Fluorine Compound Containing Patents (Class 252/79.3)
  • Patent number: 8685273
    Abstract: This disclosure involves a formula, mixing procedure, etching technique and application of an etchant for revealing defects in T2SL's grown lattice matched to (100) GaSb. The etching agent comprises a (2.5:4.5:16.5:280) solution by volume or (1%:2%:9%:88%) by weight, of HF:H2O2:H2SO4:H2O. The etchant is made by mixing (49%) hydrofluoric aqueous solution with (30%) water-based peroxide, followed by sulfuric acid, and diluted with de-ionized H2O (DI-water).
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: April 1, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Edward H Aifer, Sergey I Maximenko
  • Publication number: 20140087551
    Abstract: Methods and compositions for etching polysilicon including aqueous compositions containing nitric acid and ammonium fluoride, and apparatus formed thereby.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 27, 2014
    Inventors: Jerome A. IMONIGIE, Prashant Raghu
  • Publication number: 20140083971
    Abstract: The present invention provides an etching solution for etching a piezoelectric film having a thin film of a perovskite structure grown to be a columnar structure on a lower electrode formed on a substrate and having a pyrochlore layer at an interface thereof with the lower electrode, wherein the etching solution comprises at least: a hydrofluoric acid type chemical comprising at least any of buffered hydrofluoric acid (BHF), hydrogen fluoride (HF), and diluted hydrofluoric acid (DHF); and nitric acid, and has a concentration by weight of hydrochloric acid of less than 10% and a weight ratio of hydrochloric acid to nitric acid (hydrochloric acid/nitric acid) of 1/4 or less. The present invention also provides a method of manufacturing a piezoelectric element to carry out etching using the etching solution.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 27, 2014
    Applicant: FUJIFILM CORPORATION
    Inventors: Takamichi FUJII, Akihiro MUKAIYAMA
  • Patent number: 8679980
    Abstract: (A) solid polymer particles being finely dispersed in the aqueous phase and containing pendant functional groups (a1) capable of strongly interacting and forming strong complexes with the metal of the surfaces to be polished, and pendant functional groups (a2) capable of interacting less strongly with the metal of the surfaces to be polished than the functional groups (a1); and (B) an organic non-polymeric compound dissolved in the aqueous phase and capable of interacting and forming strong, water-soluble complexes with the metal of the surfaces to be polished and causing an increase of the material removal rate MRR and the static etch rate SER of the metal surfaces to be polished with increasing concentration of the compound (B); a CMP process comprising selecting (A) and (B) and the use of the CMP agent and process for polishing wafers with ICs.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: March 25, 2014
    Assignee: BASF SE
    Inventors: Vijay Immanuel Raman, Ilshat Gubaydullin, Yuzhuo Li, Mario Brands, Yongqing Lan
  • Patent number: 8668840
    Abstract: A solution includes hydrofluoric acid, an alcohol, and a metallic salt, in which the metal has a redox potential that is positive relative to a hydrogen electrode at 25° C.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: March 11, 2014
    Assignee: ALTIS Semiconductor
    Inventors: Bruno Delahaye, Jean-Luc Baltzinger, Malamine Sanogo, Gaëlle Richou
  • Publication number: 20140061531
    Abstract: Disclosed is a method, process, solar cell design, and fabrication technology for high-efficiency, low-cost, crystalline silicon (Si) solar cells including but not restricted to solar grade single crystal Si (c-Si), multi-crystalline Si (mc-Si), poly-Si, and micro-Si solar cells and solar modules. The RTWCG solar cell fabrication technology creates a RTWCG SiOx thin film antireflection coating (ARC) with a graded index of refraction and a selective emitter (SE). The resulting top surface of the SiOx oxide can be textured (TO) concomitant with the growth process or through an additional mild wet chemical step.
    Type: Application
    Filed: March 11, 2011
    Publication date: March 6, 2014
    Inventors: Maria Faur, Horia M. Faur, Mircea Faur
  • Patent number: 8658053
    Abstract: Disclosed is an etchant composition employed for selectively etching a metallic material in production of a semiconductor device, which is an aqueous solution containing a fluorine compound, and a chelating agent having, in the molecular structure thereof, a phosphorus oxo-acid as a functional group; or is an aqueous solution containing a fluorine compound, a chelating agent having, in the molecular structure thereof, a phosphorus oxo-acid as a functional group, and an inorganic acid and/or an organic acid. Also disclosed is a method for producing a semiconductor device employing the etchant composition.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: February 25, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazuyoshi Yaguchi, Kojiro Abe, Masaru Ohto
  • Patent number: 8652967
    Abstract: Disclosed is an adjuvant for use in simultaneous polishing of a cationically charged material and an anionically charged material, wherein the adjuvant comprises a polyelectrolyte salt containing: (a) a mixture of a linear polyelectrolyte having a weight average molecular weight of 2,000˜50,000 with a graft type polyelectrolyte that has a weight average molecular weight of 1,000˜20,000 and comprises a backbone and a side chain; and (b) a basic material. CMP (chemical mechanical polishing) slurry comprising the above adjuvant and abrasive particles is also disclosed. The adjuvant comprising a mixture of a linear polyelectrolyte with a graft type polyelectrolyte makes it possible to increase polishing selectivity as compared to CMP slurry using the linear polyelectrolyte alone, and to obtain a desired range of polishing selectivity by controlling the ratio of the linear polyelectrolyte to the graft type polyelectrolyte.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: February 18, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Gi Ra Yi, Jong Pil Kim, Jung Hee Lee, Kwang Ik Moon, Chang Bum Ko, Soon Ho Jang, Seung Beom Cho, Young Jun Hong
  • Patent number: 8647526
    Abstract: The object of the present invention is a new inkjet printable etching composition comprising an etchant, which is activated by a second component. Thus, a further object is the use of this new composition in a process for the etching of surfaces semiconductor devices or surfaces of solar cell devices.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: February 11, 2014
    Assignee: Merck Patent Gesellschaft mit Beschrankter Haftung
    Inventors: Oliver Doll, Edward Plummer, Mark James, Ingo Koehler
  • Patent number: 8647523
    Abstract: This disclosure relates to an etching composition containing at least one sulfonic acid, at least one compound containing a halide anion, the halide being chloride or bromide, at least one compound containing a nitrate or nitrosyl ion, and water. The at least one sulfonic acid can be from about 25% by weight to about 95% by weight of the composition. The halide anion can be chloride or bromide, and can be from about 0.01% by weight to about 0.5% by weight of the composition. The nitrate or nitrosyl ion can be from about 0.1% by weight to about 20% by weight of the composition. The water can be at least about 3% by weight of the composition.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: February 11, 2014
    Assignees: Fujifilm Electronic Materials U.S.A., Inc., Fujifilm Corporation
    Inventors: Tomonori Takahashi, Tadashi Inaba, Atsushi Mizutani, Bing Du, William A. Wojtczak, Kazutaka Takahashi, Tetsuya Kamimura
  • Patent number: 8647527
    Abstract: A polishing composition contains a vanadate such as ammonium vanadate, sodium vanadate, and potassium vanadate and an oxygen donor such as hydrogen peroxide and ozone. It is preferable that the polishing composition further contains at least either one of abrasive grains and a pH adjusting agent. The polishing composition can be suitably used for polishing a silicon carbide wafer such as a hexagonal silicon carbide single crystal wafer.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: February 11, 2014
    Assignee: Fujimi Incorporated
    Inventors: Kazutoshi Hotta, Kanji Kawata
  • Patent number: 8642526
    Abstract: A removal composition and process for removing low-k dielectric material, etch stop material, and/or metal stack material from a rejected microelectronic device structure having same thereon. The removal composition includes hydrofluoric acid. The composition achieves at least partial removal of the material(s) from the surface of the microelectronic device structure having same thereon, for recycling and/or reuse of said structure, without damage to the underlying polysilicon or bare silicon layer employed in the semiconductor architecture.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: February 4, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Pamela M. Visintin, Ping Jiang, Michael B. Korzenski, Mackenzie King
  • Publication number: 20140024206
    Abstract: A etchant composition that includes, based on a total weight of the etchant composition, about 0.5 wt % to about 20 wt % of a persulfate, about 0.5 wt % to about 0.9 wt % of an ammonium fluoride, about 1 wt % to about 10 wt % of an inorganic acid, about 0.5 wt % to about 5 wt % of a cyclic amine compound, about 0.1 wt % to about 10.0 wt % of a sulfonic acid, about 5 wt % to about 10 wt % of an organic acid or a salt thereof, and a remainder of water. The etchant composition may be configured to etch a metal layer including copper and titanium, to form a metal wire that may be included in a thin film transistor array panel of a display device.
    Type: Application
    Filed: December 18, 2012
    Publication date: January 23, 2014
    Applicants: DONGWOO FINE-CHEM CO., LTD., SAMSUNG DISPLAY CO., LTD.
    Inventors: In-Bae KIM, Jong-Hyun CHOUNG, Seon-Il KIM, Hong-Sick PARK, Wang Woo LEE, Jae-Woo JEONG, In Seol KUK, Sang-Tae KIM, Young-Chul PARK, Keyong Bo SHIM, In-Ho YU, Young-Jin YOON, Suck-Jun LEE, Joon-Woo LEE, Sang-Hoon JANG, Young-Jun JIN
  • Patent number: 8632692
    Abstract: An improved composition and method for cleaning a surface of a semiconductor wafer are provided. The composition can be used to selectively remove a low-k dielectric material such as silicon dioxide, a photoresist layer overlying a low-k dielectric layer, or both layers from the surface of the wafer. The composition is formulated according to the invention to provide a desired removal rate of the low-k dielectric and/or photoresist from the surface of the wafer. By varying a fluorine ion component, and the amounts of the fluorine ion component and an acid component, and controlling the pH, a composition can be formulated in order to achieve a desired low-k dielectric removal rate that ranges from slow and controlled at about 50 to about 1000 angstroms per minute, to a relatively rapid removal of low-k dielectric material at greater than about 1000 angstroms per minute.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: January 21, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Donald L. Yates
  • Patent number: 8628682
    Abstract: Compositions comprising a fluorosurfactant and a hydrotrope are disclosed. The hydrotropes are either cationic or anionic benzene derivatives comprising fluoro-substituted functional groups and polar groups. The compositions are useful in various surfactant applications.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: January 14, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Thomas G. Calvarese, Yamaira Gonzalez, Viacheslav A. Petrov, Weiming Qiu, Anilkumar Raghavanpillai
  • Patent number: 8628673
    Abstract: Disclosed are: a resin composition for pattern formation, which enables the stable formation of a pattern at a level of the wavelength of light; a method for forming a pattern having a sea-island structure using the composition; and a process for producing a light-emitting element that can achieve high luminous efficiency properties.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: January 14, 2014
    Assignees: Kabushiki Kaisha Toshiba, Asahi Kasei E-Materials Corporation
    Inventors: Koji Asakawa, Ryota Kitagawa, Akira Fujimoto, Yoshiaki Shirae, Tomohiro Yorisue, Akihiko Ikeda
  • Publication number: 20140011352
    Abstract: A metal wire etchant including persulfate, a sulfonate, a fluorine compound, an azole-based compound, an organic acid, a nitrate, and a chlorine compound, and a method of making the same.
    Type: Application
    Filed: December 27, 2012
    Publication date: January 9, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jong-Hyun CHOUNG, In-Bae KIM, Seon-Il KIM, Hong Sick PARK, Jae Woo JEONG, Gyu-Po KIM, Won-Guk SEO, Hyun-Cheol SHIN, Ki-Beom LEE, Sam-Young CHO, Seung-Yeon HAN
  • Patent number: 8623236
    Abstract: A titanium nitride-stripping liquid for stripping a titanium nitride coating film, the titanium nitride-stripping liquid being capable of stripping a titanium nitride coating film even in a semiconductor multilayer laminate having particularly a layer that includes tungsten or a tungsten alloy, without corrosion of this layer is provided, and furthermore, a titanium nitride-stripping liquid which can strip a titanium nitride coating film without affecting an insulating layer is provided. A titanium nitride-stripping liquid including hydrofluoric acid, hydrogen peroxide and water, and further including an inorganic acid other than hydrofluoric acid.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: January 7, 2014
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Akira Kumazawa, Takahiro Eto, Takayuki Haraguchi
  • Patent number: 8591764
    Abstract: The disclosure relates to chemical mechanical planarization (CMP) polishing compositions including proline and a fluorochemical surfactant. The wafer polishing composition may be used as a solution substantially free of abrasive particles, the composition of which can be adjusted to control Oxide Removal Rate and oxide over nitride Selectivity Ratio in Shallow Trench Isolation (STI) processing of semiconductor wafers using a fixed abrasive CMP process. In certain embodiments, the disclosure provides a working liquid for fixed abrasive CMP including proline and a fluorochemical surfactant at a pH from 9 to 11. When used in a fixed abrasive CMP system and method for STI, exemplary working liquids may yield an Oxide Removal Rate of at least 500 angstroms per minute, and an oxide over nitride Selectivity Ratio of at least 5.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: November 26, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: John J. Gagliardi, Patricia M. Savu
  • Publication number: 20130299452
    Abstract: A glass etching medium and a method for etching the surface of a glass sheet to modify surface flaw characteristics without degrading the optical quality of the sheet surface, wherein the etching medium is a thickened aqueous acidic fluoride-containing paste comprising at least one dissolved, water-soluble, high-molecular-weight poly (ethylene oxide) polymer thickener.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 14, 2013
    Applicant: Corning Incorporated
    Inventors: Timothy Edward Myers, Shyamala Shanmugam, Alan Thomas Stephens, II, Matthew John Towner, Kevin William Uhlig, Lu Zhang
  • Patent number: 8580158
    Abstract: Some embodiments include methods of removing silicon dioxide in which the silicon dioxide is exposed to a mixture that includes activated hydrogen and at least one primary, secondary, tertiary or quaternary ammonium halide. The mixture may also include one or more of thallium, BX3 and PQ3, where X and Q are halides. Some embodiments include methods of selectively etching undoped silicon dioxide relative to doped silicon dioxide, in which thallium is incorporated into the doped silicon dioxide prior to the etching. Some embodiments include compositions of matter containing silicon dioxide doped with thallium to a concentration of from about 1 weight % to about 10 weight %.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: November 12, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Nishant Sinha
  • Publication number: 20130295773
    Abstract: Embodiments of the invention may include first providing a stack of layers including a semiconductor substrate, a buried oxide layer on the semiconductor substrate, a semiconductor-on-insulator layer on the buried-oxide layer, a nitride layer on the semiconductor-on-insulator layer, and a silicon oxide layer on the nitride layer. A first opening and second opening with a smaller cross-sectional area than the first opening are then formed in the silicon oxide layer, the nitride layer, the semiconductor-on-insulator layer, and the buried-oxide layer. The first opening and the second opening are then etched with a first etching gas. The first opening and the second opening are then etched with a second etching gas, which includes the first etching gas and a halogenated silicon compound, for example, silicon tetrafluoride or silicon tetrachloride. In one embodiment, the first etching gas includes hydrogen bromide, nitrogen trifluoride, and oxygen.
    Type: Application
    Filed: April 18, 2013
    Publication date: November 7, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Habib Hichri, Xi Li, Richard Wise
  • Patent number: 8562855
    Abstract: In etching processing of silicon, in particular anisotropic etching processing of silicon in a manufacturing step of MEMS parts, an etching liquid having a long life of etching liquid and an etching method are provided by suppressing a lowering of an etching rate at the time of warming which is characteristic of a hydroxylamine-containing etching liquid. A silicon etching liquid which is an alkaline aqueous solution containing an alkali metal hydroxide, hydroxylamine and an inorganic carbonate compound and having a pH of 12 or more and which is able to anisotropically dissolve monocrystalline silicon therein, and an etching method of silicon using this etching liquid are provided.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: October 22, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazuyoshi Yaguchi, Ryuji Sotoaka
  • Publication number: 20130244443
    Abstract: A method for manufacturing a semiconductor substrate product having: providing an etching liquid containing water, a hydrofluoric acid compound and an organic solvent, and applying the etching liquid to a semiconductor substrate, the semiconductor substrate having a silicon layer and a silicon oxide layer, the silicon layer containing an impurity, and thereby selectively etching the silicon oxide layer.
    Type: Application
    Filed: February 19, 2013
    Publication date: September 19, 2013
    Applicant: FUJIFILM CORPORATION
    Inventors: Atsushi MIZUTANI, Tetsuya KAMIMURA, Akiko YOSHII, Tetsuya SHIMIZU
  • Publication number: 20130244444
    Abstract: A method of producing a semiconductor substrate product, having the steps of: providing an etching liquid containing water, a hydrofluoric acid compound, and a water-soluble polymer; and applying the etching liquid to a semiconductor substrate, the semiconductor substrate having a silicon layer and a silicon oxide layer, the silicon layer containing an impurity, and thereby selectively etching the silicon oxide layer.
    Type: Application
    Filed: February 19, 2013
    Publication date: September 19, 2013
    Applicant: FUJIFILM CORPORATION
    Inventors: Atsushi MIZUTANI, Akiko YOSHII, Tetsuya KAMIMURA, Tetsuya SHIMIZU
  • Patent number: 8529787
    Abstract: This invention provides a dense, high-purity colloidal silica containing silica secondary particles having a branched and/or bent structure, and a production method thereof. Specifically, this invention provides a method for producing a colloidal silica, comprising the steps of 1) preparing a mother liquid containing an alkali catalyst and water, and having a pH of 9 to 12; and 2) adding a hydrolysis liquid obtained by hydrolysis of an alkyl silicate to the mother liquid, wherein the step of adding the hydrolysis liquid to the mother liquid sequentially comprises A) step 1 of adding the hydrolysis liquid until the pH of the resulting liquid mixture becomes less than 7; B) step 2 of adding an aqueous alkali solution until the pH of the liquid mixture becomes 7 or more; and C) step 3 of adding the hydrolysis liquid while maintaining the pH of the liquid mixture at 7 or more, and a colloidal silica containing silica secondary particles having a branched and/or bent structure, obtained by this method.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: September 10, 2013
    Assignee: Fuso Chemical Co., Ltd.
    Inventors: Kazuaki Higuchi, Hideki Otsuki
  • Publication number: 20130224898
    Abstract: Compositions and methods for chemical texturing a surface of a polycrystalline silicon wafer to be used in the manufacture of solar cells provide increased efficiency in the manufacture and operation of solar cells. The compositions and methods disclosed herein include first and second components, wherein the first component is a UKON etch composition, including a hydrofluoric acid/nitric acid mixture and water, while the second component includes a silicon wafer texturing enhancer (SWTE).
    Type: Application
    Filed: February 27, 2013
    Publication date: August 29, 2013
    Applicant: AVANTOR PERFORMANCE MATERIALS, INC.
    Inventor: AVANTOR PERFORMANCE MATERIALS, INC.
  • Patent number: 8513126
    Abstract: A chemical mechanical polishing slurry composition is provided, having, as initial components: water; an abrasive, wherein the abrasive is colloidal silica abrasive; a halogenated quaternary ammonium compound according to formula (I); optionally, a diquaternary substance according to formula (II); and, optionally, a pH adjusting agent selected from phosphoric acid, nitric acid, sulfuric acid, hydrochloric acid, ammonium hydroxide and potassium hydroxide; wherein the chemical mechanical polishing slurry composition has a pH of 2 to <7. Also, provided are methods for making the chemical mechanical polishing slurry composition and for using the chemical mechanical polishing composition to polish a substrate.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: August 20, 2013
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Zhendong Liu, Yi Guo, Kancharla-Arun Kumar Reddy, Guangyun Zhang
  • Patent number: 8512593
    Abstract: Provided herein are chemical mechanical polishing (CMP) slurries and methods for producing the same. Embodiments of the invention include CMP slurries that include (a) a metal oxide; (b) a pH-adjusting agent; (c) a fluorinated surfactant; and (d) a quaternary ammonium surfactant. In some embodiments, the fluorinated surfactant is a non-ionic perfluoroalkyl sulfonyl compound. Also provided herein are methods of polishing a polycrystalline silicon surface, including providing a slurry composition according to an embodiment of the invention to a polycrystalline silicon surface and performing a CMP process to polish the polycrystalline silicon surface.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: August 20, 2013
    Assignee: Cheil Industries, Inc.
    Inventors: Jae Hoon Choung, In Kyung Lee
  • Patent number: 8512587
    Abstract: Etch solutions for selectively etching doped oxide materials in the presence of silicon nitride, titanium nitride, and silicon materials, and methods utilizing the etch solutions, for example, in construction of container capacitor constructions are provided. The etch solutions are formulated as a mixture of hydrofluoric acid and an organic acid having a dielectric constant less than water, optionally, with an inorganic acid, and a pH of 1 or less.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Niraj Rana, Prashant Raghu, Kevin Torek
  • Patent number: 8492276
    Abstract: A chemical mechanical polishing aqueous dispersion is used to polish a polishing target that includes an interconnect layer that contains tungsten. The chemical mechanical polishing aqueous dispersion includes: (A) a cationic water-soluble polymer; (B) an iron (III) compound; and (C) colloidal silica particles. The content (MA) (mass %) of the cationic water-soluble polymer (A) and the content (MB) (mass %) of the iron (III) compound (B) satisfy the relationship “MA/MB=0.004 to 0.1”. The chemical mechanical polishing aqueous dispersion has a pH of 1 to 3.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: July 23, 2013
    Assignees: JSR Corporation, Kabushiki Kaisha Toshiba
    Inventors: Taichi Abe, Hirotaka Shida, Akihiro Takemura, Mitsuru Meno, Shinichi Hirasawa, Kenji Iwade, Takeshi Nishioka
  • Patent number: 8486282
    Abstract: Surface texturing of the transparent conductive oxide (TCO) front contact of a thin film photovoltaic (TFPV) solar cell is needed to enhance the light-trapping capability of the TFPV solar cells and thus improving the solar cell efficiency. Embodiments of the current invention describe chemical formulations and methods for the wet etching of the TCO. The formulations and methods may be optimized to tune the surface texturing of the TCO as desired.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: July 16, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Zhi-Wen Sun, Nitin Kumar, Guizhen Zhang, Minh Anh Nguyen, Nikhil Kalyankar
  • Patent number: 8481434
    Abstract: To remove the deposit including a high dielectric constant film deposited on an inside of a processing chamber, by using a cleaning gas activated only by heat. The method includes the steps of: loading a substrate or a plurality of substrates into the processing chamber; performing processing to deposit the high dielectric constant film on the substrate by supplying processing gas into the processing chamber; unloading the processed substrate from the inside of the processing chamber; and cleaning the inside of the processing chamber by supplying a halide gas and an oxygen based gas into the processing chamber, and removing the deposit including the high dielectric constant film deposited on the inside of the processing chamber, and in the step of cleaning the inside of the processing chamber, the concentration of the oxygen based gas in the halide gas and the oxygen based gas is set to be less than 7%.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: July 9, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hironobu Miya, Eisuke Nishitani, Yuji Takebayashi, Masanori Sakai, Hirohisa Yamazaki, Toshinori Shibata, Minoru Inoue
  • Patent number: 8480920
    Abstract: A chemical mechanical polishing aqueous dispersion that is used to polish a polishing target that includes a wiring layer that contains tungsten, the chemical mechanical polishing aqueous dispersion including: (A) a cationic water-soluble polymer; (B) an iron (III) compound; and (C) colloidal silica having an average particle diameter calculated from a specific surface area determined by the BET method of 10 to 60 nm, the content (MA) (mass %) of the cationic water-soluble polymer (A) and the content (MC) (mass %) of the colloidal silica (C) satisfying the relationship “MA/MC=0.0001 to 0.003”, and the chemical mechanical polishing aqueous dispersion having a pH of 1 to 3.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 9, 2013
    Assignee: JSR Corporation
    Inventors: Hirotaka Shida, Akihiro Takemura, Taichi Abe
  • Publication number: 20130171765
    Abstract: An aqueous acidic solution and an aqueous acidic etching solution suitable for texturizing the surface of single crystal and polycrystal silicon substrates, hydrofluoric acid; nitric acid; and at least one anionic polyether, which is surface active; a method for texturizing the surface of single crystal and polycrystal silicon substrates comprising the step of (1) contacting at least one major surface of a substrate with the said aqueous acidic etching solution; (2) etching the at least one major surface of the substrate for a time and at a temperature sufficient to obtain a surface texturization consisting of recesses and protrusions; and (3) removing the at least one major surface of the substrate from the contact with the aqueous acidic etching solution; and a method for manufacturing photovoltaic cells and solar cells using the said solution and the said texturizing method.
    Type: Application
    Filed: August 25, 2011
    Publication date: July 4, 2013
    Applicant: BASF SE
    Inventors: Simon Braun, Andreas Klipp, Cornelia Roeger-Goepfert, Christian Bittner, MeiChin Shen, Chengwei Lin
  • Patent number: 8475677
    Abstract: An etchant gas and a method for removing at least a portion of a late transition metal structure. The etchant gas includes PF3 and at least one oxidizing agent, such as at least one of oxygen, ozone, nitrous oxide, nitric oxide and hydrogen peroxide. The etchant gas provides a method of uniformly removing the late transition metal structure or a portion thereof. Moreover, the etchant gas facilitates removing a late transition metal structure with an increased etch rate and at a decreased etch temperature. A method of removing a late transition metal without removing more reactive materials proximate the late transition metal and exposed to the etchant gas is also disclosed.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: July 2, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Eugene P. Marsh
  • Patent number: 8465662
    Abstract: Provided is an etching composition for electively removing silicon dioxide at a high etch rate, more particularly, a composition for wet etching of silicon dioxide, including 1 to 40 wt % of hydrogen fluoride (HF); 5 to 40 wt % of ammonium hydrogen fluoride (NH4HF2); and water, and further including a surfactant to improve selectivity of the silicon dioxide and a silicon nitride film. Since the composition for wet etching of silicon dioxide has the high etch selectivity of the silicon dioxide to the silicon nitride film, it is useful for selectively removing silicon dioxide.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: June 18, 2013
    Assignee: Techno Semichem Co., Ltd.
    Inventors: Jung Hun Lim, Dae Hyun Kim, Chang Jin Yoo, Seong Hwan Park
  • Publication number: 20130146805
    Abstract: The present disclosure provides a chemical etchant which is capable of removing Ge and Ge-rich SiGe alloys in a controlled manner. The chemical etchant of the present disclosure includes a mixture of a halogen-containing acid, hydrogen peroxide, and water. Water is present in the mixture in an amount of greater than 90% by volume of the entire mixture. The present disclosure also provides a method of making such a chemical etchant. The method includes mixing, in any order, a halogen-containing acid and hydrogen peroxide to provide a halogen-containing acid/hydrogen peroxide mixture, and adding water to the halogen-containing acid/hydrogen peroxide mixture. Also disclosed is a method of etching a Ge or Ge-rich SiGe alloy utilizing the chemical etchant of the present application.
    Type: Application
    Filed: February 4, 2013
    Publication date: June 13, 2013
    Applicants: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: International Business Machines Corporation, S.O. I. Tec Silicon on Insulator Technologies
  • Publication number: 20130130508
    Abstract: Texturing composition for texturing silicon wafers having one or more surfactants. Methods of texturing silicon wafers having the step of wetting said wafer with a texturing composition having one or more surfactants.
    Type: Application
    Filed: May 18, 2012
    Publication date: May 23, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Aiping Wu, Madhukar Bhaskara Rao, Dnyanesh Chandrakant Tamboli
  • Publication number: 20130122715
    Abstract: This disclosure involves a formula, mixing procedure, etching technique and application of an etchant for revealing defects in T2SL's grown lattice matched to (100) GaSb. The etching agent comprises a (2.5:4.5:16.5:280) solution by volume or (1%:2%:9%:88%) by weight, of HF:H2O2:H2SO4:H2O. The etchant is made by mixing (49%) hydrofluoric aqueous solution with (30%) water-based peroxide, followed by sulfuric acid, and diluted with de-ionized H2O (DI-water).
    Type: Application
    Filed: November 6, 2012
    Publication date: May 16, 2013
    Inventors: Edward H Aifer, Sergey I. Maximenko
  • Patent number: 8440097
    Abstract: A chemical mechanical polishing composition useful for chemical mechanical polishing a semiconductor wafer containing an interconnect metal is provided, comprising, as initial components: water; an azole inhibitor; an alkali metal organic surfactant; a hydrotrope; a phosphorus containing agent; optionally, a non-saccharide water soluble polymer; optionally, a water soluble acid compound of formula I, wherein R is selected from a hydrogen and a C1-5 alkyl group, and wherein x is 1 or 2; optionally, a complexing agent; optionally, an oxidizer; optionally, an organic solvent; and, optionally, an abrasive.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: May 14, 2013
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Hamed Lakrout, Jinjie Shi, Joseph Letizia, Xu Li, Thomas H. Kalantar, Francis Kelley, J. Keith Harris, Christopher J. Tucker
  • Publication number: 20130102158
    Abstract: A liquid composition for wet etching has improved selectivity for polysilicon over silicon dioxide, even when the polysilicon is heavily doped and/or the silicon dioxide is a low temperature oxide. The composition comprises 0.05-0.4 percent by weight hydrofluoric acid, 15-40 percent by weight nitric acid, 55-85 percent by weight sulfuric acid and 2-20 percent by weight water. A method and apparatus for wet etching using the composition are also disclosed.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 25, 2013
    Applicant: LAM RESEARCH AG
    Inventor: Stefan DETTERBECK
  • Patent number: 8409467
    Abstract: A polishing liquid for polishing a barrier layer of a semiconductor integrated circuit, which liquid includes: a quaternary ammonium cation; a corrosion inhibiting agent; a polymer compound having a sulfo group at a terminal; inorganic particles; and an organic acid, the pH of the polishing liquid being in the range of 1 to 7.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: April 2, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Toshiyuki Saie, Tetsuya Kamimura
  • Patent number: 8404143
    Abstract: The present disclosure provides a concentrate for use in chemical mechanical polishing slurries, and a method of diluting that concentrate to a point of use slurry. The concentrate comprises abrasive, complexing agent, and corrosion inhibitor, and the concentrate is diluted with water and oxidizer. These components are present in amounts such that the concentrate can be diluted at very high dilution ratios, without affecting the polishing performance.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: March 26, 2013
    Assignee: Fujifilm Planar Solutions, LLC
    Inventors: Hyungjun Kim, Richard Wen, Bin Hu, Minae Tanaka, Deepak Mahulikar
  • Publication number: 20130056438
    Abstract: Disclosed is a composition for and applying said method for micro etching of copper or copper alloys during manufacture of printed circuit boards. Said composition comprises a copper salt, a source of halide ions, a buffer system and a benzothiazole compound as an etch refiner. The inventive composition and method is especially useful for manufacture of printed circuit boards having structural features of ?100 ?m.
    Type: Application
    Filed: May 26, 2010
    Publication date: March 7, 2013
    Applicant: ATOTECH DEUTSCHLAND GMBH
    Inventors: Dirk Tews, Christian Sparing, Martin Thoms
  • Publication number: 20130048904
    Abstract: The present invention provides an etching liquid for a multilayer thin film containing a copper layer and a titanium layer, and a method of using it for etching a multilayer thin film containing a copper layer and a titanium layer, that is, an etching liquid for a multilayer thin film containing a copper layer and a titanium layer, which comprises (A) hydrogen peroxide, (B) nitric acid, (C) a fluoride ion source, (D) an azole, (E) a quaternary ammonium hydroxide and (F) a hydrogen peroxide stabilizer and has a pH of from 1.5 to 2.5, and a etching method of using it.
    Type: Application
    Filed: January 28, 2011
    Publication date: February 28, 2013
    Applicants: SHARP KABUSHIKI KAISHA, MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Tomoyuki Adaniya, Satoshi Okabe, Toshiyuki Gotou, Taketo Maruyama, Kazuki Kobayashi, Keiichi Tanaka, Wataru Nakamura, Kenichi Kitoh, Tetsunori Tanaka
  • Patent number: 8377325
    Abstract: Exemplary embodiments of the present invention provide a metal wiring etchant. A metal wiring etchant according to an exemplary embodiment of the present invention includes ammonium persulfate, an organic acid, an ammonium salt, a fluorine-containing compound, a glycol-based compound, and an azole-based compound.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: February 19, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Nam-Seok Suh, Sun-Young Hong, Jong-Hyun Choung, Bong-Kyun Kim, Hong-Sick Park, Jean-Ho Song, Wang-Woo Lee, Do-Won Kim, Sang-Woo Kim, Won-Guk Seo, Hyun-Cheol Shin, Ki-Beom Lee, Sam-Young Cho
  • Publication number: 20130034923
    Abstract: An etching composition, a method of forming a metal pattern using the etching composition, and a method of manufacturing a display substrate are disclosed. The etching composition includes about 0.1% by weight to about 25% by weight of ammonium persulfate, about 0.1% by weight to about 25% by weight of an organic acid, about 0.01% by weight to about 5% by weight of a chelating agent, about 0.01% by weight to about 5% by weight of a fluoride compound, about 0.01% by weight to about 5% by weight of a chloride compound, about 0.01% by weight to about 2% by weight of an azole-based compound and a remainder of water. Thus, a copper layer may be stably etched to improve a reliability of manufacturing the metal pattern and the display substrate.
    Type: Application
    Filed: March 28, 2012
    Publication date: February 7, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: In-Bae KIM, Jong-Hyun CHOUNG, Ji-Young PARK, Seon-Il KIM, Jae-Woo JEONG, Sang Gab KIM, Sang-Woo KIM, Ki-Beom LEE, Dae-Woo LEE, Sam-Young CHO
  • Patent number: 8366958
    Abstract: The present invention provides an etching solution for silver or silver alloy including at one at least ammonium compound represented by the formula (1), (2) or (3) below and an oxidant: wherein each of the variables is as defined herein.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: February 5, 2013
    Assignee: Inktec Co., Ltd.
    Inventors: Kwang-Choon Chung, Hyun-Nam Cho, Young-Kwan Seo
  • Patent number: 8366954
    Abstract: Treating thin film amorphous or mono- or multi-crystalline silicon wafer substrate for use in a photovoltaic cell, the wafer substrate having at least one of a pn- or np junction and a partial phosphosilicate or borosilicate glass layer on a top surface of the wafer substrate, to increase at least one of (a) the sheet resistance of he wafer and (b) the power density level of the photovoltaic cell made from said wafer. The treatment solution being an acidic treatment solution of a buffered oxide etch (BOE) solution of at least one tetraalkylammonium hydroxide, acetic acid, at least one non-ionic surfactant, at least one metal chelating agent, a metal free source of ammonia, a metal free source, of fluoride ions, and water, mixed with an oxidizer solution and optionally water.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: February 5, 2013
    Assignee: Avantor Performance Materials, BV
    Inventors: Joannes T. V. Hoogboom, Johannes A. E. Oosterholt, Sabrina Ritmeijer, Lucas M. H. Groenewoud