposed on a cavity portion, thereby allowing plating of the conductive material take place before the additive fully re-adsorbs onto the top portion and causing greater plating of the cavity portion relative to the top portion.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: March 18, 2003
    Assignee: Nutool, Inc.
    Inventor: Bulent Basol
  • Publication number: 20030010645
    Abstract: A damascene process for introducing copper into metallization layers in microelectronic structures includes a step of forming an enhancement layer of a metal alloy, such as a copper alloy or Co—W—P, over the barrier layer, using PVD, CVD or electrochemical deposition prior to electrochemically depositing copper metallization. The enhancement layer has a thickness from 10&mgr; to 100&mgr; and conformally covers the discontinuities, seams and grain boundary defects in the barrier layer. The enhancement layer provides a conductive surface onto which a metal layer, such as copper metallization, may be applied with electrochemical deposition. Alternatively, a seed layer may be deposited over the enhancement layer prior to copper metallization.
    Type: Application
    Filed: June 14, 2002
    Publication date: January 16, 2003
    Applicant: Mattson Technology, Inc.
    Inventors: Chiu H. Ting, Igor Ivanov
  • Patent number: 6497806
    Abstract: A method of producing a roughening-treated copper foil, comprising (A) a copper foil, (B) a composite metal layer, which is formed on a bonding surface of the copper foil and comprises (I) copper, (II) at least one metal selected from the group consisting of tungsten and molybdenum and (III) at least one metal selected from the group consisting of nickel, cobalt, iron and zinc, and (C) a roughened layer comprising copper, which is formed on the composite metal layer.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: December 24, 2002
    Assignee: Nippon Denkai, Ltd.
    Inventor: Yasuhiro Endo
  • Publication number: 20020175080
    Abstract: The invention is related to a method of plating of a metal layer on a substrate. The method is particularly preferred for the formation of metallization structures for integrated circuits.
    Type: Application
    Filed: March 21, 2002
    Publication date: November 28, 2002
    Inventors: Ivo Teerlinck, Paul Mertens
  • Publication number: 20020153260
    Abstract: The present invention provides inter alias electroplating compositions, methods for use of the compositions and products formed by the compositions. Electroplating compositions of the invention are characterized in significant part by a grain refiner/stabilizer additive comprising one or more non-aromatic compounds having &pgr; electrons that can be delocalized, e.g., an &agr;,&bgr; unsaturated system or other conjugated system that contains a proximate electron-withdrawing group. Compositions of the invention provide enhanced grain refinement and increased stability in metal plating solutions, particularly in tin and tin alloy plating formulations.
    Type: Application
    Filed: June 29, 2001
    Publication date: October 24, 2002
    Applicant: Shipley Company, L.L.C.
    Inventors: Andre Egli, Anja Vinckier, Jochen Heber, Wan Zhang
  • Publication number: 20020079232
    Abstract: Disclosed are methods for depositing a conductive layer on a substrate having a barrier layer and/or a dielectric layer. Such methods are particularly suitable for depositing an electroplated copper layer on a substrate having small apertures, and preferably very small apertures.
    Type: Application
    Filed: October 25, 2001
    Publication date: June 27, 2002
    Applicant: Shipley Company, L.L.C.
    Inventor: James G. Shelnut
  • Patent number: 6409906
    Abstract: A method and an aqueous electroplating solution for plating tarnish-resistant bluish-white antimony or antimony alloys containing at least one other metal from an aqueous acidic solution having a pH below about 6.0 at a temperature from about 65 to about 140° F.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: June 25, 2002
    Inventor: Chalo Matta Aoun
  • Patent number: 6379487
    Abstract: A method of forming a laminate used in the manufacture of printed circuit boards, comprising the steps of applying a layer of chromium having a thickness from about 30 grams per square meter to about 160 grams per square meter to each side of a steel substrate having a thickness from about 0.10 mm to about 0.20 mm. Applying a layer of copper having a thickness from about 2 &mgr;m to about 70 &mgr;m to each of the chromium layers. Positioning the steel substrate between two dielectric layers with adhesive disposed between the copper layers and the dielectric layers. Applying heat and pressure to the layers to bond the copper layers to the dielectric layers. Separating the steel substrate from the copper layers, and discarding the steel substrate.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: April 30, 2002
    Assignee: GA-TEK Inc.
    Inventors: Bernd Schneider, R. Richard Steiner
  • Patent number: 6344125
    Abstract: A process for the electrolytic deposition of a metal, preferably copper or an alloy of copper, directly onto a barrier layer coated on a dielectric layer. The process is advantageous because it electrolytically deposits metal in a pattern that is either the duplicate of a first conductive pattern under the dielectric or the inverse image of the first conductive pattern, depending on the first conductive pattern shape. Thus, metal is deposited on the barrier layer duplicating a first conductive pattern under the dielectric layer when the first pattern is a serpentine pattern and the metal deposits in the spaces between the conductive lines of a first conductive pattern of a discrete passive element such as a spiral.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: February 5, 2002
    Assignee: International Business Machines Corporation
    Inventors: Peter S. Locke, Kevin S. Petrarca, Seshadri Subbanna, Richard P. Volant
  • Patent number: 6344123
    Abstract: A compositionally modulated material electroplated film is deposited by using at least two source metal anodes in an electroplating apparatus, and changing at least one power setting of an electroplating power supply. In order to obtain sharp boundaries between successive layers of the film, voltage can be switched from an electroplating substrate to a dummy electrode immediately before the power setting is changed, in order to allow the electrolyte to equilibrate at a new set of solute concentrations, before electroplating on the substrate is recommenced.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: February 5, 2002
    Assignee: International Business Machines Corporation
    Inventor: Parijat Bhatnagar
  • Patent number: 6342308
    Abstract: A treated electrodeposited copper foil having a bond-enhancing copper layer, preferably a plurality of layers, electrodeposited on a bonding side of a base copper foil, a layer of co-deposited copper and arsenic electrodeposited on the bond-enhancing layer, and a zinc or zinc alloy layer electrodeposited on the copper/arsenic layer. A process for making such foil, and a copper-clad laminate wherein such foil is bonded to a polymeric substrate.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: January 29, 2002
    Assignee: Yates Foil USA, Inc.
    Inventors: Charles B. Yates, George Gaskill, Chinsai T. Cheng, Ajesh Shah
  • Patent number: 6319387
    Abstract: A metallized structure for use in a microelectronic circuit is set forth. The metallized structure comprises a dielectric layer, an ultra-thin film bonding layer disposed exterior to the dielectric layer, and a low-Me concentration, copper-Me alloy layer disposed exterior to the ultra-thin film bonding layer. The Me is a metal other than copper and, preferably, is zinc. The concentration of the Me is less than about 5 atomic percent, preferably less than about 2 atomic percent, and even more preferably, less than about 1 atomic percent. In a preferred embodiment of the metallized structure, the dielectric layer, ultra-thin film bonding layer and the copper-Me alloy layer are all disposed immediately adjacent one another. If desired, a primary conductor, such as a film of copper, may be formed exterior to the foregoing layer sequence. The present invention also contemplates methods for forming the foregoing structure as well as electroplating baths that may be used to deposit the copper-Me alloy layer.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: November 20, 2001
    Assignee: Semitool, Inc.
    Inventors: Ahila Krishnamoorthy, David J. Duquette, Shyam P. Murarka
  • Patent number: 6251253
    Abstract: The use of alkali metal, alkaline earth metal, ammonium and substituted ammonium salts of alkyl and alkanol sulfonic acids as additives in pure metal and metal alloy sulfate electroplating baths has a number of unexpected benefits including wider useful current density range, improved appearance and in the case of tin improved oxidative stability. The metals and alloys include but are not limited to tin, nickel, copper, chromium, cadmium, iron, rhodium, ruthenium, iron/zinc and tin/zinc.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: June 26, 2001
    Assignees: Technic, Inc., Specialty Chemical Systems, Inc.
    Inventors: Hyman D. Gillman, Brenda Fernandes, Kazimierz Wikiel
  • Patent number: 6248228
    Abstract: The use of alkali metal, alkaline earth metal, ammonium and substituted ammonium salts of alkyl and alkanol sulfonic acids as additives in pure metal and metal alloy halide electroplating baths has a number of unexpected benefits including wider useful current density range and improved appearance. The metals and metal alloys include but are not limited to tin, lead, copper, nickel, zinc, cadmium, tin/zinc, zinc/nickel and tin/nickel.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: June 19, 2001
    Assignee: Technic, Inc. and Specialty Chemical System, Inc.
    Inventors: Hyman D. Gillman, Brenda Fernandes, Kazimierz Wikiel
  • Patent number: 6183545
    Abstract: An aqueous solution for the reductive deposition of metals comprising, besides water, (A) a phosphine of the general formula (1)  in which R1, R2, and R3 denote lower alkyl groups, at least one of which being hydroxy-or amino-substituted lower alkyl group, and (B) a soluble compound of a metal or a compound of a metal solubilized through the formation of a soluble complex by said phosphine.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: February 6, 2001
    Assignee: Daiwa Fine Chemicals Co., Ltd.
    Inventors: Yoshiaki Okuhama, Takao Takeuchi, Masakazu Yoshimoto, Shigeru Takatani, Emiko Tanaka, Masayuki Nishino, Yuji Kato, Yasuhito Kohashi, Kyoko Kuba, Tetsuya Kondo, Keiji Shiomi, Keigo Obata, Mitsuo Komatsu, Hidemi Nawafune
  • Patent number: 6179985
    Abstract: The use of alkali metal, alkaline earth metal, ammonium and substituted ammonium salts of alkyl and alkanol sulfonic acids as additives in pure metal and metal alloy fluoroborate electroplating baths has a number of unexpected benefits including wider useful current density range and improved appearance. The metals and metal alloys include but are not limited to tin, lead, copper, cadmium, indium, iron, tin/lead and tin/lead copper.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: January 30, 2001
    Assignees: Technic, Inc., Specialty Chemical Systems, Inc.
    Inventors: Hyman D. Gillman, Brenda Fernandes, Kazimierz Wikiel
  • Patent number: 6054037
    Abstract: A method and electrolyte bath for depositing Cu.sup.+1 ions from the cathode diffusion layer onto a zinc substrate. Halogen ions are used as additives to organophosphonate alkaline copper electrolytes for stabilizing Cu.sup.+1 in the cathode diffusion layer.
    Type: Grant
    Filed: November 11, 1998
    Date of Patent: April 25, 2000
    Assignee: Enthone-OMI, Inc.
    Inventor: Sylvia Martin
  • Patent number: 5895562
    Abstract: Gas shielding is employed to prevent metal plating on contacts during electroplating to reduce particulate contamination and increase thickness uniformity. In another embodiment, gas shielding is employed to prevent deposition on the backside and edges of a semiconductor wafer during plating.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: April 20, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Valery Dubin
  • Patent number: 5804054
    Abstract: High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: September 8, 1998
    Assignee: Davis, Joseph & Negley
    Inventors: Raghu N. Bhattacharya, Miguel A. Contreras, James Keane, Andrew L. Tennant, John R. Tuttle, Kannan Ramanathan, Rommel Noufi
  • Patent number: 5730854
    Abstract: A copper electroplating process using alkoxylated dimercaptan ethers as an additive. The additives prevent dendritic formations which short out electrodes. Also provided is a method for polarizing the electrodes, allowing for current reduction and cost savings.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: March 24, 1998
    Assignee: Enthone-OMI, Inc.
    Inventor: Sylvia Martin
  • Patent number: 5730852
    Abstract: High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: March 24, 1998
    Assignee: Davis, Joseph & Negley
    Inventors: Raghu N. Bhattacharya, Miguel A. Contreras, James Keane, Andrew L. Tennant, John R. Tuttle, Kannan Ramanathan, Rommel Noufi
  • Patent number: 5695627
    Abstract: A process for producing a copper-indium-sulfur-selenium thin film which comprises subjecting an electro-conductive substrate to an electrodeposition treatment in the presence of copper sulfate, indium sulfate, selenium dioxide, and thiourea. A process for producing a chalcopyrite crystal which comprises subjecting an electro-conductive substrate to an electrodeposition treatment in the presence of copper sulfate, indium sulfate, selenium dioxide, and thiourea, and then conducting a heat treatment.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: December 9, 1997
    Assignee: Yazaki Corporation
    Inventors: Tatsuo Nakazawa, Tomio Hirano, Takeshi Kamiya
  • Patent number: 5582927
    Abstract: Certain alloys of CoFeCu are provided in film and laminate form which have a unique combination of electromagnetic properties which enable them to be used as magnetic thin films in magnetic recording heads, shields and flux guides. The films and laminates thereof are electrodeposited from a plating bath in a DC or pulsed current electrodeposition process.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: December 10, 1996
    Assignee: International Business Machines Corporation
    Inventors: Panayotis C. Andricacos, Jei-Wei Chang, Wilma J. Horkans, Judith D. Olsen, Bojan Petek, Lubomyr T. Romankiw
  • Patent number: 5560812
    Abstract: A method for producing a metal film resistor including at least an insulating substrate, a resistor film of copper-nickel alloy formed on the surface of the insulating substrate, and a pair of terminals which are in contact with the resistor film is provided. The method includes a step of depositing the copper-nickel alloy by electroplating from an aqueous pyrophosphate bath containing a copper salt and a nickel salt at a bath temperature of 20.degree.-40.degree. C. and a pH of 6-8.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: October 1, 1996
    Assignee: Kiyokawa Plating Industries Co., Ltd.
    Inventor: Hajime Kiyokawa
  • Patent number: 5407556
    Abstract: A process of producing a metallic foil by electrolysis by depositing the metallic foil on a cathode by electrolysis from a sulfuric acid acidic solution is disclosed, which comprises using an electrode having a coating of an electrode active material containing a platinum group metal oxide as an anode and carrying out the electrolysis in an electrolyte containing from 1 to 20 ppm of a lead component when a fluorine component does not exist in the electrolyte or an electrolyte containing from 0.2 to 1 ppm of a fluorine component and from 0.1 to 20 ppm of a lead component when a fluorine component exists in the electrolyte. The life of the electrode can be prolonged and a metallic foil can be stably produced by electrolysis for a long period of time by preventing the lead component(s) derived from the raw material from mixing into the metallic foil.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: April 18, 1995
    Assignee: Permelec Electrode Ltd.
    Inventors: Makoto Shimada, Takayuki Shimamune, Yasuo Nakajima
  • Patent number: 5385661
    Abstract: An acidic electrolytic solution for use in the electrodeposition of copper-rich alloys on a substrate, the less noble component being incorporated by underpotential deposition. The solution includes a first salt containing copper cations; a second salt containing cations of a metal less noble than copper; and an acid electrolyte (e.g., methane sulfonic acid) such that at typical current densities the potential is in the range of underpotential deposition of the less noble metal on the copper.Also provided is a process for using the acidic electrolytic solution.
    Type: Grant
    Filed: September 17, 1993
    Date of Patent: January 31, 1995
    Assignee: International Business Machines Corporation
    Inventors: Panayotis C. Andricacos, I-Chia Chang, Hariklia Deligianni, Wilma J. Horkans
  • Patent number: 5366814
    Abstract: A copper foil for printed circuits has a roughened layer formed on the side of the foil to be bonded to a base, the roughened layer consisting of a number of protuberant copper electrodeposits containing chromium tungsten or both. It may also have a copper plating layer covering the roughened layer and a treatment layer covering the copper plating layer and formed of either a metal selected from the group consisting of copper, chromium, nickel, iron, cobalt, and zinc, or an alloy of two or more such metals. When necessary, the copper foil may contain an anticorrosive layer including various chromate treated layers further formed on the treatment layer. The copper foil is produced by electrolyzing a raw foil as a cathode in an acidic copper electrolytic bath at a current density close to the critical density, thereby forming the roughened layer, the electrolytic bath containing 0.001-5 g/l of chromium ion tungsten ion or both.
    Type: Grant
    Filed: November 16, 1993
    Date of Patent: November 22, 1994
    Assignee: Nikko Gould Foil Co., Ltd.
    Inventors: Keisuke Yamanishi, Hideo Oshima, Kazuhiko Sakaguchi
  • Patent number: 5277789
    Abstract: A novel method for making metals and homogeneous metal alloys comprises the steps of (a) providing a polymetallic complex of the general formula(.mu..sub.4 -0)L.sub.4 M'M"M'"M""X.sub.nwherein L is a ligand selected from the group consisting of organic and inorganic ligands, wherein M', M", M'", and M"" are metal atoms two or more of which may be the same, wherein X is a halogen atom, and wherein n is an integer ranging from 4 to 6; and (b) electrochemically depositing at least one of the metals from said polymetallic complex.
    Type: Grant
    Filed: June 29, 1992
    Date of Patent: January 11, 1994
    Assignees: Tufts University, Northeastern University
    Inventors: Samuel P. Kounaves, Albert Robbat, Jr., Geoffrey Davies
  • Patent number: 5275714
    Abstract: A method of producing an absorber layer for solar cells by electrolytic dispersion deposition.
    Type: Grant
    Filed: June 30, 1992
    Date of Patent: January 4, 1994
    Assignee: Battelle Memorial Institute
    Inventors: Dieter Bonnet, Josef Ehrhardt, Gert Hewig
  • Patent number: 5232575
    Abstract: Acid, electroplating baths having consistent leveler activity contain levelers which are quaternized near-monodisperse polymers of acrylic or methacrylic trialkyl amine esters. The polymers may contain hydroxyalkyl acrylate or methacrylate ester components, unquaternized acrylic or methacrylic amine component as well as other polymeric components.
    Type: Grant
    Filed: May 31, 1991
    Date of Patent: August 3, 1993
    Assignee: McGean-Rohco, Inc.
    Inventor: John R. Dodd
  • Patent number: 5118394
    Abstract: A brightener is added in the ratio of 0.5-5 g per 1 l of electric plating bath of pH 4-8 containing citric acid or citrate for tin or tin alloy plating. The brightener contains a water soluble reaction product obtained by reacting polyamine such as pentaethylenehexamine, aliphatic aldehyde such as formaldehyde, and aromatic carboxylic acid such as methyl benzoate.
    Type: Grant
    Filed: December 5, 1990
    Date of Patent: June 2, 1992
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Toshiaki Makino, Atsuyoshi Maeda
  • Patent number: RE35513
    Abstract: A solution for use in electroplating which comprises at least one monovalent metal such as copper, silver or gold which is complexed by a thiosulfate ion; and a stabilizer of an organic sulfinate compound such as, for example, one having the formula R-SO.sub.2 -X wherein R is an alkyl, heterocyclic or aryl moiety and X is a monovalent cation. The stabilizer is present in an amount sufficient to stabilize the thiosulfate ion when the solution is operated at an acidic pH of less than 7. Also, the solution is substantially free of cyanide.
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: May 20, 1997
    Assignee: Learonal, Inc.
    Inventors: Fred I. Nobel, William R. Brasch, Anthony J. Drago