Inorganic Patents (Class 210/509)
  • Patent number: 10953394
    Abstract: A honeycomb structure, including: a honeycomb structure body having a porous partition walls which are disposed to define a plurality of cells and a circumferential wall, wherein the partition walls are provided with protrusions which protrude to extend into the cells and are continuously disposed in an extending direction of the cells, the cells have a polygonal shape in a cross section orthogonal to the extending direction of the cells, the plurality of cells include a plurality of specific cells having at least one place where two sides each of which is provided with a different number of protrusions intersect each other, and in the cross section orthogonal to the extending direction of the cells, disposition directions of the shapes of the cells including the protrusions in the specific cells are different in one specific cell and other specific cells other than the one specific cell.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: March 23, 2021
    Assignee: NGK Insulators, Ltd.
    Inventor: Yoichi Aoki
  • Patent number: 10535500
    Abstract: A method is provided for at least partially preventing discolouration of a substrate by a plasma coating process, by diffusing a plasma prior to and/or during depositing of said plasma on said substrate to form a coating. Also provided is a plasma coating apparatus comprising a plasma diffuser for homogenizing a plasma density nearby a substrate to be coated.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: January 14, 2020
    Assignee: Europlasma NV
    Inventors: Filip Legein, Eva Rogge, Guy Feys
  • Patent number: 10408828
    Abstract: It is an object of the present invention to provide improved methods and compositions for manufacture and use of lateral flow test devices. In particular, the present invention provides a molding method which provides one or more features in the housing base configured to retain the test strip within the base. These features are provided as undercuts in the housing base. The test strip is configured as a bibulous lateral flow material disposed on a substantially non-compressible base layer, and the base layer is positioned within the undercut in order to retain the test strip in the housing base. Optionally, one or more features in the housing base which create the undercut are configured to engage the bibulous lateral flow material by compression and/or friction, thereby increasing the ability of the base to maintaining the test strip in its proper position within the device.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: September 10, 2019
    Assignee: Astute Medical, Inc.
    Inventors: Joseph Anderberg, John Van Bosch
  • Patent number: 10266872
    Abstract: A method for isolating urea and removing CO2 from plasma samples, comprising the following steps: a) providing a plasma sample; b) adding an acid so as to partially remove CO2; c) lyophilizing the sample so as to further remove CO2 and obtain a dried sample; and d) redissolving the dried sample and neutralizing to a pH value of 4 to 7 using a buffer solution, wherein optionally a filtration step is carried out before adding the acid.
    Type: Grant
    Filed: July 30, 2011
    Date of Patent: April 23, 2019
    Assignee: Cytonet GmbH & Co. KG
    Inventor: Sitke Aygen
  • Patent number: 10145840
    Abstract: A system for preserving a blood sample and removing hematocrit includes a casing, the casing having a sample port and a lateral flow strip in the casing, the lateral flow strip receiving a sample through the sample port, and flowing the sample down a length of the lateral flow strip.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: December 4, 2018
    Assignee: Polymer Technology Systems, Inc.
    Inventors: Aniruddha Patwardhan, Gary L. Hughes
  • Patent number: 9739691
    Abstract: Disclosed is a slide assembly for a cytospin. The slide assembly includes: a slide having a hole formed in a predetermined position and including a mesh filter installed on a lower surface of the slide in alignment with the hole, the mesh filter having a plurality of filtering holes; and a filter card disposed below the slide so as to make contact with the lower surface of the slide. The slide assembly has an effect of preventing a loss of cells to be inspected and an effect of enabling accurate qualitative and quantitative analysis of inspection targets.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: August 22, 2017
    Assignee: Cytogen Co., Ltd.
    Inventors: Byung Hee Jeon, Jong Kil Lee
  • Patent number: 8956437
    Abstract: Articles such as filter media, which include dendrimers and/or other components, are provided. The filter media may further include a water repellant (e.g., a fluorinated species) to impart desirable properties to the media such as high water repellency. The filter media may also have a high efficiency as a function of pressure drop (i.e., high gamma values). In some embodiments, the filter media includes a fiber web which may be formed of various components such as glass fibers. The fiber web can also include additional components such as synthetic fibers, binder components, as well as other additives. The media may be incorporated into a variety of filter element products.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: February 17, 2015
    Assignee: Hollingsworth & Vose Company
    Inventors: David F. Sealey, Stuart Williams
  • Patent number: 8951420
    Abstract: Filter media, including those suitable for hydraulic applications, and related components, systems, and methods associated therewith are provided. The filter media described herein may include two or more layers, at least one of the layers having a relatively high percentage of microglass fibers. Additionally, the filter media may be designed such that the ratio of average fiber diameters between two layers is relatively small, which can lead to a relatively low resistance ratio between the layers. The filter media has desirable properties including high dirt holding capacity with low basis weight and a low resistance to fluid flow. The media may be incorporated into a variety of filter element products including hydraulic filters.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: February 10, 2015
    Assignee: Hollingsworth & Vose Company
    Inventors: Milind Godsay, Randall Keisler
  • Patent number: 8950587
    Abstract: Filter media, including those suitable for hydraulic applications, and related components, systems, and methods associated therewith are provided. The filter media described herein may include two or more layers, at least one of the layers having a relatively high percentage of microglass fibers. Additionally, the filter media may be designed such that the ratio of average fiber diameters between two layers is relatively small, which can lead to a relatively low resistance ratio between the layers. In some embodiments, at least one layer of the filter media comprises synthetic polymer fibers. Certain filter media described herein may have desirable properties including high dirt holding capacity and a low resistance to fluid flow. The media may be incorporated into a variety of filter element products including hydraulic filters.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: February 10, 2015
    Assignee: Hollingsworth & Vose Company
    Inventors: Cameron Thomson, Milind Godsay, Randall Keisler
  • Patent number: 8858789
    Abstract: A system for cleaning up an oil spill and recovering the spilled oil includes frames supporting superhydrophobic oil-absorbing nanowires. A first container supports the frames with the nanowires. A mixture of oil and water is pumped into the first container where the oil from the mixture is absorbed by the nanowires as water is separated from the mixture and deposited in the first container where it is then pumped therefrom. A second container supports the frames with the oil so-absorbed by the nanowires. The frames with the oil so-absorbed by the nanowires are heated whereby the oil so-absorbed separates from the nanowires and is deposited in the second container. The oil so-deposited in the second container is then pumped therefrom.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: October 14, 2014
    Assignee: The United States of America as represeted by the Secretary of the Navy
    Inventors: Jason M. Pappafotis, Daniel J. Flisek, David M. Robinson
  • Patent number: 8851298
    Abstract: An immiscible lipophilic or hydrophilic liquid phase is separated respectively from a continuous hydrophilic or a lipophilic phase liquid. Fibers having hydrophilic and hydrophobic properties are formed into a filter. The separation mechanism involves coalescence of the small droplets into larger droplets as the immiscible liquid flows through the fiber filter, and release of the large immiscible droplets from the filter. With respect to separation of a hydrophilic immiscible fluid in a lipophilic continuous fluid, the hydrophobic fibers cause small water droplets to migrate towards the hydrophilic fibers whereby large droplets are formed on hydrophilic surface. The large droplets coalescence until they are so large that they are released and drained off of the filter. The filter media can be designed by mixing hydrophilic and hydrophobic fibers in various proportions to achieve an optimum wettability range for separation of the immiscible liquid from the continuous phase liquid.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 7, 2014
    Assignee: The University of Akron
    Inventors: George Chase, Prashant Kulkarni
  • Patent number: 8778189
    Abstract: A method for removing liquid, gaseous and/or dissolved constituents from an aqueous stream includes contacting the aqueous stream with a porous material and then contacting the aqueous stream with an adsorbent material. The porous material includes pores having an average diameter of approximately 0.01 ?m to approximately 50 ?m and an extraction liquid immobilized within at least a portion of the pores.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: July 15, 2014
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Dirk Thomas Meijer, Cornelis Johannes Govardus Van Strien
  • Patent number: 8708162
    Abstract: Provided are nonwoven polymeric fiber webs using an improved curable composition. Such curable composition comprises an aldehyde or ketone and an amine salt of an inorganic acid. The composition when applied to polymeric fibers is cured to form a water-insoluble polymer binder which exhibits good adhesion and thermodimensional stability.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: April 29, 2014
    Assignee: Johns Manville
    Inventors: Kiarash Alavi Shooshtari, James Patrick Hamilton, Jawed Asrar
  • Patent number: 8678201
    Abstract: A potable water system (10) comprises a supply line (18) and a water-purification device (20) incorporated thereinto. The water-purification device (20) comprises a microorganism filter (40) having a housing (42) and replaceable cartridge (42). The cartridge's filter media (50) includes a microorganism-capturing membrane (e.g., comprising an electropositive material) and a microorganism-killing membrane (e.g., comprising a biocidal material).
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: March 25, 2014
    Assignee: Goodrich Corporation
    Inventor: Jin Hu
  • Patent number: 8658041
    Abstract: The various embodiments of the present invention relate generally to sorbent fiber compositions. More particularly, various embodiments of the present invention are directed towards sorbent fibers for pressure swing and temperature swing adsorption processes. Various embodiments of the present invention comprise a sorbent composition, comprising a fiber comprising a plurality of tortuous pathways; and a sorbent material, wherein the sorbent material is in fluid communication with at least a portion of the plurality of tortuous pathways. Aspects of the present invention comprise compositions, devices and methods of using sorbent fiber compositions.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: February 25, 2014
    Assignee: Georgia Tech Research Corporation
    Inventor: William J. Koros
  • Patent number: 8658288
    Abstract: A method for manufacturing a porous device with restrictive layer comprises the steps of providing a porous structure having a micro pore structure, flattening the porous carrier to form a surface, and forming a restrictive layer on the surface of the porous carrier, a method for manufacturing said restrictive layer includes forming a nickel-chromium alloy layer on the surface of the porous carrier, forming a copper metal layer on the nickel-chromium alloy layer, forming a nickel metal layer having a top surface on the copper metal layer, and processing said nickel-chromium alloy layer, said copper metal layer and said nickel metal layer to form a plurality of channels communicating with the micro pore structure and the top surface. The restrictive effect and damping effect can raise anti-vibration ability of the porous device itself by formation of dual restrictive structure composed of the micro pore structure and the channels.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: February 25, 2014
    Assignee: Metal Industries Research & Development Centre
    Inventor: Kuo-Yu Chien
  • Patent number: 8512435
    Abstract: Thermoplastic bicomponent binder fiber can be combined with other media, fibers and other filtration components to form a thermally bonded filtration media. The filtration media can be used in filter units, such as breather caps. Such filter units can be placed in the stream of a mobile fluid and can remove a particulate and/or fluid mist load from the mobile stream. The unique combination of media fiber, bicomponent binder fiber and other filtration additives and components provide a filtration media having unique properties in filtration applications.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: August 20, 2013
    Assignee: Donaldson Company, Inc.
    Inventors: Robert M. Rogers, Keh B. Dema
  • Patent number: 8485366
    Abstract: There are disclosed a ceramic porous membrane formed with less membrane formation times and having less defects, a small and uniform thickness and a high flux, and a ceramic filter. A silica membrane is formed on a titania UF membrane as an ultrafiltration membrane (a UF membrane) formed on a porous base member which is a microfiltration membrane (also referred to as an MF membrane) and having an average pore diameter smaller than that of the porous base member, and the silica membrane has an average pore diameter smaller than that of the titania UF membrane, and does not substantially permeates the titania UF membrane.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: July 16, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Manabu Isomura, Tatsuya Hishiki, Ichiro Wada
  • Patent number: 8453849
    Abstract: Provided are an anti-microbial matrix and filtration systems containing the same. The matrix comprises a surface-modified inorganic component and a polymeric binder comprising particles having an irregular, convoluted surface. The surface-modified inorganic component comprises a reaction product of an anti-microbial component and an inorganic component. The anti-microbial component comprises a quaternary ammonium salt containing an epoxide group. A covalent bond is, for example, between the quaternary ammonium cation and a hydroxyl group of the inorganic component. The quaternary ammonium salt can be poly(methyldiallylamine epichlorohydrin). Further, the quaternary ammonium salt can have the formula according to I: (Formula I), wherein n is in the range of 5 to 24. The inorganic component can be diatomaceous earth. The polymeric binder can comprise ultra high molecular weight polyethylene (UHMW PE). Methods of making and using the same are also provided.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 4, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas J. Hamlin, Mark T. Meyering, Hemang R. Patel, Derek A. Daigle, Robert A. Governal, Rebecca A. Lucht, Keith D. Solomon, Eshan B. Yeh
  • Patent number: 8444863
    Abstract: A method of treating a hollow fiber membrane microfiltration filter having an influent side and an effluent side to improve performance of the filter is disclosed. The method entails sealing imperfections in surfaces of the filter by flushing the filter with a liquid aqueous suspension of particulates. Filter cartridge devices also are disclosed. The devices may include a bactericidal chamber. A radial flow filter may be included in the devices. The filter cartridges may include a drain tube positioned within the filter for removing of effluent generated by the filter. A plurality of filter cartridges may be positioned on the drain tube.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: May 21, 2013
    Assignee: Streamline Capital, Inc.
    Inventors: Wei-Chih Chen, Kevin P. Nicolazzo, Bryan E. Kepner
  • Patent number: 8409448
    Abstract: An immiscible lipophilic or hydrophilic liquid phase separated respectively from a continuous hydrophilic phase or a lipophilic phase liquid. Fibers having hydrophilic and hydrophobic properties are mixed, layered, etc., and formed into a filter. The separation mechanism involves capture of small droplets of the immiscible phase, coalescence of the small droplets into larger droplets as the immiscible liquid flows through the fiber filter, and release of the large immiscible droplets from the filter. With respect to separation of a hydrophilic immiscible fluid such as water in a lipophilic continuous fluid such as oil, the hydrophobic fibers will cause small water droplets to migrate towards the hydrophilic fibers whereby large droplets are formed on hydrophilic surface.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: April 2, 2013
    Assignee: The University of Akron
    Inventors: George Chase, Prashant Kulkarni
  • Patent number: 8393478
    Abstract: An inorganic membrane having an improved pore structure. The membrane has a mean pore size of up to about 100 nm and a mean particle size in a range from about 10 nm to about 100 nm. In one embodiment, the membrane comprises ?-alumina and is formed by providing a coating slip comprising ?-alumina; applying the coating slip to a support surface to form a coating layer; drying the coating layer; and firing the dried coating layer at a temperature of at least about 1000° C. to convert at least a portion of the ?-alumina to ?-alumina and form the inorganic membrane.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 12, 2013
    Assignee: Corning Incorporated
    Inventors: Curtis Robert Fekety, Wei Liu, Zhen Song, Joseph Marc Whalen
  • Publication number: 20120248034
    Abstract: Filtration media for filtering a liquid includes a plurality of fibers having a coating thereon of a fluorine containing compound. Also disclosed are processes for forming fibrous non-woven liquid filtration media having the coating of the fluorine containing compound. Suitable fluorine containing compounds generally include fluoropolymers, fluorinated hydrocarbons, fluoroacrylate polymers, and the like. The liquid filtration media having the coating of the fluorine containing compound provides markedly improved dirt holding capacity and efficiency properties, among others.
    Type: Application
    Filed: March 22, 2012
    Publication date: October 4, 2012
    Applicant: LYDALL, INC.
    Inventors: PAUL N. SEGIT, ROBERT A. CHENEY, JR., DAVID R. LAMBERT
  • Patent number: 8268033
    Abstract: Thermoplastic bicomponent binder fiber can be combined with other media, fibers and other filtration components to form a thermally bonded filtration media. The filtration media can be used in filter units, such as breather caps. Such filter units can be placed in the stream of a mobile fluid and can remove a particulate and/or fluid mist load from the mobile stream. The unique combination of media fiber, bicomponent binder fiber and other filtration additives and components provide a filtration media having unique properties in filtration applications.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: September 18, 2012
    Assignee: Donaldson Company, Inc.
    Inventors: Robert M. Rogers, Keh B. Dema
  • Patent number: 8206584
    Abstract: Fluid treatment elements substantially inhibit electrical charge imbalances and/or build-ups of electrical charges. A fluid treatment element may comprise a multilayer composite including an electrically conductive fibrous matrix, having an upstream side and a downstream side, disposed on a porous substrate, also having an upstream side and a downstream side, which supports the fibrous matrix. The fibrous matrix may include a combination of conductive and nonconductive fibers. The multilayer composite may also include a drainage layer positioned along one of the upstream side of the fibrous matrix and the downstream side of the porous substrate.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: June 26, 2012
    Assignee: Pall Corporation
    Inventors: Ronald D. Hundley, Scott A. Whitney, Angela M. Griffin, Conrad J. Christel, Leonard E. Bensch, Kenneth M. Williamson, Joseph G. Adiletta
  • Patent number: 8206583
    Abstract: Fluid treatment elements substantially inhibit electrical charge imbalances and/or build-ups of electrical charges. A fluid treatment element may comprise a multilayer composite including an electrically conductive fibrous matrix, having an upstream side and a downstream side, disposed on a porous substrate, also having an upstream side and a downstream side, which supports the fibrous matrix. The fibrous matrix may include a combination of conductive and nonconductive fibers. The multilayer composite may also include a drainage layer positioned along one of the upstream side of the fibrous matrix and the downstream side of the porous substrate.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: June 26, 2012
    Assignee: Pall Corporation
    Inventors: Ronald D. Hundley, Scott A. Whitney, Angela M. Griffin, Conrad J. Christel, Leonard E. Bensch, Kenneth M. Williamson, Joseph G. Adiletta
  • Patent number: 8132678
    Abstract: The present invention discloses new types of polybenzoxazole-based mixed matrix membranes and methods for making and using these membranes. The polybenzoxazole-based mixed matrix membranes are prepared by fabricating a polyimide-based mixed matrix membrane by dispersing molecular sieve particles in a continuous aromatic polyimide matrix with pendent hydroxyl groups ortho to the heterocyclic imide nitrogen; and then converting the polyimide-based mixed matrix membrane to a polybenzoxazole-based mixed matrix membrane by heating between 200° and 600° C. under inert atmosphere or vacuum. The polybenzoxazole-based mixed matrix membranes of the present invention can be fabricated into any convenient geometry such as flat sheet (or spiral wound), tube, hollow fiber, or thin film composite.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: March 13, 2012
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou
  • Publication number: 20120037560
    Abstract: Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).
    Type: Application
    Filed: November 21, 2008
    Publication date: February 16, 2012
    Applicant: Alliance for Sustainable Energy, LLC
    Inventors: David S. Ginley, Calvin J. Curtis, Alexander Miedaner, Alan J. Weiss, Arnold Paddock
  • Patent number: 8088439
    Abstract: A method of making a porous membrane is disclosed. One such method optionally includes: forming a plurality of pillars in an array form over a substrate; and forming a layer with a mixture of a porous material precursor and a surfactant over the substrate. The method optionally includes removing the pillars to leave cavities in the layer; filling the cavities in the layer with a cavity filler; and removing the surfactant from the layer. The porous membrane can be used as, for example, a sieve for separating molecules from a chemical reaction.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 3, 2012
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Publication number: 20110290713
    Abstract: The invention relates to a single or multi-layer filter material, comprising at least one layer made of cellulose, glass fiber, synthetic fiber, or a mixture thereof, and saturated with a binding agent made of an epoxy resin and a curing agent. The hardening agent comprises a first hardener cross-linking at a lower temperature, and a second hardener cross-linking at a higher temperature, so that the epoxy resin can be hardened stepwise depending on the temperature.
    Type: Application
    Filed: November 5, 2009
    Publication date: December 1, 2011
    Inventors: Werner Hörl, Jürgen Nientiedt, Ulrike Kahl
  • Patent number: 8038013
    Abstract: A liquid filter with a composite medium that has a nanoweb adjacent to and optionally bonded to a microporous membrane. The membrane is characterized by an LRV value of 3.7 at a rated particle size, and the nanoweb has a fractional filtration efficiency of greater than 0.95 at the rated particle size of the membrane. The nanoweb also has a thickness efficiency ratio of greater than 0.01 at that efficiency. The nanoweb acts to provide depth filtration to the membrane, prefilters particles and extends the lifetime of the membrane.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: October 18, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Guanghui Chen, Henricus Jacobus Cornelis Gommeren, Lawrence Mark Knorr
  • Patent number: 7985344
    Abstract: In the filtration of fluid materials, the removal of particulate from the moving stream requires substantial pressure to maintain flow and substantial capacity for removing particulate. The filters of the invention are rugged, high wet strength materials having a basis weight, permeability and efficiency suitable to obtain substantial reduction in particulate loading from liquid streams without plugging or mechanical failure. In particular, the filters of the invention permit the removal of substantial proportions of particulate from non-aqueous streams including lubricant oils, hydraulic fluids and other contaminated streams.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: July 26, 2011
    Assignee: Donaldson Company, Inc.
    Inventors: Keh B. Dema, Linda M. Olson
  • Patent number: 7971729
    Abstract: A separation membrane complex where a carbon membrane is formed directly on a porous body (surface layer) and an intermediate layer has a thickness of 10 to 100 ?m can be used as a filter having improved flux and selectivity in comparison with a conventional one.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: July 5, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Akimasa Ichikawa, Hisayoshi Nonaka, Toshihiro Tomita
  • Publication number: 20110147320
    Abstract: Articles such as filter media, which include dendrimers and/or other components, are provided. The filter media may further include a water repellant (e.g., a fluorinated species) to impart desirable properties to the media such as high water repellency. The filter media may also have a high efficiency as a function of pressure drop (i.e., high gamma values). In some embodiments, the filter media includes a fiber web which may be formed of various components such as glass fibers. The fiber web can also include additional components such as synthetic fibers, binder components, as well as other additives. The media may be incorporated into a variety of filter element products.
    Type: Application
    Filed: January 22, 2010
    Publication date: June 23, 2011
    Applicant: Hollingsworth & Vose Company
    Inventors: David F. Sealey, Stuart Williams
  • Patent number: 7963402
    Abstract: The present invention relates to a ceramic filter device for molten metal filtration comprising a major ceramic phase and a minor carbon phase bonded by phosphate bond, a method for producing such filter devices, and the use of such filter devices for the filtration of molten steel.
    Type: Grant
    Filed: September 4, 2006
    Date of Patent: June 21, 2011
    Assignee: Sud-Chemie Hi-Tech Ceramics Inc.
    Inventor: Kassim Juma
  • Patent number: 7959704
    Abstract: A porous fibrous honeycomb substrate having an aluminum titanate composition and methods of producing the same are provided herein. Precursors of aluminum titanate are provided in an extrudable mixture that includes fiber materials to form a green honeycomb substrate. When cured, the precursors of aluminum titanate form an aluminum titanate composition, with the fiber materials defining the porous microstructure. Various composite structures including aluminum titanate are provided to form a porous honeycomb substrate that can be configured to be filtration media and/or a catalytic host.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: June 14, 2011
    Assignee: GEO2 Technologies, Inc.
    Inventors: James Jenq Liu, Bilal Zuberi, William M. Carty
  • Patent number: 7946431
    Abstract: An inorganic membrane suitable for ultrafiltration or nanofiltration, and methods for making and using the membrane. The membrane has a organic polymer deposited on the feed surface, but is not able to perform separations by solution-diffusion.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 24, 2011
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Ingo Pinnau, Alvin Ng, Jennifer Ly, Anurag P Mairal
  • Patent number: 7913858
    Abstract: Acid-neutralizing filter media includes filter media fibers in combination with a strong base of small particle size and high surface area attached to and immobilized on the filter media fibers, and methodology therefore.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: March 29, 2011
    Assignee: Fleetguard, Inc.
    Inventors: William C. Haberkamp, David M. Stehouwer, Barry M. Verdegan
  • Publication number: 20100285252
    Abstract: A method for surface modification of a material by means of introducing the phosphorylcholine group represented by the following formula (1-1) onto the surface of the material by treating a material having amino groups with a chemical compound containing an aldehyde derivative obtained by the oxidative ring-opening reaction of glycerophosphorylcholine. The method of the present invention provides various materials such as medical materials having superior biocompatibility and hydrophilicity.
    Type: Application
    Filed: June 24, 2009
    Publication date: November 11, 2010
    Applicant: Shiseido Company, Ltd.
    Inventors: Kazuyuki Miyazawa, Taketoshi Kanda, Yousuke Toujo, Aya Ohkubo, Osamu Shirota, Kenichi Sakuma, Masayoshi Wada
  • Publication number: 20100285354
    Abstract: CNT encapsulated carbon nanofibers (CNFs @ CNTs) having a one-dimensional structure are provided by selective assembling CNFs inside the channel of CNTs via impregnation of catalyst inside CNTs and subsequent chemical vapour deposition of hydrocarbon. The new structure is used as material for energy storage.
    Type: Application
    Filed: October 2, 2008
    Publication date: November 11, 2010
    Inventors: Dangsheng Su, Jian Zhang, Robert Schloegl, Joachim Maier
  • Patent number: 7798334
    Abstract: A process for manufacturing a zeolite membrane by hydrothermal synthesis on the surface of a porous tubular support 3 with both ends open, by adding a reaction solution containing a silica source and an alumina source and the porous tubular support 3 into a lengthwise reaction container 1 longer than the porous tubular support 3 while placing the porous tubular support 3 vertically in the reaction container 1 and substantially apart from the inner surface of the reaction container 1, and immersing the porous tubular support 3 completely in the reaction solution so that the inside of the porous tubular support 3 is filled with the reaction solution; and heating the reaction solution under conditions of leaving the top and bottom ends of the porous tubular support 3 open, and an apparatus using thereof and zeolite tubular separation membranes thus obtained.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: September 21, 2010
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takehito Mizuno, Ryoki Sato, Hiroyuki Chida, Kiminori Sato
  • Patent number: 7784621
    Abstract: An inorganic membrane suitable for ultrafiltration or nanofiltration, and methods for making and using the membrane. The membrane has a organic polymer deposited on the feed surface, but is not able to perform separations by solution-diffusion.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: August 31, 2010
    Assignee: Membrane Technology & Research, Inc
    Inventor: Ingo Pinnau
  • Patent number: 7694827
    Abstract: A filter comprising a polymer material comprising a polymer matrix such as polyacrylonitrile containing dispersed metal oxide particles. The metal oxide particles are for example ferric oxide particles, and the polymer material contains generally 0.25-3% by weight of these particles. The filters are resistant to thermo-oxidation and have reduced shrinkage or degradation.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: April 13, 2010
    Assignees: Commonwealth Scientific & Industrial Research Organisation, Kelheim Fibres GmbH
    Inventors: Bernd Huber, Robert Helstroom
  • Patent number: 7611559
    Abstract: A filter element (1) with a tubular folded bag (2) of folded filter material, which has a plurality of fold blades (3) adjacent each other in the longitudinal direction (10) of the folded bag (2) a closure cover (4) is attached at at least one axial end (7) of the folded bag (2). In order to provide a filter element which can be bent to any desired curved form while maintaining a high degree of filtration performance, and can be produced in a cost effective manner, the fold blades (3) of a folded bag (2) are provided with a combination of diagonal folds extending at an angle relative to each other such that the fold blades (3) in the longitudinal direction (10) of the folded bag extend back and forth and thereby form a three-dimensional crown structure (18). At least the outer margin of the closure cover (4) has a form corresponding to the crown structure (18) of the fold blades (3).
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: November 3, 2009
    Assignees: Mann & Hummel GmbH, Universitaet Stuttgart Institut fuer Flugzeugbau
    Inventors: Nikolaus Moser, Andreas Beck, Josef Rohrmeier, Matthaeus Huber, Markus Kolczyk, Michael Durst, Yves Klett, Klaus Drechsler, Rainer Kehrle
  • Patent number: 7553417
    Abstract: Functionalized substrates, methods of making functionalized substrates, and methods of using functionalized substrates are disclosed.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: June 30, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Clinton P. Waller, Jr., Douglas Eugene Weiss
  • Patent number: 7507340
    Abstract: An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: March 24, 2009
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Nick R. Mann, Troy J. Tranter, Terry A. Todd, Ferdinand Sebesta
  • Publication number: 20090071293
    Abstract: The present invention relates to a ceramic filter device for molten metal filtration comprising a major ceramic phase and a minor carbon phase bonded by phosphate bond, a method for producing such filter devices, and the use of such filter devices for the filtration of molten steel.
    Type: Application
    Filed: September 4, 2006
    Publication date: March 19, 2009
    Inventor: Kassim Juma
  • Patent number: 7473362
    Abstract: A media in the form of a multilayered semi porous composite membrane containing a strong positive electrical charge with a highly porous surface consisting of 60 to 90 percent void volume and pore size of about 2 micron capable of retaining negatively charged protozoa, bacteria, and virus as well as di-pole particulate matter as a result of the attraction of the positive charge. A housing is a portable adaptive housing containing and supporting the composite membrane. A low pressure stream of water is within the housing and passes through the media. A composite membrane is positioned within the adaptive housing in the path of the low pressure stream of water. The composite membrane is adapted to treat the low pressure stream of water under from 0.3 to 10 psig pressure delivering 5 to 30 ml/sec.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: January 6, 2009
    Inventor: John E. Nohren, Jr.
  • Patent number: 7316780
    Abstract: Separation device comprising a feed channel including a shear region, permeate passage(s) extending perpendicular to the direction of the feed flow and a porous medium positioned between the shear region of the feed channel and the permeate passage(s). Separation process comprising generating a shear layer in a feed fluid and passing permeate into the permeate passage(s).
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: January 8, 2008
    Assignee: Pall Corporation
    Inventors: Thomas J. Fendya, Mark F. Hurwitz, John D. Miller, Stephen A. Geibel, Marc Samson
  • Patent number: 7296690
    Abstract: The invention provides a device for the inactivation of a virus comprising a housing delimiting a fluid passageway, the passageway being provided with a filtering material having ionic copper selected from the group consisting of Cu+ and Cu++ ions and combinations thereof incorporated therein.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: November 20, 2007
    Assignee: The Cupron Corporation
    Inventor: Jeffrey Gabbay