Distillation Patents (Class 208/92)
  • Patent number: 7727379
    Abstract: Process to prepare simultaneously two or more base oil grades and middle distillates from a mineral crude derived feed, in particular a de-asphalted oil or a vacuum distillate feed or their mixtures, by performing the following steps: (a) hydrocracking the mineral crude derived feed, thereby obtaining an effluent; (b) distillation of the effluent as obtained in step (a) into one or more middle distillates and a full range residue boiling substantially above 340° C., (c) catalytically dewaxing the full range residue by contacting the residue with a dewaxing catalyst comprising a zeolite of the MTW type and a Group VIII metal, thereby obtaining a dewaxed oil; (d) isolating by means of distillation two or more base oil grades from the dewaxed oil obtained in step (c); and (e) isolating a dewaxed gas oil from the dewaxed-oil obtained in step (c); wherein the dewaxed oil as obtained in step (c) comprises between 10 and 40 wt % of a dewaxed heavy gas oil boiling for more than 70 wt % between 370 and 400° C.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: June 1, 2010
    Assignee: Shell Oil Company
    Inventors: Nicholas James Adams, Harmannus Julius Hegge, Laurent Georges Huve, Kevin John Anthony Polder, Wiecher Derk Evert Steenge
  • Publication number: 20100078353
    Abstract: A process to manufacture a base oil, comprising selecting an original base oil having an original VI, an original volatility, and an original CCS VIS; and removing a lower boiling fraction, whereby the base oil is made having a kinematic viscosity at 100° C. from 4.2 to 4.6 mm2/s, a VI that is at least 4 higher than the original VI, a volatility that is at least 3 wt % lower than the original volatility, and a CCS VIS that is within 200 mPa·s of the original CCS VIS. A process to manufacture a base oil, comprising selecting an original base oil and removing a lower boiling fraction from the original base oil, whereby the base oil has a ratio of a Noack Volatility to a CCS VIS at ?25° C. multiplied by 100 from 0.80 to 1.55. Also a base oil, made by the processes disclosed herein.
    Type: Application
    Filed: June 10, 2009
    Publication date: April 1, 2010
    Inventors: John M. Rosenbaum, Brent K. Lok, Kathy A. Helling, Ryan J. Schexnaydre, Scott C. Deskin, Susan M. Abernathy
  • Patent number: 7658836
    Abstract: The process of producing middle distillates from effluents obtained by a Fischer-Tropsch synthesis, comprises a step for hydro-treatment and purification and/or decontamination by passage over a multi-functional guard bed prior to a step of hydrocracking/hydroisomerization. The guard bed reduces the amount of unsaturated compounds, oxygen-containing compounds, particulate mineral solids, and organometallic compounds.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: February 9, 2010
    Assignees: Institut Francais du Petrole, ENI S.p.A.
    Inventors: Patrick Euzen, Vincenzo Calemma
  • Patent number: 7651605
    Abstract: When a heavy fuel oil with a sulfur content of 1 percent by mass or lower is produced from a feedstock consisting of a heavy hydrocarbon oil derived from a heavy crude oil having an API degree of 30 or less and containing sulfur and metal components in amounts larger than those of ordinary crude oil, the conventional processes requires higher reaction temperature and was accompanied with a remarkably enhanced deactivation rate of the catalyst which results in a remarkable shortened lifetime thereof. Therefore, it is regarded as substantially impossible to treat the feedstock.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: January 26, 2010
    Assignee: Nippon Oil Corporation
    Inventors: Wataru Sahara, Yoshiaki Fukui
  • Patent number: 7582204
    Abstract: The invention relates to a process, including removal of resins, for the treatment of a hydrocarbon charge, at least 80% of the compounds of which have a boiling point which is above or equal to 340° C., in which process: the charge is sent to a fractionation stage during which the recovery takes place of at least one heavy fraction and at least one light fraction, at least some of the heavy fraction is sent to an extraction stage during which resins contained in said heavy fraction are extracted, and a purified fraction is recovered, a mixture is made which comprises at least part of the purified fraction which was obtained in the extraction stage and at least one light fraction which was obtained in the fractionation stage, and the mixture thus obtained is sent to a cracking stage.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: September 1, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Gueret, Raphaël Huyghe, Hugues Dulot, Patrick Euzen
  • Patent number: 7581589
    Abstract: A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: September 1, 2009
    Assignee: Shell Oil Company
    Inventors: Augustinus Wilhelmus Maria Roes, Weijian Mo, Michel Serge Marie Muylle, Remco Hugo Mandema, Vijay Nair
  • Publication number: 20090211943
    Abstract: A process for the reduction of benzene in a gasoline stream, the process including: feeding a gasoline fraction including benzene and C6+ hydrocarbons and at least one of an alcohol and an ether to a catalytic distillation column comprising at least one reaction zone containing an alkylation catalyst, wherein the at least one reaction zone is above a gasoline fraction feed location; concurrently in the catalytic distillation column: separating the C6 hydrocarbons from C7+ hydrocarbons, wherein the C6 hydrocarbons and benzene distill upward into the at least one reaction zone; contacting benzene and the at least one of an alcohol and an ether in the at least one reaction zone in the presence of the alkylation catalyst to convert at least a portion of the benzene and alcohol /ether to an alkylate; recovering an overheads fraction including C6 hydrocarbons, any unreacted alcohol and ether, and water; and recovering a bottoms fraction including C7+ hydrocarbons and the alkylate.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 27, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Mitchell E. Loescher, Gary G. Podrebarac, Quoc T. Phan
  • Patent number: 7534340
    Abstract: Process for the contemporaneous production of fuels and lubricating bases from synthetic paraffinic mixtures, which includes a hydrocracking step in the presence of a solid bi-functional catalyst comprising: (A) a support of an acidic nature consisting of a catalytically active porous solid, including silicon, aluminum, phosphorus and oxygen bonded to one another in such a way as to form a mixed amorphous solid characterized by an Si/Al atomic ratio of between 15 and 250, a P/Al ratio of at least 0.1, but lower than 5, a total pore volume ranging from 0.5 to 2.0 ml/g, with an average pore diameter ranging from 3 nm. to 40 nm, and a specific surface area ranging from 200 to 1000 M2/g; (B) at least one metal with a hydro-dehydrogenating activity selected from groups 6 to 10 of the periodic table of elements, dispersed on said support (A) in an amount of between 0.05 and 5% by weight with respect to the total weight of the catalyst.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: May 19, 2009
    Assignees: ENI S.p.A., Institute Francais du Petrole, Enitecnologie S.p.A.
    Inventors: Vincenzo Calemma, Cristina Flego, Luciano Cosimo Carluccio, Wallace Parker, Roberto Giardino, Giovanni Faraci
  • Patent number: 7491314
    Abstract: A process for the production of a pipeline-transportable crude oil from a bitumen feed, the process comprising: (1) dividing the bitumen feed into two fractions, the first fraction comprising between 20 and 80 wt % of the feed, the second fraction comprising between 80 and 20 wt % of the total feed, (the two fraction together forming 100 wt % of the feed), (2) distillation of the first fraction obtained in step (1) (preferably under vacuum) into a light fraction boiling below 380° C. (preferably the 450° C. fraction, more preferably the 510° C. fraction) and a residual fraction; (3) thermal cracking (of at least part of, preferably all of,) the residual fraction obtained in the distillation process described in step (2); (4) distillation of the product obtained in step (3) into one or more light fractions (boiling below 350° C.), optionally one or more intermediate fractions (boiling between 350 and 510° C.) and a heavy fraction (boiling above at least 350° C.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: February 17, 2009
    Assignee: Shell Oil Company
    Inventors: Petrus Johannes Walterus Maria Van Den Bosch, Franciscus Antonius Maria Schrijvers
  • Patent number: 7459072
    Abstract: Process for the work-up of naphtha, wherein a) naphtha or a stream produced from naphtha in a pretreatment step is separated in a membrane unit into a stream A which is depleted in aromatics and a stream B which is enriched in aromatics, with the aromatics concentration in stream A being from 2 to 12% by weight (step a), b) at least part of the substream A is fed to a steam cracker (step b), c) at least part of the substream B is fed to a unit in which it is separated by means of a thermal process into a stream C which has a lower aromatics content than stream B or a plurality of streams C?, C?, C?? . . . which each have lower aromatics contents than stream B and a stream D which has a higher aromatics content than stream B or a plurality of streams D?, D?, D?? . . .
    Type: Grant
    Filed: January 24, 2004
    Date of Patent: December 2, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Stefan Bitterlich, Hartwig Voss, Gunter Schuch, Rudolf Sinnen, Heinrich Laib, Peter Paessler
  • Patent number: 7407571
    Abstract: A novel apparatus for producing sweet synthetic crude from a heavy hydrocarbon feed includes: an upgrader for receiving the heavy hydrocarbon feed and producing a distillate fraction including sour products, and high-carbon content by-products; a gasifier for receiving the high-carbon content by-products and producing synthetic fuel gas and sour by-products; a hydroprocessing unit for receiving the sour by-products and hydrogen gas, thereby producing gas and sweet crude; and a hydrogen recovery unit for receiving the synthetic fuel gas and producing further hydrogen gas and hydrogen-depleted synthetic fuel gas, the further hydrogen gas being supplied to the hydroprocessing unit.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: August 5, 2008
    Assignee: Ormat Industries Ltd.
    Inventors: Philip Rettger, Randall Goldstein, Jim Arnold, Yoram Bronicki, J. Robert Friday
  • Patent number: 7354508
    Abstract: The invention relates to a process to prepare a heavy and a light lubricating base oil from a partly isomerized Fischer-Tropsch derived feedstock, the feedstock having an initial boiling point of below 400° C. and a final boiling point of above 600° C. by (a) separating the fraction via distillation into a light base oil precursor fraction and a heavy base oil precursor fraction; (b) reducing the pour point of each separate base oil precursor fraction via dewaxing; and, (c) isolating the desired base oil products from the dewaxed oil fractions as obtained in step (b).
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: April 8, 2008
    Assignee: Shell Oil Company
    Inventors: Nicholas James Adams, Jan Lodewijk Maria Dierickx, Gilbert Robert Bernard Germaine, Laurent Georges Huve, David John Wedlock
  • Patent number: 7347928
    Abstract: A process to prepare a spindle oil, light machine oil and a medium machine oil base oil grade by: (a) performing a separate catalytic dewaxing on a spindle oil fraction, a light machine oil fraction and a medium machine oil fraction as obtained in a vacuum distillation of a bottoms fraction of a fuels hydrocracking process; (b) performing a separate hydrofinishing of the light and medium machine oil fractions obtained in step (a); (c) separating the low boiling compounds from the spindle oil, light machine oil and medium machine oil fractions as obtained in step (a) and (b) and obtaining the spindle oil, light machine oil and medium machine oil base oil grade; (d) wherein the vacuum distillation is performed by altematingly performing the distillation in two modes wherein the first mode (d1) the bottoms fraction is separated into a gas oil fraction, a spindle oil fraction, a medium machine oil fraction and a first rest fraction boiling between said spindle oil and medium machine oil fraction and in the secon
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: March 25, 2008
    Assignee: Shell Oil Company
    Inventors: Johannes Van Beijnum, Arjen Peter Geukema, Kevin John Anthony Polder
  • Patent number: 7297250
    Abstract: The present invention comprises a method for processing a heavy hydrocarbon feed including: supplying the heavy hydrocarbon feed to a heater for heating the heavy hydrocarbon feed; supplying the heated heavy hydrocarbon feed to an atmospheric fractionating tower for fractionating the heated heavy hydrocarbon feed fed to the inlet of the atmospheric fractionating tower producing light atmospheric fractions and atmospheric bottoms; supplying the atmospheric bottoms to a further heater for heating the atmospheric bottoms and producing heated atmospheric bottoms; supplying the heated atmospheric bottoms to a vacuum fractionating tower for fractionating the heated atmospheric bottoms and producing light vacuum fractions and vacuum residue; supplying the vacuum residue to a solvent deasphalting (SDA) unit for producing deasphalted oil (DAO) and asphaltenes from the vacuum residue; supplying the deasphalted oil to a deasphalted oil thermal cracker for thermally cracking the deasphalted oil and producing a thermally
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: November 20, 2007
    Assignee: Ormat Industries Ltd.
    Inventor: Yoram Bronicki
  • Patent number: 7276151
    Abstract: Feed oil is subject to atmospheric distillation, to thereby be separated into light oil or light distillate and atmospheric residue oil. The light distillate is catalytically contacted with pressurized hydrogen in the presence of a catalyst, resulting in a first hydrotreating step being executed. In this instance, various fractions of the light distillate produced in the atmospheric distillation are subject to hydrotreating in a lump. The atmospheric residue oil is then separated into a light matter and a heavy matter. The light matter is subject to second hydrotreating in the presence of a catalyst to produce refined oil (light matter), which is mixed with refined oil produced in the first hydrotreating to prepare a mixture. The mixture is used as gas turbine fuel oil.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: October 2, 2007
    Assignee: JGC Corporation
    Inventors: Tsuyoshi Okada, Yoshinori Mashiko, Shinichi Tokuda, Tomoyoshi Sasaki, Kozo Imura, Makoto Inomata, Toshio Tanuma
  • Patent number: 7270739
    Abstract: The present invention relates to a process for selectively producing C3 olefins from a catalytically cracked or thermally cracked naphtha stream by fractionating the naphtha feed to obtain at least a C6 rich fraction and feeding the C6 rich fraction into a reaction stage at a point wherein the residence time of the C6 rich fraction is minimized.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: September 18, 2007
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Tan Jen Chen, Brian Erik Henry, Paul F Keusenkothen, Philip A. Ruziska
  • Patent number: 7267759
    Abstract: The present invention relates to a process for selectively producing C3 olefins from a catalytically cracked or thermally cracked naphtha stream by fractionating the naphtha feed to obtain a C6 fraction and feeding the C6 fraction either in the riser downstream of the injection point for the reminder of the naphtha feed, in the stripper, and/or in the dilute phase immediately downstream or above the stripper of a process unit.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: September 11, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Tan Jen Chen, Brian Erik Henry, Paul F Keusenkothen, Philip A. Ruziska
  • Patent number: 7250544
    Abstract: A process for selective hydrogenation of polyunsaturated compounds that are contained in a hydrocarbon feedstock in the presence of a catalytic reactor with a hydrogen-selective membrane comprises a) the introduction of said feedstock co-mixed with a first amount hydrogen into a reaction zone of said reactor, b) the contact of a second amount hydrogen with the upstream face of the membrane, which is inorganic and porous, then c) the catalytic reaction of the feedstock with hydrogen that has selectively traversed the membrane.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: July 31, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Chau, Denis Uzio
  • Patent number: 6858131
    Abstract: Feed oil is subject to atmospheric distillation, to thereby be separated into light oil or light distillate and atmospheric residue oil. The light distillate is catalytically contacted with pressurized hydrogen in the presence of a catalyst, resulting in a first hydrotreating step being executed. In this instance, various fractions of the light distillate produced in the atmospheric distillation are subject to hydrotreating in a lump. The atmospheric residue oil is then separated into a light matter and a heavy matter. The light matter is subject to second hydrotreating in the presence of a catalyst to produce refined oil (light matter), which is mixed with refined oil produced in the first hydrotreating to prepare a mixture. The mixture is used as gas turbine fuel oil.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: February 22, 2005
    Assignee: JGC Corporation
    Inventors: Tsuyoshi Okada, Yoshinori Mashiko, Shinichi Tokuda, Tomoyoshi Sasaki, Kozo Imura, Makoto Inomata, Toshio Tanuma
  • Patent number: 6841062
    Abstract: This invention relates to a crude oil desulfurization process which comprises hydrodesulfurizing a crude oil feed in a crude desulfurization unit. The desulfurized crude oil is then separated into a light gas oil fraction, a vacuum gas oil fraction and a vacuum residuum fraction. The vacuum gas oil is hydrocracked to form at least one low sulfur fuel product. The light gas oil fraction is hydrotreated. The vacuum gas oil may be hydrocracked in one or more stages. Hydrocracking in the second stage, if present, will convert of at least 20% of the first zone effluent, to create a low sulfur light gas oil fraction. The light gas oil fraction may then be hydrotreated.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: January 11, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventor: Bruce E. Reynolds
  • Patent number: 6841061
    Abstract: An Anti-gelling agent for a hydrocarbon mixture containing a conjugated diene, which comprises (a) at least one compound selected from the group consisting of compounds having an NO radical in the molecule, and precursor compounds capable of forming an NO radical, (b) a phosphorus-containing compound, and (c) at least one compound selected from the group consisting of heterocyclic aldehydes, aromatic aldehydes and condensates of these aldehydes. Clogging in an apparatus for separating and refining a hydrocarbon mixture containing a conjugated diene can be prevented by adding the anti-gelling agent in the apparatus.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: January 11, 2005
    Assignee: Zeon Corporation
    Inventor: Keizo Ukita
  • Publication number: 20040104145
    Abstract: Process to prepare two or more base oil grades, which base oil grades having different kinematic viscosity's at 100° C. from a waxy paraffinic Fischer-Tropsch product having a content of non-cyclic iso-paraffins of more than 70 wt % by (a) obtaining from the waxy paraffinic Fischer-Tropsch product a distillate fraction having a viscosity corresponding to one of the desired base oil products, (b) performing a catalytic dewaxing step using the distillate fraction obtained in step (a) as feed, (c) separating the lower boiling compounds from the dewaxed product obtained in step (b) in order to obtain the desired base oil, and (d) repeating steps (a)-(c) for each base oil.
    Type: Application
    Filed: September 4, 2003
    Publication date: June 3, 2004
    Inventor: Gilbert Robert Bernard Germaine
  • Publication number: 20040055931
    Abstract: Process to prepare a spindle oil, light machine oil and a medium machine oil base oil grade by (a) performing a separate catalytic dewaxing on a spindle oil fraction, a light machine oil fraction and a medium machine oil fraction as obtained in a vacuum distillation of a bottoms fraction of a fuels hydrocracking process; (b) performing a separate hydrofinishing of the light and medium machine oil fractions obtained in step (a); (c) separating the low boiling compounds from the spindle oil, light machine oil and medium machine oil fractions as obtained in step (a) and (b) and obtaining the spindle oil, light machine oil and medium machine oil base oil grade; (e) wherein the vacuum distillation is performed by alternatingly performing the distillation in two modes wherein the first mode (d1) the bottoms fraction is separated into a gas oil fraction, a spindle oil fraction, a medium machine oil fraction and a first rest fraction boiling between said spindle oil and medium machine oil fraction and in the second m
    Type: Application
    Filed: June 18, 2003
    Publication date: March 25, 2004
    Inventors: Johannes Van Beijnum, Arjen Peter Geukema, Kevin John Anthony Polder
  • Publication number: 20040055933
    Abstract: A process for the production of low benzene content gasoline is disclosed wherein a full boiling range naphtha is fractionated to produce a light naphtha, a medium naphtha and a heavy naphtha. The benzene is contained in the medium naphtha and this stream is subjected to hydrogenation to convert the benzene to cyclohexane which may be isomerized to improve the octane. The valuable olefins are removed in the light naphtha and the valuable heavier aromatics (toluene and xylenes) are removed in the heavy naphtha. In a preferred embodiment all of the reactions are carried out in distillation column reactors.
    Type: Application
    Filed: January 29, 2003
    Publication date: March 25, 2004
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Willibrord A. Groten, Kerry L. Rock
  • Patent number: 6699385
    Abstract: The present invention discloses a process for producing a low haze heavy base oil including the steps of: (a) providing a heavy waxy feed stream having an initial boiling point greater than 900° F. and having a paraffin content of at least 80%; (b) separating the heavy feed stream into a heavy fraction and a light fraction by a deep cut distillation; and (c) hydroisomerizing the light fraction to produce a low haze heavy base oil.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: March 2, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 6669872
    Abstract: An electrical oil having reduced gassing tendency includes a major amount of a paraffinic or naphthenic basestock and a blend of certain hindered phenols, especially a blend of 2,6-di-t-butyl phenol and 2,6-di-t-butyl cresol. A further enhanced gassing tendency can be provided to the electrical oil by including a tolyltriazole derivative.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: December 30, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Christopher Jeffrey Still Kent, Jacob B. Angelo
  • Patent number: 6602404
    Abstract: A process comprises separating a naphtha feed into a fraction comprising C7− hydrocarbons and a heavy C8+ fraction, separating the C8+ fraction into a light fraction comprising C8 and/or C8-C9 which then is reformed to produce gasoline and/or a desired distribution of aromatics.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: August 5, 2003
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: John Francis Walsh, Anthony Go, Duane Robert McGregor, John William Rebeck, Leonel Eduardo Sanchez
  • Publication number: 20030127357
    Abstract: The present invention provides a process for the preparation of an electrode binder, which process comprises:
    Type: Application
    Filed: November 8, 2002
    Publication date: July 10, 2003
    Inventors: Maik Beutler, Carsten Karl Puls
  • Publication number: 20030116470
    Abstract: A novel apparatus for producing sweet synthetic crude from a heavy hydrocarbon feed comprising: an upgrader for receiving said heavy hydrocarbon feed and producing a distillate fraction including sour products, and high-carbon content by-products; a gasifier for receiving the high-carbon content by-products and producing synthetic fuel gas and sour by-products; a hydroprocessing unit for receiving the sour by-products and hydrogen gas, thereby producing gas and sweet crude; and a hydrogen recovery unit for receiving said synthetic fuel gas and producing further hydrogen gas and hydrogen-depleted synthetic fuel gas, said further hydrogen gas being supplied to said hydroprocessing unit.
    Type: Application
    Filed: December 26, 2001
    Publication date: June 26, 2003
    Inventors: Philip Rettger, Randall Goldstein, Jim Arnold
  • Patent number: 6579442
    Abstract: Methods and compositions for inhibiting the polymerization of vinyl monomers are disclosed. Combinations of nitroxyl compounds and aliphatic amines are effective at inhibiting the polymerization of vinyl monomers under both processing and storage conditions.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: June 17, 2003
    Assignee: GE Betz, Inc.
    Inventor: Sherif Eldin
  • Publication number: 20030075477
    Abstract: The present invention discloses a process for producing a low haze heavy base oil including the steps of: (a) providing a heavy waxy feed stream having an initial boiling point greater than 900° F. and having a paraffin content of at least 80%; (b) separating the heavy feed stream into a heavy fraction and a light fraction by a deep cut distillation; and (c) hydroisomerizing the light fraction to produce a low haze heavy base oil.
    Type: Application
    Filed: October 17, 2001
    Publication date: April 24, 2003
    Inventor: Stephen J. Miller
  • Publication number: 20030010676
    Abstract: Methods and compositions for inhibiting the polymerization of vinyl monomers are disclosed. Combinations of nitroxyl compounds and aliphatic amines are effective at inhibiting the polymerization of vinyl monomers under both processing and storage conditions.
    Type: Application
    Filed: May 22, 2001
    Publication date: January 16, 2003
    Inventor: Sherif Eldin
  • Publication number: 20020153280
    Abstract: The invention relates to a process for the production of gasoline with a low sulfur content that comprises at least the following stages:
    Type: Application
    Filed: April 1, 2002
    Publication date: October 24, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Blaise Didillon, Denis Uzio, Nathalie Marchal
  • Patent number: 6454934
    Abstract: A petroleum processing method comprising the steps of: performing an atmospheric distillation of crude oil; collectively hydrodesulfurizing the resultant distillates consisting of gas oil and fractions whose boiling point is lower than that of gas oil in a reactor in the presence of a hydrogenation catalyst at 310 to 370° C. under 30 to 70 kg/cm2G (first hydrogenation step); and further performing hydrodesulfurization at lower temperatures (second hydrogenation step). When the second hydrogenation step is carried out only for the heavy naphtha obtained by separating the distillates after the first hydrogenation step, the second hydrogenation temperature can be in the range of 250 to 400° C.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: September 24, 2002
    Assignee: JGC Corporation
    Inventors: Makoto Inomata, Toshiya Okumura, Shigeki Nagamatsu
  • Patent number: 6410811
    Abstract: The process of the invention is a process for selective hydrogenation of a hydrocarbon feed containing hydrogen and C2+ hydrocarbons, characterized in that it comprises at least one step for separating a fraction of the hydrogen contained in the feed by means of a membrane (step a)) and a step for selective hydrogenation of the effluent from step a) in a reactive column (step b)).
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: June 25, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Michel Chau, Michel Derrien, Alain Methivier
  • Patent number: 6379534
    Abstract: A method for lowering the cloud/pour point of a waxy crude oil in locations where size and/or weight of the facility may need to be limited (i.e. arctic zones and offshore). The major components of the system comprise a fractionation/quench tower and a reaction furnace. The furnace has sufficient heat input to initiate thermal cracking of wax and the fractionation tower is operated at a temperature sufficient to flash off light hydrocarbons but also low enough to quench thermal cracking reaction. The feed to the furnace comprises a portion of the bottoms stream from the tower and the furnace output is fed back into the tower bottom to be quenched.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: April 30, 2002
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Gee S. Fung, Philip E. DePalm, Puneet Sharma
  • Patent number: 6348137
    Abstract: An apparatus and a method for separating a liquid mixture by fractional distillation. The apparatus includes at least two chambers with a conduit from the lower portion of a chamber which contains liquid to the upper portion of an adjacent chamber, a source of pressurized vapor, and a conduit from the source of pressurized vapor to the lower portion of the chamber which contains liquid. Flow of the liquid from the chamber which contains liquid is effected by introducing pressurized vapor into the liquid, thereby reducing the density of the liquid, pumping the liquid into the upper portion of the adjacent chamber. The two or more chambers can be housed in a single circular vessel, where the chambers are separated by partitions radiating from the center of the cylindrical vessel to the wall of the vessel. The apparatus can have a reduced height compared to conventional distillation columns.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: February 19, 2002
    Assignee: IOR Energy Pty Ltd.
    Inventor: Arthur Nommensen
  • Publication number: 20020008049
    Abstract: A petroleum processing method comprising the steps of: performing an atmospheric distillation of crude oil; collectively hydrodesulfurizing the resultant distillates consisting of gas oil and fractions whose boiling point is lower than that of gas oil in a reactor in the presence of a hydrogenation catalyst at 310 to 370° C. under 30 to 70 kg/cm2G (first hydrogenation step); and further performing hydrodesulfurization at lower temperatures (second hydrogenation step). When the second hydrogenation step is carried out only for the heavy naphtha obtained by separating the distillates after the first hydrogenation step, the second hydrogenation temperature can be in the range of 250 to 400° C. The hydrodesulfurization having been performed for each of gas oil, kerosene, heavy naphtha and light naphtha in the art can be collectively and efficiently carried out, so that the oil refinery plant can be simplified and so that the cost of oil refinery equipment and running cost can be reduced.
    Type: Application
    Filed: September 10, 1998
    Publication date: January 24, 2002
    Inventors: MAKOTO INOMATA, TOSHIYA OKUMURA, SHIGEKI NAGAMATSU
  • Patent number: 6338791
    Abstract: The invention provides a high octane number gasoline pool comprises at least 2% of di-branched paraffins containing 7 carbon atoms, and a process for producing this gasoline pool by hydro-isomerizing a feed constituted by a C5 to C8 cut which comprises at least one hydro-isomerization section and at least one separation section, in which the hydro-isomerization section and at least one separation section, in which the hydro-isomerization section comprises at least one reactor.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: January 15, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Karine Ragil, Sophie Jullian, Jean-Pierre Durand, Gérard Hotier, Olivier Clause
  • Patent number: 6339181
    Abstract: This invention relates to a process to produce propylene from a hydrocarbon feed stream, preferably a naphtha feed stream, comprising C5 and C6 components wherein a light portion having a boiling point range of 120° C. or less is introduced into a reactor separately from the other components of the feed stream.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: January 15, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Tan-Jen Chen, Philip A. Ruziska, Gordon F. Stuntz, Paul K. Ladwig
  • Publication number: 20010054572
    Abstract: Catalyst activation of a platinum reforming catalyst system contained in a multiple reactor system by simultaneously reducing the catalyst with hydrogen while introducing a nonmetallic chlorine-containing compound into a reactor of the multiple reactor system in an amount to provide from about 0.05 to about 0.3 weight percent chlorine on the catalyst and thereafter purging the system with about 100 to about 50,000 cubic feet of hydrogen per cubic foot of catalyst resulting in a reforming system having increased activity and providing enhanced RON values with reduced cracking of feedstock.
    Type: Application
    Filed: July 31, 2001
    Publication date: December 27, 2001
    Applicant: Phillips Petroleum Company
    Inventor: Fan-Nan Lin
  • Patent number: 6315920
    Abstract: An electrical oil having reduced gassing tendency includes a major amount of a paraffinic or naphthenic basestock and a blend of certain hindered phenols, especially a blend of 2,6-di-t-butyl phenol and 2,6-di-t-butyl cresol. A further enhanced gassing tendency can be provided to the electrical oil by including a tolyltriazole derivative.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: November 13, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Christopher Jeffrey Still Kent, Jacob B. Angelo
  • Patent number: 6261442
    Abstract: The invention provides a process for converting a hydrocarbon feed in which said feed is treated in a distillation zone producing an overhead vapour distillate and a bottom effluent, associated with an at least partially external reaction zone comprising at least one catalytic bed, in which at least one reaction for converting at least a portion of at least one hydrocarbon is carried out in the presence of a catalyst and a gas stream comprising hydrogen, the feed for the reaction zone being drawn off at the height of at least one draw-off level and representing at least a portion of the liquid flowing in the distillation zone, at least part of the effluent from the reaction zone being re-introduced into the distillation zone at the height of at least one re-introduction level, so as to ensure continuity of the distillation, said process being characterized in that a liquid distillate is withdrawn from the distillation zone at the height of at least one withdrawal level, said level being located below the vapo
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: July 17, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Louis Ambrosino, Blaise Didillon, Pierre Marache, Jean-Charles Viltard, Gérald Witte
  • Patent number: 6238549
    Abstract: The invention concerns a process for converting a hydrocarbon feed in which said feed is treated in a distillation zone producing an overhead vapor distillate and a bottom effluent, associated with an at least partially external reaction zone comprising at least one catalytic bed, in which at least one reaction for converting at least a portion of at least one hydrocarbon is carried out in the presence of a catalyst and a gas stream comprising hydrogen, the feed for the reaction zone being drawn off at the height of at least one draw-off level and representing at least a portion of the liquid flowing in the distillation zone, at least part of the effluent from the reaction zone being re-introduced into the distillation zone at the height of at least one re-introduction level, so as to ensure continuity of the distillation, said process being characterized in that at least a portion of the vapor distillate is re-contacted with at least a portion of the feed introduced into the distillation zone.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: May 29, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Charles Viltard, Jean-Louis Ambrosino, Blaise Didillon
  • Patent number: 6207040
    Abstract: The present invention refers to a process for the production of high-octane and low benzene content gasolines according to a cycle where a crude oil is fed into an atmospheric distillation unit from which a fraction is obtained called virgin naphtha seat in turn to a splitting unit that produces a fraction called light tops and a fraction called heavy naphtha wherein said heavy naphtha fraction has a six carbon atoms (C6) hydrocarbons content no greater than 0.5% volume, and said light tops fraction has a seven plus carbon atoms C7+) hydrocarbons content no greater than 4% volume. Said process allows in the refinery to contextually obtain quantitative and qualitative improvements in the gasolines production, with increase of the production yield and of the octane number as well as reduction of the produced benzene quantity.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: March 27, 2001
    Inventor: Roberto Amadei
  • Patent number: 6174428
    Abstract: The invention provides a process for converting a hydrocarbon feed in which said feed is treated in a distillation zone producing a bottom effluent and a vapour distillate, associated with an at least partially external reaction zone comprising at least one catalytic bed, in which at least one reaction for converting at least a portion of at least one hydrocarbon is carried out in the presence of a catalyst and a gas stream comprising hydrogen, the feed for the reaction zone being drawn off at the height of at least one draw-off level and representing at least a portion of the liquid flowing in the distillation zone, at least part of the effluent from the reaction zone being re-introduced into the distillation zone at the height of at least one re-introduction level, so as to ensure continuity of the distillation, and so as to withdraw a distillate from the distillation zone and to recover a bottom effluent from the bottom of the distillation zone, said process being characterized in that the temperature of t
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: January 16, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Louis Ambrosino, Blaise Didillon, Pierre Marache, Jean-Charles Viltard, G{acute over (e)}rald Witte
  • Patent number: 6107533
    Abstract: Process flow sequences for the reduction of equipment fouling in the fractional distillation of light end hydrocarbon components, such as those produced by pyrolysis or steam cracking, wherein conventional multiple hydrogenation unit configurations are replaced with upstream hydrogenation unit configurations. The upstream hydrogenation units of the invention are located at either side draws or in the reboiler circuit of deethanizers, in front-end demethanizer and front-end deethanizer sequences, or depropanizers, in front-end depropanizer sequences and obviate the need for most of the conventionally used hydrogenation units downstream.
    Type: Grant
    Filed: June 9, 1997
    Date of Patent: August 22, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Rimas Virgilijus Vebeliunas, David Alan Bamford, Neil James Drummond, Sheri Renee Snider, Robert David Strack, Roy Thomas Halle
  • Patent number: 6083379
    Abstract: A process for desulfurizing and enhancing the octane of cracked gasoline by first aromatizing the cracked gasoline and, second, hydrodesulfurizing the resulting intermediate product stream.
    Type: Grant
    Filed: July 14, 1998
    Date of Patent: July 4, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, Scott Douglas Love
  • Patent number: 6054496
    Abstract: A method for producing a heavy crude oil from a subterranean formation through a wellbore, transporting the heavy crude oil to a market location and converting the heavy crude oil into a product distillate hydrocarbon stream and by-products such as heat, steam, electricity and synthesis gas by separating distillable components of the heavy crude oil by distillation and solvent deasphalting and converting the asphaltic residual portion of the heavy crude oil in a fluidized bed to at least one of heat, steam, electricity or synthesis gas. The method also produces diluent hydrocarbons useful as a separate product, a distillable hydrocarbon stream or a diluent for use in the production and transportation of the heavy crude oil.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: April 25, 2000
    Assignee: Atlantic Richfield Company
    Inventors: Steven D. Crane, Gary L. Beer, Harrison F. Blacker
  • Patent number: 5997724
    Abstract: A shale oil modifier is made of a crude shale oil dehydrogenated sufficiently to attain a viscosity of between about 1200-1800 poise at 60.degree. C. The crude shale oil has sufficient basic nitrogen content so that the dehydrogenated crude shale oil exhibits non-Newtonian properties when mixed with asphalt cements. Preferably, the basic nitrogen content is about 2%-2.5% by weight. The shale oil modifier is made by a process which includes providing a crude shale oil and subjecting the crude shale oil to a two stage distillation followed by a vacuum distillation and collecting the residual fraction. The residual fraction is dehydrogenated with air until a select viscosity, preferably between about 1200-1800 poise at 60.degree. C. is obtained.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: December 7, 1999
    Assignee: The New Paraho Corporation
    Inventor: Larry A Lukens