Bonding Nonmetals With Metallic Filler Patents (Class 228/121)
  • Patent number: 9333578
    Abstract: Methods of providing a fiber reinforced braze include providing a substrate, disposing at least a first fiber reinforcement layer on the substrate, wherein the at least first fiber reinforcement layer comprises a fiber material, disposing at least a first braze layer on the at least first fiber reinforcement layer, wherein a melt temperature of the braze layer is lower than a melt temperature of the fiber material, and heating the at least first fiber reinforcement layer and the at least first braze layer to bond the fiber reinforced braze to the substrate.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: May 10, 2016
    Assignee: General Electric Company
    Inventors: Yan Cui, Srikanth Chandrudu Kottilingam, Jason Robert Parolini, Dechao Lin
  • Patent number: 9293764
    Abstract: A negative electrode active material for an electric device includes an alloy containing Si in a range from greater than or equal to 17% by mass to less than 90% by mass, Ti in a range from 10% by mass to 83% by mass exclusive, Ge in a range from 0% by mass to 73% by mass exclusive, and inevitable impurities as a residue. The negative electrode active material can be obtained with a multi DC magnetron sputtering apparatus by use of, for example, Si, Ti and Ge as targets. An electric device employing the negative electrode active material can achieve long cycle life, and ensure a high capacity and improved cycle durability.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: March 22, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Manabu Watanabe, Masao Yoshida
  • Patent number: 9293683
    Abstract: A connection method disclosed herein includes softening a resin film of a thermosetting resin by heating an element electrode of a piezoelectric body and a substrate electrode of a flexible cable to be connected to the piezoelectric body with the element electrode and the substrate electrode being pressed into contact with each other via the resin film; partially pushing out the molten resin film from an opposing position of the element electrode and the substrate electrode so as to bring a solder layer provided on the substrate electrode into contact with the element electrode; curing the resin film and melting solder in the solder layer by further raising a heating temperature; discharging excess solder in a direction defined by the cured resin film; and then solidifying the solder in the solder layer so as to solder the element electrode and the substrate electrode together.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: March 22, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazunobu Irie, Futoshi Ohtsuka, Takeshi Kita, Motoi Hatanaka
  • Patent number: 9263375
    Abstract: A packaged semiconductor device may include a termination surface having terminations configured as leadless interconnects to be surface mounted to a printed circuit board. A first flange has a first surface and a second surface. The first surface provides a first one of the terminations, and the second surface is opposite to the first surface. A second flange also has a first surface and a second surface, with the first surface providing a second one of the terminations, and the second surface is opposite to the first surface. A die is mounted to the second surface of the first flange with a material having a melting point in excess of 240° C. An electrical interconnect extends between the die and the second surface of the second flange opposite the termination surface, such that the electrical interconnect, first flange and second flange are substantially housed within a body.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: February 16, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Lakshminarayan Viswanathan, Lakshmi N. Ramanathan, Audel A. Sanchez, Fernando A. Santos
  • Patent number: 9193632
    Abstract: The invention relates to a method for producing a ceramic-metal connection that is repeatedly subjected to great changes in temperature during use, in which the metal and ceramic are brazed to one another two-dimensionally.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: November 24, 2015
    Assignee: SURFACE IGNITER LLC
    Inventor: Martin Heuberger
  • Patent number: 9146540
    Abstract: A method of fabricating vapor cells comprises forming a plurality of vapor cell dies in a first wafer having an interior surface region and a perimeter, and forming a plurality of interconnected vent channels in the first wafer. The vent channels provide at least one pathway for gas from each vapor cell die to travel outside of the perimeter of the first wafer. The method further comprises anodically bonding a second wafer to one side of the first wafer, and anodically bonding a third wafer to an opposing side of the first wafer. The vent channels allow gas toward the interior surface region of the first wafer to be in substantially continuous pressure-equilibrium with gas outside of the perimeter of the first wafer during the anodic bonding of the second and third wafers to the first wafer.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: September 29, 2015
    Assignee: Honeywell International Inc.
    Inventors: Daniel W. Youngner, Jeff A. Ridley, Son T. Lu
  • Publication number: 20150135844
    Abstract: An assembly, comprising two ceramic bodies, which are connected by means of a joint, which contains an active hard solder, or braze, wherein the active hard solder, or braze, has a continuous core volume, which is spaced from the ceramic bodies, in each case, by at least 1 ?m, especially at least 2 ?m, and wherein the joint has bounding layers, which border on the ceramic body. The the core volume, which includes at least 50% of the volume of the joint, is free of crystalline phases of size greater than 6 ?m, especially greater than 4 ?m, preferably greater than 2 ?m.
    Type: Application
    Filed: June 7, 2013
    Publication date: May 21, 2015
    Inventors: Nils Ponath, Andreas Rossberg, Elke Schmidt
  • Patent number: 9027821
    Abstract: A process of assembly by direct bonding of a first and second element, each having a surface including copper portions separated by a dielectric material, the process includes: polishing the surfaces such that the surfaces to be assembled allow assembly by bonding; forming a diffusion barrier selectively in copper portions of the first and second elements, wherein the surface of the diffusion barrier of the first and second elements is level with the surface, to within less than 5 nanometers; and bringing the two surfaces into contact, such that the copper portions of one surface cover at least partly the copper portions of the other surface, and such that direct bonding is obtained between the surfaces.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: May 12, 2015
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Lea Di Cioccio, Pierric Gueguen
  • Publication number: 20150122875
    Abstract: One aspect relates method of forming an electrical bushing for an implantable medical device, including generating at least one base body green compact for at least one base body from an insulating composition of materials. At least one cermet-containing conducting element green compact is formed for at least one conducting element. At least one conducting element green compact is introduced into the base body green compact. The insulation element green compact is connected to the at least one base body green compact in order to obtain at least one base body having at least one conducting element. A connecting layer is applied onto the at least one conducting element.
    Type: Application
    Filed: January 9, 2015
    Publication date: May 7, 2015
    Applicant: HERAEUS PRECIOUS METALS GMBH & CO. KG
    Inventors: Goran Pavlovic, Jeremy Glynn
  • Publication number: 20150118514
    Abstract: A method of thermal interface material (TIM) assembly includes plating a seed layer on each of a plurality of graphite film layers, each of the graphite film layers comprising parallel-oriented graphite nanoplates, stacking the plurality of graphite film layers, each of the plurality of graphite film layers separated by at least one solder layer, pressing together the stacked graphite film layers, and applying heat to the plurality of graphite film layers and respective at least one solder layer in a vacuumed furnace to form a graphite laminate.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Inventors: Yuan Zhao, Dennis R. Strauss, Ten-Luen T. Liao, Vivek Mehrotra, Chung-Lung Chen
  • Publication number: 20150108203
    Abstract: A method for the joining of ceramic pieces with a hermetically sealed joint comprising brazing a layer of joining material between the two pieces. The wetting and flow of the joining material is controlled by the selection of the joining material, the joining temperature, the joining atmosphere, and other factors. The ceramic pieces may be on a non-diffusable type, such as aluminum nitride, alumina, beryllium oxide, and zirconia, and the pieces may be brazed with an aluminum alloy under controlled atmosphere. The joint material is adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck.
    Type: Application
    Filed: May 30, 2014
    Publication date: April 23, 2015
    Inventors: Alfred Grant Elliot, Brent Donald Alfred Elliot, Frank Balma, Richard Erich Schuster, Dennis George Rex, Alexander Veytser
  • Publication number: 20150104656
    Abstract: The present invention provides a method for firmly and inexpensively bonding at low temperature a polymer film to another polymer film or to a glass substrate without the use of an organic adhesive. A method for bonding a polymer film includes a step (S1) for forming a first inorganic material layer on part or all of a first polymer film; a step (S3) for forming a second inorganic material layer on part or all of a second polymer film; a step (S2) for surface-activating the surface of the first inorganic material layer by bombarding with particles having a predetermined kinetic energy; a step (S4) for surface-activating the surface of the second inorganic material layer by bombarding with particles having a predetermined kinetic energy; and a step (S5) for abutting the surface-activated surface of the first inorganic material layer against the surface-activated surface of the second inorganic material layer and bonding the first polymer film and second polymer film together.
    Type: Application
    Filed: April 9, 2013
    Publication date: April 16, 2015
    Applicant: LAN TECHNICAL SERVICE CO., LTD.
    Inventors: Tadatomo Suga, Yoshiie Matsumoto
  • Patent number: 9005799
    Abstract: A battery module and methods for bonding cell terminals of battery cells together are provided. The battery module includes a first battery cell having a first cell terminal, and a second battery cell having a second cell terminal. The battery module further includes an exothermal reactive layer having first and second sides. The first and second sides are disposed adjacent to the first and second cell terminals, respectively. The exothermal reactive layer is configured to ignite to form a bonding joint between the first and second cell terminals in response to a laser beam contacting at least a portion of the exothermal reactive layer.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: April 14, 2015
    Assignee: LG Chem, Ltd.
    Inventor: Alex Khakhalev
  • Publication number: 20150098546
    Abstract: The invention pertains to a nuclear fuel assembly grid or a portion or a part of the grid, such as a grid strap and/or an integral flow mixer that is at least partially constructed of a composition containing one or more ternary compounds of the general formula I: Mn+1AXn??(I) wherein, M is a transition metal, A is an element selected from the group A elements in the Chemical Periodic Table, X is carbon or nitrogen, and n is an integer from 1 to 3.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: WESTINGHOUSE ELECTRIC COMPANY LLC
    Inventors: PENG XU, Edward J. Lahoda
  • Publication number: 20150075289
    Abstract: A method for production of a pressure sensor including a flat flexible membrane made of a ceramic material and a flat rigid support thereof made of a ceramic material is provided. Steps include: —establishing an electric circuit on the membrane; —establishing an electric contact with the outside on the support; —depositing an electrically conductive material on the support; —establishing an electrical and mechanical coupling between the membrane and the support. The electrical coupling between the membrane and the support are performed by deposition and sintering of at least one layer of an electrically conductive sinterable electrical connection material. The mechanical coupling between the membrane and the support are performed by deposition and sintering of at least one layer of sinterable mechanical connection material that is electrically insulating and/or isolated from the layer of sinterable electrical connection material.
    Type: Application
    Filed: March 20, 2013
    Publication date: March 19, 2015
    Inventors: Achille Cogliati, Roberto May, Pietro Regoliosi, Angelo Mario Adamo Albonico
  • Publication number: 20150077895
    Abstract: A member 10 for a semiconductor manufacturing apparatus includes an alumina electrostatic chuck 20, a cooling plate 30, and a cooling plate-chuck bonding layer 40. The cooling plate 30 includes first to third substrates 31 to 33, a first metal bonding layer 34 between the first and second substrates 31 and 32, a second metal bonding layer 35 between the second and third substrates 32 and 33, and a refrigerant path 36. The first to third substrates 31 to 33 are formed of a dense composite material containing Si, SiC, and Ti. The metal bonding layers 34 and 35 are formed by thermal compression bonding of the substrates 31 to 33 with an Al—Si—Mg or Al—Mg metal bonding material interposed between the first and second substrates 31 and 32 and between the second and third substrates 32 and 33.
    Type: Application
    Filed: October 16, 2014
    Publication date: March 19, 2015
    Inventors: Asumi JINDO, Katsuhiro INOUE, Yuji KATSUDA, Takashi KATAIGI, Shingo AMANO, Hiroya SUGIMOTO
  • Publication number: 20150056463
    Abstract: A method for manufacturing a cemented carbide body includes the steps of forming a first part of a first powder composition comprising a first carbide and a first binder phase, sintering the first part to full density in a first sintering operation, forming a second part of a second powder composition comprising a second carbide and a second binder phase, sintering the second part to full density in a second sintering operation, bringing a first surface of the first part and a second surface of the second part in contact, and joining the first and second surface in a heat treatment operation.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 26, 2015
    Inventors: Bo Jansson, Per Jonsson, Tomas Persson
  • Publication number: 20150047234
    Abstract: The present disclosure provides a plow blade edge device for mounting to a moldboard of a plow comprising at least one adapter blade including a bottom edge having selectively carbide insert(s) along at least a portion of the bottom edge. The disclosure further provides for a method of brazing the carbide insert(s) in a cavity along at least a portion of the bottom edge. The device further includes at least one wear block selectively reversible to present the adapter blade at a first angle or a second angle. The at least one wear block can include a bottom edge having a carbide insert along at least a portion of the bottom edge.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Inventor: Kent Winter
  • Publication number: 20150020466
    Abstract: The Present invention relates to a method for manufacturing at least one portion of a seal ensuring gas-tightness between at least one first and one second glass panel in a glazing system, the method including the following steps: depositing a first adhesive layer on a first peripheral area of the first panel and a second adhesive layer on a second peripheral area of the second panel; welding a first metal seal element to the first adhesive layer; welding a second metal seal element or said first metal seal element to the second adhesive layer. According to the invention, the first and second adhesive layers are deposited using a high speed oxy-fuel flame-spraying method.
    Type: Application
    Filed: June 3, 2014
    Publication date: January 22, 2015
    Applicant: AGC Glass Europe
    Inventors: Olivier Bouesnard, Francois Closset
  • Patent number: 8932690
    Abstract: A method for the joining of a ceramic shaft and a ceramic plate into an assembly, such as a heater, adapted to be used in semiconductor processing. The joined pieces are adapted to withstand the environments within a process chamber during substrate processing, chamber cleaning processes, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck. The ceramic pieces may be aluminum nitride and the pieces may be brazed with aluminum. The joint material is adapted to withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck. The joint is adapted to provide a hermetic seal across the joint. The joined pieces are adapted to be separated at a later time should rework or replacement of one of the pieces be desired.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: January 13, 2015
    Assignee: Component Re-Engineering Company, Inc.
    Inventors: Alfred Grant Elliot, Dennis George Rex, Alexander Veytser, Brent Donald Alfred Elliot, Frank Balma, Richard Erich Schuster
  • Patent number: 8915142
    Abstract: A ceramic component having at least one electrical feedthrough, comprising: a ceramic body, through which a bore extends; and a metal conductor, which is arranged at least sectionally in the bore and which is secured in the bore by means of an active hard solder, or braze, whereby the bore is sealed. The active hard solder fills an annular gap between the metal conductor and the ceramic body, characterized in that the active hard solder has a radially variable, chemical composition.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: December 23, 2014
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventor: Ulfert Drewes
  • Publication number: 20140354033
    Abstract: A tool and a method of making the tool is disclosed. The tool comprises a sleeve and a compact. The sleeve may have a proximal end, a distal end, a central axis, and a bore extending from the proximal end to the distal end, the bore having an inner wall. The compact may have a base end and an impact surface spaced opposite to the base end. The compact may be substantially disposed within the bore of the sleeve. The proximal end may be disposed proximate the base end of the compact.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicant: DIAMOND INNOVATIONS, INC.
    Inventors: Thomas EASLEY, Douglas BACK
  • Patent number: 8899472
    Abstract: A method for sealing vacuum glass and a vacuum glass product processed by said method are provided. The method specifically is: preparing metallized layers (6) consolidated with glass plates on the surface to be sealed at the edge of the glass plates by the known sintering process; enabling hermetically sealing the edges of the two glass plates (1, 2) by welding and connecting metal sealing sheet (7) between the metallized layers (6) of the tow glass plates to be hermetically sealed. A brand new technology for manufacturing vacuum glass is provided by sintering metallized layers on the surface of the glass plates, and hermetically sealing the edges of the glass plates by use of the metallized layers and metal sealing sheet.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: December 2, 2014
    Assignee: Luoyang Landglass Technology Co., Ltd
    Inventors: Yanbing Li, Zhangsheng Wang
  • Patent number: 8899471
    Abstract: A method for sealing the curved vacuum glass comprises: first preparing metallized layer bonded with the glass plate on the edge surface of the curved glass to be sealed by locally heating the metal slurry coating; then air-tightly sealing the edges of two glass plates by using the metal brazing technology, or air-tightly sealing the edges of two glass plates by air-tightly welding the metal sealing sheet between the metallized layers of two glass plates to be sealed. A curved vacuum glass is also provided. The method makes the sealing part have firm connection, good air tightness and good thermal shock resistance. The sealing structure made of the metal sealing sheet is well compatible with the temperature deformation caused by the temperature difference between the internal and external glass plates of the vacuum glass.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: December 2, 2014
    Assignee: Luoyang Landglass Technology Co., Ltd
    Inventors: Yanbing Li, Zhangsheng Wang
  • Publication number: 20140345914
    Abstract: A metal-ceramic substrate and to a method for the production thereof. The metal-ceramic substrate having at least one ceramic layer (2), which is provided on a first surface side (2a) with at least one first metallization (3) and on a second surface side (2b), opposite from the first surface side (2a), with a second metallization (4), wherein the first metallization (3) is formed by a film or layer of copper or a copper alloy and is connected to the first surface side (2a) of the ceramic layer (2) with the aid of a “direct copper bonding” process. The second metallization (4) is formed by a layer of aluminum or an aluminum alloy.
    Type: Application
    Filed: February 13, 2013
    Publication date: November 27, 2014
    Inventors: Andreas Meyer, Christoph Wehe, Jürgen Schulz-Harder, Karsten Schmidt
  • Publication number: 20140345141
    Abstract: Embodiments of the invention are directed to bearing assemblies configured to effectively provide heat distribution from and/or heat dissipation for bearing element, bearing apparatuses including such bearing assemblies, and methods of operating such bearing assemblies and apparatuses. In an embodiment, a bearing assembly includes a plurality of superhard bearing elements distributed about an axis. Each superhard bearing element of the plurality of superhard bearing elements has a superhard material including a superhard surface. Additionally, a support ring structure that includes a support ring that supports the plurality of superhard bearing elements and a thermally-conductive structure in thermal communication with the superhard table of each of the plurality of superhard bearing elements. The thermally-conductive structure has a higher thermal conductivity than the support ring of the support ring structure.
    Type: Application
    Filed: June 19, 2014
    Publication date: November 27, 2014
    Inventors: Jair Jahaziel Gonzalez, S. Barrett Peterson
  • Publication number: 20140322458
    Abstract: The present invention discloses a planar glass sealing structure and a manufacturing method thereof, the planar glass sealing structure comprises, in a top-down order: a first glass substrate, an insulating layer, a metal sealing frame and a second glass substrate. The insulating layer is formed as a frame shape, and disposed on a peripheral margin of the first glass substrate; the metal sealing frame is formed by heating to melt a metal solder layer between the first and second glass substrate, and it can keep a fixed gap between the first and second glass substrate, so that an inner space thereof is kept in an excellent sealed condition. The present invention can ensure the sealing structure of two correspondingly assembled glass substrates, so that the inner space thereof is insulated from moisture and oxygen, so as to increase the performance and quality of the device.
    Type: Application
    Filed: June 27, 2013
    Publication date: October 30, 2014
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Yawei Liu, Tai-pi Wu, Chih-Che Liu
  • Patent number: 8869397
    Abstract: A method reinforcing an axisymmetric annular metal part by including a winding of composite material. A metal blank for the part is prepared, a cavity is formed therein that opens out into a coaxial inside face thereof, and that presents a right cross-section of axial extent that decreases from the inside towards the outside, a reinforcing yarn is wound in the cavity, the cavity is closed, the assembly is subjected to a hot isostatic compression process, and the blank is machined to obtain a final part.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: October 28, 2014
    Assignee: Messier-Bugatti-Dowty
    Inventors: Patrick Dunleavy, Jean-Michel Patrick Maurice Franchet, Gilles Charles Casimir Klein, Richard Masson
  • Publication number: 20140314556
    Abstract: Single-airfoil vanes each having an inner platform, an outer platform, and an airfoil are obtained by three-dimensionally weaving a fiber blank in a single piece, by shaping the fiber blank to obtain a single-piece fiber preform, and by densifying the preform with a matrix to obtain a vane of composite material forming a single piece with inner and outer platforms incorporated therein. A plurality of vanes is assembled together at an intermediate stage of densification to form a multi-airfoil composite material guide vane sector for a turbine nozzle or a compressor diffuser and the assembled-together vanes are bonded together.
    Type: Application
    Filed: October 23, 2012
    Publication date: October 23, 2014
    Applicants: HERAKLES, SNECMA
    Inventors: Eric Fremont, Antoine Beaujard, Romain Nunez
  • Publication number: 20140312751
    Abstract: A decorative frame for a domestic appliance has an edge-side area and an inner area adjoining the edge-side area inwards. The edge-side area has a thicker section defined by a thickness which is greater than a thickness in the inner area. The thicker section in the edge-side area is realized by a separate material part which is attached to a base frame.
    Type: Application
    Filed: November 13, 2012
    Publication date: October 23, 2014
    Inventors: Sebastian Knöll, Yves Lebrun, Virginie Willmes
  • Patent number: 8857698
    Abstract: The present invention relates to a method for manufacturing at least one portion of a seal ensuring gas-tightness between at least one first and one second glass panel in a glazing system, the method including the following steps: depositing a first adhesive layer on a first peripheral area of the first panel and a second adhesive layer on a second peripheral area of the second panel; welding a first metal seal element to the first adhesive layer; welding a second metal seal element or said first metal seal element to the second adhesive layer. According to the invention, the first and second adhesive layers are deposited using a high-speed oxy-fuel flame-spraying method.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: October 14, 2014
    Assignee: AGC Glass Europe
    Inventors: Olivier Bouesnard, Francois Closset
  • Publication number: 20140299653
    Abstract: The present invention provides a microstructure device comprising multiple substrates with the components of the device formed on the substrates. In order to maintain uniformity of the gap between the substrates, a plurality of pillars is provided and distributed in the gap so as to prevent decrease of the gap size. The increase of the gap size can be prevented by bonding the pillars to the components of the microstructure. Alternatively, the increase of the gap size can be prevented by maintaining the pressure inside the gap below the pressure under which the microstructure will be in operation. Electrical contact of the substrates on which the micromirrors and electrodes are formed can be made through many ways, such as electrical contact areas, electrical contact pads and electrical contact springs.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 9, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Satyadev Patel, Andrew G. Huibers, Peter Richards, Terry Tarn, Dietrich Dehlinger
  • Patent number: 8840007
    Abstract: The invention relates to a compound sealing method for glass plates, which is characterized by realizing the air-tight joint between compounded glass plates in a preset position by using a metal brazing technology. The invention provides a brand new technological method for the compound sealing between glass plates. The method has the advantages of firm connection in sealing positions, high air tightness, favorable thermal shock resistance and the like, and the annealing of toughened glass are avoided because of a lower brazing temperature used, thereby providing convenience to the processing of toughened vacuum glass, toughened insulated glass and other toughened compound glass products.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: September 23, 2014
    Assignee: Luoyang Landglass Technology Co., Ltd
    Inventor: Yanbing Li
  • Patent number: 8841576
    Abstract: A method for producing a metal sheet with a welded-on tube which has at least partially curved sections, wherein the tube is guided by at least one guide element onto the sheet, is pressed thereon with at least one pressure element and is welded thereto at least at some points and wherein the tube is bent to form the curved sections. In order to achieve the welding-on in a simple manner even in the curved sections, it is provided that a bending is carried out in a plurality of discrete steps, wherein in individual steps firstly the tube with the at least one guide element is bent around a last created welding point and thereafter a new welding point is created. Furthermore, the invention relates to a device for carrying out the method.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: September 23, 2014
    Assignee: DTEC GmbH
    Inventors: Michael Dietl, Arnold Teufel
  • Patent number: 8833635
    Abstract: Methods of screening a polycrystalline diamond element for suitability for electrical discharge machining (“EDM”). The method includes providing a PCD element including a plurality of bonded diamond grains, determining at least one characteristic of the PCD table correlated to electrical conductivity of the PCD element, and EDM the PCD element if the value of the at least one characteristic correlates to an electrical conductivity above a threshold value.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: September 16, 2014
    Assignee: US Synthetic Corporation
    Inventor: S. Barrett Peterson
  • Publication number: 20140239051
    Abstract: A method of making a cutter structure comprising super-hard material defining a rake face topology is provided.
    Type: Application
    Filed: July 17, 2012
    Publication date: August 28, 2014
    Applicants: ELEMENT SIX LIMITED, ELEMENT SIX ABRASIVES S.A.
    Inventors: John James Barry, Timothy Peter Mollart, Roger William Nigel Nilen
  • Patent number: 8800848
    Abstract: Methods for forming a wear resistant layer metallurgically bonded to at least a portion of a surface of a metallic substrate may generally comprise positioning hard particles adjacent the surface of the metallic substrate, and infiltrating the hard particles with a metallic binder material to form a wear resistant layer metallurgically bonded to the surface. In certain embodiments of the method, the infiltration temperature may be 50° C. to 100° C. greater than a liquidus temperature of the metallic binder material. The wear resistant layer may be formed on, for example, an exterior surface and/or an interior surface of the metallic substrate. Related wear resistant layers and articles of manufacture are also described.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: August 12, 2014
    Assignee: Kennametal Inc.
    Inventors: Prakash K. Mirchandani, Morris E. Chandler
  • Patent number: 8800849
    Abstract: A technique for joining porous foam material, such as graphite, metal or ceramic foam, to a substrate is described. The substrate can be metal, a thermoset plastic or a composite material. The substrate has a melting point below that of the foam material. The two are joined together by using the foam to apply heat locally at the surface of the substrate. Some or all of the foam is heated to the appropriate temperature at or above the melting point of the substrate material. The foam and the substrate are then brought together, with the heat from the foam melting or softening the substrate material so that the substrate material infuses into the pores of the foam. As the foam cools below the melting point temperature, the substrate material solidifies to create a mechanical bond between the foam and the substrate.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: August 12, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Eugene Jansen, Scott M. Maurer
  • Publication number: 20140212233
    Abstract: A cutting insert has only cutting edge portion thereof made of SiC whisker reinforced ceramics brazed to the shank with active solder. This provides improved cutting performance by increased toughness and high strength of the SiC whisker reinforced ceramics without limitation in shape while reducing manufacturing costs. The cutting insert includes a cutting edge portion made of SiC whisker reinforced ceramics, and a shank to which the cutting edge portion is mounted. The cutting edge portion is brazed to the shank using an active solder, and the whiskers are disorderedly arranged and agglomerated in the cutting edge portion.
    Type: Application
    Filed: September 3, 2012
    Publication date: July 31, 2014
    Applicant: TAEGUTEC, LTD.
    Inventors: Kwon Hee Park, Dae Yeop Lee
  • Patent number: 8789743
    Abstract: A method for the joining of ceramic pieces with a hermetically sealed joint comprising brazing a continuous layer of joining material between the two pieces. The wetting and flow of the joining material is controlled by the selection of the joining material, the joining temperature, the time at temperature, the joining atmosphere, and other factors. The ceramic pieces may be aluminum nitride and the pieces may be brazed with an aluminum alloy under controlled atmosphere. The joint material is adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: July 29, 2014
    Assignee: Component Re-Engineering Company, Inc.
    Inventors: Alfred Grant Elliot, Brent Donald Alfred Elliot, Frank Balma, Richard Erich Schuster, Dennis George Rex, Alexander Veytser
  • Publication number: 20140197227
    Abstract: A method for the joining of ceramic pieces with a hermetically sealed joint comprising brazing a continuous layer of joining material between the two pieces. The wetting and flow of the joining material is controlled by the selection of the joining material, the joining temperature, the time at temperature, the joining atmosphere, and other factors. The ceramic pieces may be aluminum nitride and the pieces may be brazed with an aluminum alloy under controlled atmosphere. The joint material is adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck.
    Type: Application
    Filed: November 20, 2012
    Publication date: July 17, 2014
    Applicant: Component Re-Engineering Company, Inc.
    Inventors: Alfred Grant Elliot, Brent Donald Alfred Elliot, Frank Balma, Richard Erich Schuster, Dennis George Rex, Alexander Veytser
  • Patent number: 8763883
    Abstract: A method for assembling at least two parts made of silicon carbide-based materials by non-reactive brazing is disclosed. The two parts are contacted with a non-reactive brazing composition. The assembly formed by the parts and the brazing composition is heated to a brazing temperature sufficient to melt the brazing composition. The parts and the brazing composition are cooled so that, after solidification of the brazing composition, a moderately refractory joint is formed. The non-reactive brazing composition is a binary alloy composed, in mass percentages, of about 46% to 99% silicon and 54% to 1% neodymium.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 1, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Valérie Chaumat, Jean-François Henne
  • Patent number: 8757471
    Abstract: The present disclosure generally relates to methods of using active braze techniques on beta-alumina. In some specific embodiments, the present disclosure relates to a method of sealing a portion of beta-alumina electrolyte, insulated collar and metal rings of a sodium-based thermal battery.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: June 24, 2014
    Assignee: General Electric Company
    Inventors: Sundeep Kumar, Mohandas Nayak, Mohamed Rahmane
  • Patent number: 8752753
    Abstract: A method of construction of a tungsten carbide/TSP insert for hard facing a wear surface comprises the steps of forming a tungsten carbide body (12) in a mold. After the molding step, a channel section slot (24) or pocket (24?) is created in the body before it has hardened substantially. The body is then heat-treated to harden it. A TSP body (32) is fitted in the slot/pocket (24/24?) so that it is a close sliding fit between the sides (18) of the slot, and is of the same depth as the slot. The TSP is (preferably) brazed into the slot. The insert has pips (30) on its edges (18) to facilitate welding to a substrate prior to a final brazing step.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: June 17, 2014
    Inventor: Mark Russell
  • Publication number: 20140159325
    Abstract: A substrate support assembly comprises a ceramic body and a thermally conductive base bonded to a lower surface of the ceramic body. The substrate support assembly further comprises a protective layer metal bonded to an upper surface of the ceramic body, wherein the protective layer is a bulk sintered ceramic article.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 12, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Vijay D. Parkhe, Kadthala Ramaya Narendrnath
  • Patent number: 8740048
    Abstract: Thermally stable polycrystalline constructions comprise a body having a polycrystalline ultra-hard phase and a plurality of empty voids. A population of the voids can be filled with a reaction product. The body is substantially free of a catalyst material. The construction comprises a first support member attached to the body by a first braze material. A second support member is attached to the body and the first support member by a second braze material. The construction may include a third support member attached to the body that is integral or separate from one of the other support members. The braze materials used to attached the support members can be the same or different, as can be the materials used to form the different support members.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: June 3, 2014
    Assignee: Smith International, Inc.
    Inventors: Georgiy Voronin, J. Daniel Belnap
  • Publication number: 20140110460
    Abstract: The present disclosure generally relates to methods of using active braze techniques on beta-alumina. In some specific embodiments, the present disclosure relates to a method of sealing a portion of beta-alumina electrolyte, insulated collar and metal rings of a sodium-based thermal battery.
    Type: Application
    Filed: August 27, 2012
    Publication date: April 24, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sundeep KUMAR, Mohandas NAYAK, Mohamed RAHMANE
  • Patent number: 8684255
    Abstract: A method of manufacturing an elongate insert configured to be integrated by CIC in a metal container, including coated yarns bonded together, the coated yarns being formed from metal-coated ceramic fibers. The method includes placing the coated yarns side by side in a bundle and pulling the fiber bundle through a shaping element so as to compact the fiber bundle transversely while forming the fiber bundle so as to have a defined cross section. A metal part incorporating a fibrous insert can be manufactured by the CIC technique.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: April 1, 2014
    Assignees: SNECMA, Messier-Bugatti-Dowty
    Inventors: Jean-Michel Patrick Maurice Franchet, Gilles Charles Casimir Klein, Richard Masson, Louis Salvat
  • Patent number: 8684256
    Abstract: A method for the joining of ceramic pieces with a hermetically sealed joint comprising brazing a continuous layer of joining material between the two pieces. The wetting and flow of the joining material is controlled by the selection of the joining material, the joining temperature, the time at temperature, the joining atmosphere, and other factors. The ceramic pieces may be aluminum nitride and the pieces may be brazed with an aluminum alloy under controlled atmosphere. The joint material is adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: April 1, 2014
    Assignee: Component Re-Engineering Company, Inc.
    Inventors: Alfred Grant Elliot, Brent Donald Alfred Elliot, Frank Balma, Richard Erich Schuster, Dennis George Rex, Alexander Veyster
  • Patent number: 8678269
    Abstract: A method for joining, assembling, at least two parts made of silicon carbide-based materials by non-reactive brazing is provided. According to the method, the parts are contacted with a non-reactive brazing composition, the assembly formed by the parts and the brazing composition is heated to a brazing temperature sufficient to melt the brazing composition totally or at least partly, and the parts and brazing composition are cooled to that, after solidification of the brazing composition, a moderately refractory joint is formed; wherein the non-reactive brazing composition is an alloy comprising, in atomic percentages, 45% to 65% silicon, 28% to 45% nickel and 5% to 15% aluminum. A brazing composition as defined above is provided. A brazing paste, suspension comprising a powder of said brazing composition and an organic binder as well as a joint and assembly obtained the foregoing method are also provided.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: March 25, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Valérie Chaumat, Jean-Francois Henne, Nadia Miloud-Ali