With Subsequent Reforming Patents (Class 208/60)
  • Patent number: 8597494
    Abstract: The present invention relates to a method for producing ultra-clean gasoline. The invention provides a method of hydro-upgrading inferior gasoline through deep desulfurization and octane number recovery, which comprises the following steps: cutting inferior full-range gasoline into the light and heavy fraction gasolines; contacting the light fraction gasoline successively with a catalyst for selective diene removal and a catalyst for desulfurization and hydrocarbon aromatization/single-branched-chain hydroisomerization; contacting the heavy fraction gasoline with a catalyst for selective hydrodesulfurization, and contacting the reaction effluent with a catalyst for supplemental desulfurization and hydrocarbon multi-branched-chain hydroisomerization; and blending the treated light and heavy fraction gasolines to obtain the ultra-clean gasoline product.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: December 3, 2013
    Assignee: China University of Petroleum—Beijing (CUPB)
    Inventors: Yu Fan, Xiaojun Bao, Gang Shi, Haiyan Liu
  • Patent number: 8585889
    Abstract: A method of manufacturing high-quality naphthenic base oils comprising a high aromatic content and a large amount of impurities with a boiling point higher than that of gasoline. High-quality naphthenic base oil may be manufactured from light cycle oil (LCO) and slurry oil (SLO), which are inexpensive, and have a high aromatic content, a large amount of impurities, and which are effluents of a fluidized catalytic cracking (FCC) unit. The method also relates to the pretreatment process of a feedstock, where the amounts of impurities (sulfur, nitrogen, polynuclear aromatic compounds and various metals components) in the feedstock are reduced.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: November 19, 2013
    Assignee: SK Lubricants Co., Ltd.
    Inventors: Chang Kuk Kim, Jee Sun Shin, Kyung Seok Noh, Ju Hyun Lee, Byoung In Lee, Seung Woo Lee, Do Woan Kim, Sam Ryong Park, Seong Han Song, Gyung Rok Kim, Yoon Mang Hwang
  • Publication number: 20130288885
    Abstract: A hydrocarbon conversion catalyst composition which comprises ZSM-48 and/or EU-2 zeolite particles and refractory oxide binder essentially free of alumina in which the average aluminium concentration of the ZSM-48 and/or EU-2 zeolite particles is at least 1.3 times the aluminium concentration at the surface of the particles, processes for preparing such catalyst compositions and processes for converting hydrocarbon feedstock with the help of such compositions.
    Type: Application
    Filed: October 20, 2011
    Publication date: October 31, 2013
    Inventors: László Domokos, Laurent Georges Huve, Hermanus Jongkind, Aan Hendrik Klazinga, Marcello Stefano Rigutto
  • Patent number: 8562819
    Abstract: We provide a process to manufacture a base stock, comprising hydrocracking, separating, and dewaxing, wherein the base stock has a ratio of Noack volatility to CCS VIS at ?25° C. multiplied by 100 from 0.15 to 0.40. We also provide a base stock made by a process, and a base oil manufacturing plant that produces the base stock.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: October 22, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: John M. Rosenbaum, Brent K. Lok, Kathy A. Helling, Steve K. Lee, Ryan J. Schexnaydre
  • Publication number: 20130270154
    Abstract: A method for producing middle distillates from a feedstock produced by Fischer-Tropsch synthesis and containing oxygenated compounds, including: a) a step of bringing the feedstock into contact with a hydrotreating catalyst allowing the methanation of the CO and CO2 contained in the feedstock or originating from the decomposition of the oxygenated compounds present in the feedstock, b) a step of hydroisomerization/hydrocracking of at least a part of the liquid and gaseous effluent originating from step a), in the presence of a hydroisomerization/hydrocracking catalyst, c) a step of gas/liquid separation of the effluent originating from step b) into a gaseous fraction comprising predominantly hydrogen and a hydroisomerized/hydrocracked liquid fraction, d) a step of fractionation of the liquid fraction separated in step c) to obtain at least one fraction of middle distillate, in which the hydrogen in step a) is obtained from the gaseous fraction separated in step c).
    Type: Application
    Filed: April 11, 2013
    Publication date: October 17, 2013
    Applicants: IFP Energies nouvelles, ENI S.p.A.
    Inventors: Aline GREZAUD, Jean Philippe HERAUD, Hugues DULOT, Christophe BOUCHY, Vincenzo CALEMMA
  • Publication number: 20130270153
    Abstract: Production of middle distillates from a feedstock produced by Fischer-Tropsch synthesis and containing oxygenated compounds: a) catalytic hydrotreating; b) hydroisomerization/hydrocracking at least a part of liquid and gaseous effluent originating from a); c) gas/liquid separation of the stream from b) into a gaseous fraction comprising predominantly hydrogen, a hydroisomerized/hydrocracked organic liquid fraction and an aqueous fraction; d) fractionation of the organic liquid fraction in c) to obtain at least one fraction of middle distillates; and e) catalytic methanation of CO and CO2 on at least a part of said gaseous fraction in c) before hydrotreating a), and/or on at least a part of the liquid and gaseous effluent originating from a) in which the hydrogen in a) is obtained at least partly from the gaseous fraction separated in c).
    Type: Application
    Filed: April 10, 2013
    Publication date: October 17, 2013
    Inventors: Jean-Philippe HERAUD, Aline GREZAUD, Hugues DULOT, Christophe BOUCHY, Vincenzo CALEMMA
  • Patent number: 8551323
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock are disclosed. The system employs a plurality of contacting zones and at least one separation zone, wherein a solvating hydrocarbon having a normal boiling point less than 538° C. (1000° F.) is employed. In the system, a mixture of heavy oil feedstock and solvating hydrocarbon is provided to a contact zone along with a slurry catalyst feed in a hydrocarbon diluent. The contacting zone operates at a temperature and pressure near the critical temperature and pressure of the heavy oil and solvating hydrocarbon mixture to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: October 8, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Tayseer A Abdel-Halim, Axel Brait
  • Patent number: 8524069
    Abstract: The invention below shows a preferred method to make high quality base oil at unexpectedly high yields using a combination of hydrotreatment of high waxy feedstocks accompanied by hydroisomerization of the resulting wax to produce an extra high VI lube of greater than 140VI and at least ?18 deg C. pour point or less. The preferred combinations of conditions identified below can surprisingly lead to unexpectedly high yields. This allows the use of higher oil content (or lower wax content) feedstocks.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Eric D. Joseck, Timothy Lee Hilbert, Merryl J. Miranda, Jeenok Theresa Kim, Michael Brian Carroll, Bryan E. Steuer
  • Patent number: 8524961
    Abstract: A process for maximizing p-xylene production includes producing a naphtha fraction and a light cycle oil fraction from a fluid catalytic cracking zone. These fractions are combined and hydrotreated. Fractionation of the hydrotreated product makes a hydrocracker feed that is sent to a hydrocracking zone to make a naphtha cut and a hydrocracker product. The hydrocracker product is recycled back to the fractionation zone, and the naphtha cut is dehydrogenated in a dehydrogenation zone to make aromatics. Reforming catalyst from a catalyst regenerator moves downward through the dehydrogenation zone. Straight run naphtha and raffinate from the aromatics unit are introduced to an additional series of reforming zones. The reforming catalyst moves in parallel through the first reforming zone and the dehydrogenation zones, then is combined for entry to the second and subsequent reforming zones prior to regeneration.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: September 3, 2013
    Assignee: UOP LLC
    Inventors: Robert Haizmann, Laura E. Leonard
  • Patent number: 8491780
    Abstract: A biocomponent feedstock can be hydroprocessed using an FCC off-gas as a hydrogen source. A relatively low cost catalyst, such as a water gas shift catalyst and/or spent hydrotreating catalyst, can be used as a hydrogenation catalyst for the process. The hydroprocessing can allow for olefin saturation and/or deoxygenation of the biocomponent feed by using a relatively low value refinery stream.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: July 23, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Patrick L. Hanks
  • Publication number: 20130153463
    Abstract: Presented is a composition useful in the catalytic dewaxing of a waxy hydrocarbon feedstock. The composition includes a mixture of ZSM-12 zeolite and titania and may further include a noble metal. The ZSM-12 zeolite preferably has a high silica-to-alumina ratio within its framework. The mixture may be dealuminated either by acid leaching using a fluorosilicate salt or by steam treating.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 20, 2013
    Applicant: SHELL OIL COMPANY
    Inventor: Shell Oil Company
  • Publication number: 20130098803
    Abstract: A process and apparatus are disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Application
    Filed: December 13, 2011
    Publication date: April 25, 2013
    Applicant: UOP LLC
    Inventors: Paul R. Zimmerman, Andrew P. Wieber
  • Publication number: 20130066122
    Abstract: Conditions selected for lubricant base oil production can be used to also produce a high quality diesel product. The diesel product can have a cetane index or cetane number of at least 55, corresponding to a high value diesel fuel. The diesel product can also have good cold flow properties, such as a pour point of ?40° C. or less and/or a cloud point of 25° C. or less. Additionally, the sulfur content of the diesel product can be low, such as less than 1 wppm. This can allow the diesel product to be blended with other potential diesel boiling range products that have a higher sulfur content while still meeting an overall diesel fuel specification. The aromatics content can also be low, allowing the premium diesel to comply with various regulatory requirements.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 14, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Eric D. Joseck, Michael Brian Carroll, David Mentzer
  • Publication number: 20130048536
    Abstract: Disclosed is a method of manufacturing high quality lube base oil (Group III) from unconverted oil having various properties obtained in a variety of hydrocrackers using improved catalytic dewaxing and hydrofinishing, the method including producing unconverted oil of at least one kind in the same or different hydrocrackers; subjecting the unconverted oil to vacuum distillation; supplying all or part of the distillate fractions to a catalytic dewaxing reactor; supplying the dewaxed oil fraction to a hydrofinishing reactor; and stripping the hydrofinished light oil fraction, wherein make-up hydrogen is supplied upstream of the hydrofinishing reactor to increase hydrogen partial pressure, thereby enabling high quality base oil to be manufactured at high yield under optimal process conditions using unconverted oil produced by hydrocracking under various conditions.
    Type: Application
    Filed: November 8, 2010
    Publication date: February 28, 2013
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Kyung Seok Noh, Yong Woon Kim, Gyung Rok Kim, Jae Wook Ryu, Sun Hyuk Bae, Tae Young Jang, Sun Choi, Seung Hoon Oh
  • Patent number: 8303805
    Abstract: The production process of the invention comprises a first step of hydrodesulfurizing of catalytically-cracked gasoline so as to result in an olefin hydrogenation rate of no greater than 25 mol % in the catalytically-cracked gasoline, a total sulfur content of no greater than 20 ppm by weight based on the product oil weight, a sulfur content derived from thiophenes and benzothiophenes of no greater than 5 ppm by weight and a sulfur content derived from thiacyclopentanes of no greater than 0.1 ppm by weight, and a second step of further hydrodesulfurizing of the product oil obtained by the first step so as to result in a total of no greater than 30 mol % for the olefin hydrogenation rate in the first step and the olefin hydrogenation rate in the second step, a total sulfur content of no greater than 10 ppm by weight based on the product oil weight, and a sulfur content derived from thiols of no greater than 5 ppm by weight.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: November 6, 2012
    Assignee: Nippon Oil Corporation
    Inventors: Shigeto Hatanaka, Koji Shimada, Hideshi Iki
  • Publication number: 20120248008
    Abstract: This invention relates to a process involving hydrocracking and dewaxing of a feedstream in which a converted fraction can correspond to a majority of the product from the reaction system, while an unconverted fraction can exhibit improved properties. In this hydrocracking process, it can be advantageous for the yield of unconverted fraction for gasoline fuel application to be controlled to maintain desirable cold flow properties for the unconverted fraction. Catalysts and conditions can be chosen to assist in attaining, or to optimize, desirable product yields and/or properties.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Richard Dougherty, William J. Novak, Stuart S. Shih, Stephen J. McCarthy, Michel Daage
  • Publication number: 20120248009
    Abstract: A process is disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit shares the same recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: UOP LLC
    Inventors: Andrew P. Wieber, Paul R. Zimmerman
  • Publication number: 20120248010
    Abstract: A process is disclosed for hydroprocessing two hydrocarbon streams at two different pressures. A hydrogen stream is compressed and split. A first split compressed stream is further compressed to feed a first hydroprocessing unit that requires higher pressure for operation. A second split compressed stream is fed to a second hydroprocessing unit that requires lower pressure. Recycle hydrogen from the second hydroprocessing unit is recycled back to the compression section.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: UOP LLC
    Inventor: Andrew P. Wieber
  • Publication number: 20120160739
    Abstract: Processes for upgrading Fischer-Tropsch condensate olefins by alkylation of hydrocrackate may involve providing an olefin enriched condensate stream and further providing a Fischer-Tropsch derived hydrocarbon stream comprising wax, hydrocracking the latter Fischer-Tropsch hydrocarbon stream to provide a distillate enriched hydrocracked product comprising isoparaffins, and alkylating the olefins with the isoparaffins in an alkylation zone to provide an alkylate product. The alkylate product may be fed to a distillation unit together with the hydrocracked product, while a naphtha containing fraction from the distillation unit may be fed to the alkylation zone together with the olefin enriched hydrocarbon stream.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Inventors: Sven Ivar Hommeltoft, Bi-Zeng Zhan
  • Patent number: 8202815
    Abstract: In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: June 19, 2012
    Assignee: General Electric Company
    Inventors: Gregg Anthony Deluga, Daniel Lawrence Derr
  • Publication number: 20120024752
    Abstract: An integrated process is provided for producing high octane naphtha. Hydrocracked naphtha from a hydrocracking reaction zone is contacted with a reforming catalyst that includes a silicate having a silica to alumina molar ratio of at least 200, and a crystallite size of less than 10 microns. Products from the reforming include a reformed naphtha and a hydrogen-rich stream, which is passed to the hydrocracking reaction zone.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Inventors: Cong-Yan Chen, Stephen J. Miller, James N. Ziemer, Ann J. Liang
  • Publication number: 20120024751
    Abstract: A denitrification method is disclosed for removing nitrogen compounds from a hydrocarbon feed in which the feed is contacted with an adsorbent including an organic heterocyclic salt deposited on a porous support. Additionally, a method for hydrotreating a hydrocarbon feed which includes a hydroprocessing step is disclosed, wherein prior to hydroprocessing, the feed is contacted with an adsorbent including an organic heterocyclic salt deposited on a support. Additionally, a method for producing a lube oil which includes isomerization dewaxing of a base oil fraction is disclosed, wherein prior to the isomerization dewaxing step, the base oil fraction is contacted with an adsorbent including an organic heterocyclic salt deposited on a support.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Inventors: Zunqing He, Akshay Verma, Bi-Zeng Zhan, Zhen Zhou
  • Publication number: 20120004478
    Abstract: A divided wall column can allow for fractionation of multiple streams while maintaining separate product qualities. Effluents from multiple stages of a reaction system can be processed in a single divided wall column. The divided wall column can produce multiple cuts from each separated area, as well as at least one output from a common area. At least one reaction stage can advantageously have a continuous liquid phase environment.
    Type: Application
    Filed: June 24, 2011
    Publication date: January 5, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Benjamin S. Umansky, Richard C. Dougherty, Michael A. Hayes, William E. Lewis
  • Publication number: 20110233110
    Abstract: A system and process for desulfurizing a hydrocarbon feed stream containing organosulfur compounds is provided. In general, the system includes a conventional hydrotreating unit through the high pressure cold or hot separator. Aqueous oxidant and an oxidative catalyst are mixed with the hydrotreated hydrocarbon effluent from the high pressure cold or hot separator, and oxidative desulfurization reactions occur in the low pressure separation zone, thereby minimizing or eliminating the requirement of additional oxidative desulfurization reactors.
    Type: Application
    Filed: March 29, 2010
    Publication date: September 29, 2011
    Inventors: Omer Refa Koseoglu, Abdennour Bourane
  • Publication number: 20110220547
    Abstract: Deep desulfurization of hydrocarbon feeds containing undesired organosulfur compounds to produce a hydrocarbon product having low levels of sulfur, i.e., 15 ppmw or less of sulfur, is achieved by flashing the feed at a target cut point temperature to obtain two fractions. A first fraction contains refractory organosulfur compounds, which boil at or above the target cut point temperature. A second fraction boiling below the target cut point temperature is substantially free of refractory sulfur-containing compounds. The second fraction is contacted with a hydrodesulfurization catalyst in a hydrodesulfurization reaction zone operating under mild conditions to reduce the quantity of organosulfur compounds to an ultra-low level. The first fraction is contacted with an oxidizing agent and an active metal catalyst in an oxidation reaction zone to convert the refractory organosulfur compounds to oxidized organosulfur compounds.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 15, 2011
    Inventors: Abdennour BOURANE, Omer Refa KOSEOGLU, Mohammed Ibrahim KATHEERI
  • Publication number: 20110155633
    Abstract: The invention relates to a process for the production of middle distillates from a paraffinic feedstock that is produced by Fischer-Tropsch synthesis, implementing a hydrocracking/hydroisomerization catalyst that comprises at least one hydro-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table and a substrate that comprises at least one zeolite that has at least one series of channels of which the opening is defined by a ring with 12 oxygen atoms modified by a) a stage for introducing at least one alkaline cation that belongs to group IA or IIA of the periodic table, b) a stage for treatment of said zeolite in the presence of at least one molecular compound that contains at least one silicon atom, c) at least one stage for partial exchange of said alkaline cations by NH4+ cations such that the remaining content of alkaline cations in the modified zeolite at the end of stage c) is such that the alkaline cation/aluminum molar ratio
    Type: Application
    Filed: October 13, 2010
    Publication date: June 30, 2011
    Applicants: ENI S.P.A., IFP ENERGIES NOUVELLES
    Inventors: Laurent SIMON, Christophe Bouchy
  • Publication number: 20110139678
    Abstract: The present invention provides a process for the conversion of a paraffinic feedstock that comprises at least 50 wt % of compounds boiling above 370° C. and which has a paraffin content of at least 60 wt %, an aromatics content of below 1 wt %, a naphthenic content below 2 wt % a nitrogen content of below 0.1 wt %, and a sulphur content of below 0.1 wt %, which process comprises the steps of: (a) providing the feedstock to a reaction zone, where it is contacted with hydrogen at a temperature in the range of 175 to 400° C. and a pressure in the range of 20 to 100 bar in the presence of a catalyst comprising 0.005 to 5.0 wt % of a Group 8 noble metal on a carrier, the carrier comprising 0.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 16, 2011
    Inventors: Jolinde Machteld Van De Graaf, Arend Hoek, Johannes Petrus De Jonge, Wiebe Sjoerd Kijlstra, Antonius Adrianus Maria Roovers, Jelle Rudolf Anne Sietsma, Johannes Anthonius Robert Van Veen
  • Publication number: 20110120910
    Abstract: This invention describes a process for the production of middle distillates from a paraffinic feedstock that is produced by Fischer-Tropsch synthesis, implementing a hydrocracking/hydroisomerization catalyst that comprises at least one hydro-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table and a substrate that comprises at least one dealuminified Y zeolite that has an initial overall atomic ratio of silicon to aluminum of between 2.5 and 20, a starting extra-lattice aluminum atom fraction by weight that is greater than 10%, relative to the total mass of aluminum that is present in the zeolite, a starting mesopore volume that is measured by nitrogen porosimetry that is greater than 0.07 ml.g?1, and a starting crystalline parameter ao of the elementary mesh of between 24.38 ? and 24.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 26, 2011
    Applicants: ENI S.p.A., IFP Energies nouvelles
    Inventors: Laurent Simon, Emmanuelle Guillon, Christophe Bouchy
  • Publication number: 20110120908
    Abstract: A hydroconversion process includes feeding a heavy feedstock containing vanadium and/or nickel, a catalyst emulsion containing at least one group 8-10 metal and at least one group 6 metal, hydrogen and an organic additive to a hydroconversion zone under hydroconversion conditions to produce an upgraded hydrocarbon product and a solid carbonaceous material containing the group 8-10 metal, the group 6 metal, and the vanadium and/or nickel.
    Type: Application
    Filed: January 21, 2010
    Publication date: May 26, 2011
    Applicant: Intevep, S.A.
    Inventors: Roger Marzin, Bruno Solari, Luis Zacarias
  • Publication number: 20110114538
    Abstract: Process mainly for the production of high-quality kerosene and diesel fuels and for the coproduction of hydrogen from a so-called light naphtha cut to which any quantity of LPG cut can be added, employing the following successive stages: dehydrogenation of the paraffins, oligomerization of the olefins and hydrogenation of the oligomerized olefins, the process permitting the production of kerosene and diesel fuels meeting market specifications, or even improved relative to the latter.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 19, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Jean COSYNS, Annick Pucci, Quentin Debuisschert, Fabienne Le Peltier
  • Publication number: 20110083997
    Abstract: This invention relates to a process for hydroprocessing heavy oil under process intensification conditions to form an upgraded hydrocarbon product.
    Type: Application
    Filed: October 11, 2010
    Publication date: April 14, 2011
    Inventors: Laura J. Silva, Anna Lee Tonkovich, Stephen Claude LeViness, Kai Tod Paul Jarosch, Edward Rode
  • Publication number: 20110024328
    Abstract: A wax fraction from a hydrocarbon synthesis process is fractionated in a vacuum distillation column prior to any hydrocracking steps. A straight-run distillation fraction is isolated from the vacuum distillation. A heavy wax fraction from the vacuum distillation process is hydroprocessed, and a hydroprocessed distillate fraction is recovered. The straight-run distillate fraction and the hydroprocessed distillate fraction are combined to make a fraction that boils in the range of diesel fuel.
    Type: Application
    Filed: June 15, 2010
    Publication date: February 3, 2011
    Inventors: Harjeet Virdi, Taryn Roos
  • Patent number: 7846323
    Abstract: The present invention generally relates to a method for producing an isoparaffinic product useful as jet fuel from a renewable feedstock. The method may also include co-producing a jet fuel and a liquefied petroleum gas (LPG) fraction from a renewable feedstock. The method includes hydrotreating the renewable feedstock to produce a hydrotreating unit heavy fraction that includes n-paraffins and hydroisomerizing the hydrotreating unit heavy fraction to produce a hydroizomerizing unit heavy fraction that includes isoparaffins. The method also includes recycling the hydroisomerizing unit heavy fraction through the hydroisomerization unit to produce an isoparaffinic product that may be fractionated into a jet fuel and an LPG fraction. The present invention also relates to a jet fuel produced from a renewable feedstock having improved cold flow properties.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: December 7, 2010
    Assignee: Syntroleum Corporation
    Inventors: Ramin Abhari, Lynn Tomlinson, Peter Havlik, Nathan Jannasch
  • Publication number: 20100236978
    Abstract: The present invention relates to a method of hydro-upgrading inferior gasoline through ultra-deep desulfurization and octane number recovery. The method comprises the following steps: cutting inferior full-range gasoline into light fraction gasoline and heavy fraction gasolines; contacting the light fraction gasoline successively with a catalyst for selective diene removal and a catalyst for desulfurization and hydrocarbon multi-branched-chain hydroisomerization; contacting the heavy fraction gasoline with the catalyst for selective hydrodesulfurization in a first reactor, and contacting the reaction effluent from the first reactor with a catalyst for supplemental desulfurization and hydrocarbon aromatization/single-branched-chain hydroisomerization in a second reactor; and blending the treated light fraction gasoline and the heavy fraction gasoline to obtain the ultra-clean gasoline product.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 23, 2010
    Applicant: CHINA UNIVERSITY OF PETROLEUM - BEIJING (CUPB)
    Inventors: Yu FAN, Xiaojun BAO, Gang SHI, Haiyan LIU
  • Publication number: 20100236979
    Abstract: The present invention relates to a method for producing ultra-clean gasoline. The invention provides a method of hydro-upgrading inferior gasoline through deep desulfurization and octane number recovery, which comprises the following steps: cutting inferior full-range gasoline into the light and heavy fraction gasolines; contacting the light fraction gasoline successively with a catalyst for selective diene removal and a catalyst for desulfurization and hydrocarbon aromatization/single-branched-chain hydroisomerization; contacting the heavy fraction gasoline with a catalyst for selective hydrodesulfurization, and contacting the reaction effluent with a catalyst for supplemental desulfurization and hydrocarbon multi-branched-chain hydroisomerization; and blending the treated light and heavy fraction gasolines to obtain the ultra-clean gasoline product.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 23, 2010
    Applicant: CHINA UNIVERSITY OF PETROLEUM - BEIJING (CUPB)
    Inventors: Yu Fan, Xiaojun Bao, Gang Shi, Haiyan Liu
  • Publication number: 20100219102
    Abstract: The production process of the invention comprises a first step of hydrodesulfurizing of catalytically-cracked gasoline so as to result in an olefin hydrogenation rate of no greater than 25 mol % in the catalytically-cracked gasoline, a total sulfur content of no greater than 20 ppm by weight based on the product oil weight, a sulfur content derived from thiophenes and benzothiophenes of no greater than 5 ppm by weight and a sulfur content derived from thiacyclopentanes of no greater than 0.1 ppm by weight, and a second step of further hydrodesulfurizing of the product oil obtained by the first step so as to result in a total of no greater than 30 mol % for the olefin hydrogenation rate in the first step and the olefin hydrogenation rate in the second step, a total sulfur content of no greater than 10 ppm by weight based on the product oil weight, and a sulfur content derived from thiols of no greater than 5 ppm by weight.
    Type: Application
    Filed: October 6, 2008
    Publication date: September 2, 2010
    Applicant: NIPPON OIL CORPORATION
    Inventors: Shigeto Hatanaka, Koji Shimada, Hideshi Iki
  • Patent number: 7776206
    Abstract: A process for producing a lubricant bright stock from a very heavy feed obtained from a petroleum crude is disclosed. The bright stock produced by the present process has a reduced cloud point and better oxidation stability relative to bright stocks prepared by conventional methods. The process comprises the steps of providing a petroleum residuum-derived stream; separating the residuum-derived stream at a distillation cut point in the range of 1150° F. to 1300° F., into a heavy fraction and at least one light fraction; hydrocracking the at least one light fraction under conditions to reduce the concentration of sulfur and nitrogen to suitable levels for hydroisomerization dewaxing; and dewaxing at least a portion of the hydrocracked stream under hydroisomerization conditions to produce a lubricant bright stock.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: August 17, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stephen J. Miller, Russell R. Krug
  • Publication number: 20100187156
    Abstract: An integrated process for producing lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants, or a high pressure separation can be used to partially eliminate contaminants.
    Type: Application
    Filed: December 23, 2009
    Publication date: July 29, 2010
    Inventors: Krista Marie Prentice, Gary Paul Schleicher, Lei Zhang, Timothy Lee Hilbert, Michel A. Daage, Sylvain Hantzer, Wenyih F. Lai, David Mentzer, William Francis Heaney, Christine Nicole Elia, Shifang Luo, Stephen J. McCarthy, Mohan Kalyanaraman
  • Publication number: 20100084313
    Abstract: This invention relates to a process for improving the yield and properties of jet fuel from a kerosene feed. More particularly, a kerosene feedstock is hydrotreated and dewaxed using a ZSM-48 catalyst to produce a jet fuel in improved yield and having improved properties.
    Type: Application
    Filed: October 6, 2008
    Publication date: April 8, 2010
    Inventors: Terry E. Helton, William J. Tracy, III, Michael T. Grove, Dennis H. Hoskin, Philip J. Angevine, David A. Pappal
  • Publication number: 20100078355
    Abstract: We provide a process to manufacture a base stock, comprising hydrocracking, separating, and dewaxing, wherein the base stock has a ratio of Noack volatility to CCS VIS at ?25° C. multiplied by 100 from 0.15 to 0.40. We also provide a base stock made by a process, and a base oil manufacturing plant that produces the base stock.
    Type: Application
    Filed: June 10, 2009
    Publication date: April 1, 2010
    Inventors: John M. Rosenbaum, Brent K. Lok, Kathy A. Helling, Steve K. Lee, Ryan J. Schexnaydre
  • Patent number: 7686945
    Abstract: Process to prepare a water-white lubricating base oil having a saturates content of more than 90 wt %, a sulphur content of less than 0.03 wt % and a viscosity index of between 80-120 by subjecting a non-water-white hydrocarbon feed having a lower saturates content than the desired saturates content to a hydrogenation step, the hydrogenation step comprising contacting the feed with hydrogen in the presence of a hydrogenation catalyst, wherein the contacting is performed in two steps: (a) contacting the hydrocarbon feed with hydrogen in the presence of a hydrogenation catalyst at a temperature of above 300° C. and at a WSHV of between 0.3 and 2 kg of oil per litre of catalyst per hour, and (b) contacting the intermediate product obtained in step (a) with hydrogen in the presence of a hydrogenation catalyst at a temperature of below 280° C.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: March 30, 2010
    Assignee: Shell Oil Company
    Inventors: Gerard Benard, Patrick Moureaux
  • Patent number: 7674363
    Abstract: Process to prepare a haze free base oil having a cloud point of below 0° C. and a kinematic viscosity at 100° C. of greater than 10 cSt by performing the following steps: (a) hydroisomerisation of a Fischer-Tropsch synthesis product, (b) isolating one or more fuel products and a distillation residue, (c) reducing the wax content of the residue by contacting the feed with a hydroisomerization catalyst under hydroisomerization conditions, and (d) solvent dewaxing the product of step (c) to obtain the haze free base oil.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: March 9, 2010
    Assignee: Shell Oil Company
    Inventors: Nicholas James Adams, Gilbert Robert Bernard Germaine
  • Patent number: 7655135
    Abstract: The invention relates to a method of removing contaminants from a hydroprocessing feed stream. More specifically, the invention relates to a method of removing contaminants from a hydroprocessing feed stream which originates in a Fischer-Tropsch reactor using a guard bed that employs a temperature profile.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: February 2, 2010
    Assignee: Syntroleum Corporation
    Inventors: Peter Z. Havlik, Nathan Jannasch, Paul Ahner, H. Lynn Tomlinson
  • Publication number: 20090308788
    Abstract: A process for pre-refining a crude oil P is described in which P is fractionated into several fractions, some of which are typically hydrotreated, hydrocracked or hydroconverted, then said fractions are re-composed and at least three pre-refined oils Pa, Pb, Pc are produced, Pc being a residual asphaltenic oil and Pa and Pb being two non asphaltenic oils having different ratios R wherein: R=(0.9N+0.5VGO+)/(MD+0.1VGO+), in which: N=naphtha [30° C./170° C.]; MD=middle distillates: [170° C./260° C.] and VGO+=fraction boiling above 360° C. R translates as the relative potential of a non residual oil to be converted into gasoline with respect to middle distillates during its subsequent refining.
    Type: Application
    Filed: March 24, 2006
    Publication date: December 17, 2009
    Inventor: Eric Lenglet
  • Publication number: 20090301932
    Abstract: A process is described for hydroconversion of a mixture of organic oils of different origins in a conventional hydrotreatment unit, constituted by at least two catalyst beds, under moderately severe process conditions to obtain diesel fuel oil. The process includes injection of a stream of oil of animal or plant origin, with independently adjusted flow rates, from the second catalyst bed of the hydrotreatment unit onwards, in accordance with the variations in temperature observed in each of the catalyst beds after the first bed. The process is applicable to conventional hydrotreatment units, and makes it possible to overcome the effects of the highly exothermic nature of hydroconversion reactions in oils of animal and/or plant origin in hydrotreatment process for obtaining specified diesel fuel oil.
    Type: Application
    Filed: April 26, 2007
    Publication date: December 10, 2009
    Applicant: PETROLEO BRAISLEIRO S.A. - PETROBRAS
    Inventors: Jefferson Roberto Gomes, Raissa Maria Cotta Ferreira da Silva, Rogerio Oddone, Adriana De Souza Ferreira, Nelmo Furtado Fernandes
  • Patent number: 7550073
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-70 prepared using a N,N?-diisopropyl imidazolium cation as a structure-directing agent, methods for synthesizing SSZ-70 and processes employing SSZ-70 in a catalyst.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: June 23, 2009
    Assignee: Chevron U.S.A., Inc.
    Inventors: Stacey I. Zones, Allen W. Burton, Jr.
  • Patent number: 7537685
    Abstract: The present invention relates to new molecular sieve SSZ-71 prepared using a N-benzyl-1,4-diazabicyclo[2.2.2]octane cation as a structure-directing agent, methods for synthesizing SSZ-71 and processes employing SSZ-71 in a catalyst.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: May 26, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Cong-Yan Chen, Allen W. Burton, Jr., Ann J. Liang
  • Publication number: 20090120838
    Abstract: A process for producing a lubricant bright stock from a very heavy feed obtained from a petroleum crude is disclosed. The bright stock produced by the present process has a reduced cloud point and better oxidation stability relative to bright stocks prepared by conventional methods. The process comprises the steps of providing a petroleum residuum-derived stream; separating the residuum-derived stream at a distillation cut point in the range of 1150° F. to 1300° F., into a heavy fraction and at least one light fraction; hydrocracking the at least one light fraction under conditions to reduce the concentration of sulfur and nitrogen to suitable levels for hydroisomerization dewaxing; and dewaxing at least a portion of the hydrocracked stream under hydroisomerization conditions to produce a lubricant bright stock.
    Type: Application
    Filed: August 14, 2008
    Publication date: May 14, 2009
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Stephen J. Miller, Russell R. Krug
  • Publication number: 20090095656
    Abstract: A process is provided for producing low sulfur diesel having a high cetane number where the temperature and pressure requirements for obtaining low levels of sulfur is separated from the temperature and pressure requirements for improving cetane. In one aspect, a low pressure hydrodesulfurization zone and a high pressure aromatic saturation zone are employed to sequentially achieve the desired sulfur and cetane levels. In another aspect, the process first converts a diesel boiling range hydrocarbonaceous stream in a hydrotreating zone at conditions effective to produce a hydrotreating zone effluent having a reduced concentration of sulfur with minimal saturation of aromatics. Hydrogen is then admixed with the hydrotreating zone effluent, which is then reacted in a substantially liquid-phase continuous reaction zone substantially undiluted with other streams to effect saturation of aromatics to provide a liquid-phase continuous reaction zone effluent having an improved cetane number.
    Type: Application
    Filed: October 15, 2007
    Publication date: April 16, 2009
    Inventors: Peter Kokayeff, Laura Elise Leonard, Michael Roy Smith
  • Patent number: H2244
    Abstract: A reforming process in which a hydrocarbon feed containing aliphatic hydrocarbons is converted to a hydrocarbon product comprising an increased proportion of aromatics by passage over a reforming catalyst in a sequence of moving bed reactors operating under reforming conditions including moderate hydrogen pressure. The process is applicable when a former fixed moving bed reformer has been converted to moving bed reactor operation with the recycle and other ancillary equipment retained so that moderate pressure (hydrogen partial pressure at least 11 barg) is required, usually with a catalysts such as Pt/Re which tend to exhibit excessive hydrogenolysis activity in moving bed service. The recycle hydrogen stream is split with a portion going to at least one reactor subsequent to the first reactor.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: August 3, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Russell T. Clay, Stuart S. Goldstein