With Diode Or Transistor In Reverse Path Patents (Class 257/121)
  • Patent number: 10804263
    Abstract: A power MOSFET IC device including a source-down enhancement mode transistor formed in a semiconductor substrate and a depletion mode transistor formed in a doped region of the semiconductor substrate. A gate terminal of the depletion mode transistor is formed over at least a portion of the doped region as a field plate that is switchably connectable to a source terminal of the source-down enhancement mode transistor. A control circuit may be provided to facilitate a connection between the gate terminal of the depletion mode transistor and the source terminal of the source-down enhancement mode transistor when the power MOSFET integrated circuit is in an OFF state. The control circuit may also be configured to facilitate connection of the gate terminal of the depletion mode transistor to a gate terminal of the source-down enhancement mode FET device or to an external driver that provides a reference voltage, when the power MOSFET is in an ON state.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: October 13, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Haian Lin, Frank Baiocchi
  • Patent number: 10276708
    Abstract: A reverse-blocking IGBT (insulated gate bipolar transistor) includes a plurality of IGBT cells disposed in a device region of a semiconductor substrate, a reverse-blocking edge termination structure disposed in a periphery region of the semiconductor substrate which surrounds the device region, one or more trenches formed in the periphery region between the reverse-blocking edge termination structure and an edge face of the semiconductor substrate, a p-type dopant source at least partly filling the one or more trenches, and a continuous p-type doped region disposed in the periphery region and formed from p-type dopants out-diffused from the p-type dopant source. The continuous p-type doped region extends from a top surface of the semiconductor substrate to a bottom surface of the semiconductor substrate.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: April 30, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Matteo Dainese, Fabio Brucchi
  • Patent number: 10276557
    Abstract: An ESD protection device includes a semiconductor substrate of p-type conductivity, an epitaxial layer of p-type conductivity, a buried layer of n-type conductivity, device isolation layers, a first well of n-type conductivity, an emitter formed by implanting p-type impurities into an upper portion of the first well, a second well of p-type conductivity, a collector formed by implanting p-type impurities into an upper portion of the second well, a first P-body region interposed between the second well and the collector, a third well of n-type conductivity, a base formed by implanting n-type impurities into an upper surface portion of the third well, and a first deep well of n-type conductivity, interposed between the third well and the buried layer.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: April 30, 2019
    Assignee: DB Hitek Co., Ltd.
    Inventors: Jung Woo Han, Woo Suk Park, Jong Min Kim
  • Patent number: 9899366
    Abstract: An electronic device is formed by a sequence of at least two thyristors coupled in series in a same conduction direction. Each thyristor has a gate of a first conductivity type. The gates of the first conductivity type for the thyristors in the sequence are coupled together in order to form a single control gate.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: February 20, 2018
    Assignee: STMicroelectronics SA
    Inventors: Johan Bourgeat, Jean Jimenez
  • Patent number: 9608072
    Abstract: A semiconductor device is provided with a first well region of a first conduction type having a first voltage (voltage VB) applied thereto, a second well region of a second conduction type formed in the surface layer section of the first well region and having a second voltage (voltage VS) different from the first voltage applied thereto, and a charge extracting region of the first conduction type formed in the surface layer section of the second well region and having the first voltage applied thereto. This inhibits the operation of a parasitic bipolar transistor.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: March 28, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Hiroshi Kanno, Hitoshi Sumida, Masaharu Yamaji
  • Patent number: 9455253
    Abstract: A bidirectional switch formed in a substrate includes first and second main vertical thyristors in antiparallel connection. A third auxiliary vertical thyristor has a rear surface layer in common with the rear surface layer of the first thyristor. A peripheral region surrounds the thyristors and connects the rear surface layer to a layer of the same conductivity type of the third thyristor located on the other side of the substrate. A metallization connects the rear surfaces of the first and second thyristors. An insulating structure is located between the rear surface layer of the third thyristor and the metallization. The insulating structure extends under the periphery of the first thyristor. The insulating structure includes a region made of an insulating material and a complementary region made of a semiconductor material.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: September 27, 2016
    Assignee: STMicroelectronics (Tours) SAS
    Inventors: Samuel Menard, Dalaf Ali
  • Patent number: 9385196
    Abstract: Integrated circuits are presented having high voltage IGBTs with integral emitter shorts and fabrication processes using wafer bonding or gown epitaxial silicon for controlled drift region thickness and fast switching speed.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: July 5, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jacek Korec, John Manning Savidge Neilson, Sameer Pendharkar
  • Patent number: 9041143
    Abstract: The semiconductor device includes a first semiconductor layer of the first conductive type, a second semiconductor layer having the cubic crystalline structure formed on the first semiconductor layer, an electrode formed on the second semiconductor layer, and a reactive region formed between the second semiconductor layer and the electrode. The second semiconductor layer includes an upper surface that is tilted from the (100) plane. The reactive region includes at least one element constituting the second semiconductor layer, at least one element constituting the electrode, and forming a protuberance extending toward the second semiconductor layer.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: May 26, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yukie Nishikawa, Nobuhiro Takahashi, Hironobu Shibata
  • Patent number: 9006863
    Abstract: A diode string voltage adapter includes diodes formed in a substrate of a first conductive type. Each diode includes a deep well region of a second conductive type formed in the substrate. A first well region of the first conductive type formed on the deep well region. A first heavily doped region of the first conductive type formed on the first well region. A second heavily doped region of the second conductive type formed on the first well region. The diodes are serially coupled to each other. A first heavily doped region of a beginning diode is coupled to a first voltage. A second heavily doped region of each diode is coupled to a first heavily doped region of a next diode. A second heavily doped region of an ending diode provides a second voltage. The deep well region is configured to be electrically floated.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Peng Hsieh, Jaw-Juinn Horng
  • Patent number: 8946766
    Abstract: Bi-directional silicon controlled rectifier device structures and design structures, as well as fabrication methods for bi-directional silicon controlled rectifier device structures. A well of a first conductivity type is formed in a device region, which may be defined from a device layer of a semiconductor-on-insulator substrate. An anode of a first silicon controlled rectifier is formed in the first well. A cathode of a second silicon controlled rectifier is formed in the first well. The anode of the first silicon controlled rectifier has the first conductivity type. The cathode of the second silicon controlled rectifier has a second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Junjun Li
  • Publication number: 20140374790
    Abstract: A structure of trench MOS rectifier and a method of forming the same are disclosed including a plurality of trenches formed in the n? drift epitaxial layer, a plurality of MOS structure formed on the substrate either in discrete islands or in rows. Asides the MOS gates there are source regions formed under the mesas. A top metal served as an anode is then formed on the resulted front surface connecting the MOS gates and the adjacent source regions.
    Type: Application
    Filed: March 17, 2014
    Publication date: December 25, 2014
    Applicant: Chip Integration Tech.Co., Ltd.
    Inventor: QINHAI JIN
  • Publication number: 20140332843
    Abstract: Junction-isolated blocking voltage devices and methods of forming the same are provided. In certain implementations, a blocking voltage device includes an anode terminal electrically connected to a first p-well, a cathode terminal electrically connected to a first n-well, a ground terminal electrically connected to a second p-well, and an n-type isolation layer for isolating the first p-well from a p-type substrate. The first p-well and the first n-well operate as a blocking diode. The blocking voltage device further includes a PNPN silicon controlled rectifier (SCR) associated with a P+ region formed in the first n-well, the first n-well, the first p-well, and an N+ region formed in the first p-well. Additionally, the blocking voltage device further includes an NPNPN bidirectional SCR associated with an N+ region formed in the first p-well, the first p-well, the n-type isolation layer, the second p-well, and an N+ region formed in the second p-well.
    Type: Application
    Filed: July 29, 2014
    Publication date: November 13, 2014
    Inventors: David J. Clarke, Javier Alejandro Salcedo, Brian B. Moane, Juan Luo, Seamus Murnane, Kieran K. Heffernan, John Twomey, Stephen Denis Heffernan, Gavin Patrick Cosgrave
  • Publication number: 20140264431
    Abstract: A III-N enhancement-mode transistor includes a III-N structure including a conductive channel, source and drain contacts, and a gate electrode between the source and drain contacts. An insulator layer is over the III-N structure, with a recess formed through the insulator layer in a gate region of the transistor, with the gate electrode at least partially in the recess. The transistor further includes a field plate having a portion between the gate electrode and the drain contact, the field plate being electrically connected to the source contact. The gate electrode includes an extending portion that is outside the recess and extends towards the drain contact. The separation between the conductive channel and the extending portion of the gate electrode is greater than the separation between the conductive channel and the portion of the field plate that is between the gate electrode and the drain contact.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventor: Rakesh K. Lal
  • Publication number: 20140239343
    Abstract: Bi-directional silicon controlled rectifier device structures and design structures, as well as fabrication methods for bi-directional silicon controlled rectifier device structures. A well of a first conductivity type is formed in a device region, which may be defined from a device layer of a semiconductor-on-insulator substrate. An anode of a first silicon controlled rectifier is formed in the first well. A cathode of a second silicon controlled rectifier is formed in the first well. The anode of the first silicon controlled rectifier has the first conductivity type. The cathode of the second silicon controlled rectifier has a second conductivity type opposite to the first conductivity type.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Junjun Li
  • Patent number: 8816388
    Abstract: Disclosed is a semiconductor device including: a semiconductor substrate; a field effect transistor formed on the semiconductor substrate; and a diode forming area adjacent to a forming area of the field effect transistor, wherein the diode forming area is insulated from the forming area of the field effect transistor on the semiconductor substrate, the diode forming area includes an anode electrode and a cathode electrode arranged side by side in a multi-finger shape, and the anode electrode and the cathode electrode are formed in a direction different from directions of a gate electrode, a source electrode, and a drain electrode of the field effect transistor arranged side by side in a multi-finger shape.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: August 26, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiharu Takada
  • Patent number: 8760831
    Abstract: Bi-directional back-to-back stacked SCRs for high-voltage pin ESD protection, methods of manufacture and design structures are provided. The device includes a symmetrical bi-directional back-to-back stacked silicon controlled rectifier (SCR). An anode of a first of the back-to-back stacked SCR is connected to an input. An anode of a second of the back-to-back stacked SCR is connected to ground. Cathodes of the first and second of the back-to-back stacked SCR are connected together. Each of the symmetrical bi-directional back-to-back SCRs include a pair of diodes directing current towards the cathodes which, upon application of a voltage, become reverse biased effectively and deactivating elements from one of the symmetrical bi-directional back-to-back SCRs while the diodes of another of the symmetrical bi-directional back-to-back SCRs direct current in the same direction as the reverse biased diodes.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: June 24, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Patent number: 8723227
    Abstract: A protection clamp is provided between a first terminal and a second terminal, and includes a multi-gate high electron mobility transistor (HEMT), a current limiting circuit, and a forward trigger control circuit. The multi-gate HEMT includes a drain/source, a source/drain, a first depletion-mode (D-mode) gate, a second D-mode gate, and an enhancement-mode (E-mode) gate disposed between the first and second D-mode gates. The drain/source and the first D-mode gate are connected to the first terminal and the source/drain and the second D-mode gate are connected to the second terminal. The forward trigger control and the current limiting circuits are coupled between the E-mode gate and the first and second terminals, respectively. The forward trigger control circuit provides an activation voltage to the E-mode gate when a voltage of the first terminal exceeds a voltage of the second terminal by a forward trigger voltage.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: May 13, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Srivatsan Parthasarathy, Javier Alejandro Salcedo, Shuyun Zhang
  • Patent number: 8710541
    Abstract: A bi-directional switch circuit includes a pair of N-type MOS devices connected in series with a common source terminal, and a pair of P-type MOS devices connected in series with a common source terminal. The series connected N-type devices are connected in parallel with the series connected P-type devices in a configuration that includes a first input/output (I/O) point of the switch circuit being connected to a drain of a first one of the N-type devices and a drain of a first one of the P-type devices. The parallel configuration also includes a second I/O point of the switch circuit being connected to a drain of a second one of the N-type devices and a drain of a second one of the P-type devices.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: April 29, 2014
    Assignee: Analog Devices, Inc.
    Inventors: David Aherne, John O Dunlea
  • Publication number: 20140084331
    Abstract: A protection clamp is provided between a first terminal and a second terminal, and includes a multi-gate high electron mobility transistor (HEMT), a current limiting circuit, and a forward trigger control circuit. The multi-gate HEMT includes a drain/source, a source/drain, a first depletion-mode (D-mode) gate, a second D-mode gate, and an enhancement-mode (E-mode) gate disposed between the first and second D-mode gates. The drain/source and the first D-mode gate are connected to the first terminal and the source/drain and the second D-mode gate are connected to the second terminal. The forward trigger control and the current limiting circuits are coupled between the E-mode gate and the first and second terminals, respectively. The forward trigger control circuit provides an activation voltage to the E-mode gate when a voltage of the first terminal exceeds a voltage of the second terminal by a forward trigger voltage.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 27, 2014
    Applicant: ANALOG DEVICES, INC.
    Inventors: Srivatsan Parthasarathy, Javier Alejandro Salcedo, Shuyun Zhang
  • Publication number: 20140054641
    Abstract: An integrated trench-MOS-controlled-thyristor plus trench gated diode combination, in which the trenches are preferably formed at the same time. A backside polarity reversal process permits a backside p+ region in the thyristor areas, and only a backside n+ region in the diode areas (for an n-type device). This is particularly advantageous in motor control circuits and the like, where the antiparallel diode permits the thyristor to be dropped into existing power MOSFET circuit designs. In power conversion circuits, the antiparallel diode can conveniently serve as a freewheeling diode.
    Type: Application
    Filed: October 22, 2013
    Publication date: February 27, 2014
    Applicant: Pakal Technologies, LLC
    Inventors: Hidenori Akiyama, Richard A. Blanchard, Woytek Tworzydlo
  • Publication number: 20130328103
    Abstract: A high voltage isolation protection device for low voltage communication interface systems in mixed-signal high voltage electronic circuit is disclosed. According to one aspect, the protection device includes a semiconductor structure configured to provide isolation between low voltage terminals and protection from transient events. The protection device includes a thyristor having an anode, a cathode, and a gate, and a thyristor cathode-gate control region that is built into the protection device. The protection device is configured to provide multiple built-in path-up to power-high terminals and path-down to power-low terminals at different voltage levels. The protection device also includes independently built-in discharge paths to the common substrate that is connected to a different power-low voltage reference. The conduction paths may be built into a single structure with dual isolation regions.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Applicant: Analog Devices, Inc.
    Inventor: Javier A. Salcedo
  • Patent number: 8563986
    Abstract: Semiconductor switching devices include a wide band-gap drift layer having a first conductivity type (e.g., n-type), and first and second wide band-gap well regions having a second conductivity type (e.g., p-type) on the wide band-gap drift layer. First and second wide band-gap source/drain regions of the first conductivity type are on the first and second wide band-gap well regions, respectively. A wide band-gap JFET region having the first conductivity type is provided between the first and second well regions. This JFET region includes a first local JFET region that is adjacent a side surface of the first well region and a second local JFET region that is adjacent a side surface of the second well region. The local JFET regions have doping concentrations that exceed a doping concentration of a central portion of the JFET region that is between the first and second local JFET regions of the JFET region.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: October 22, 2013
    Assignee: Cree, Inc.
    Inventor: Qingchun Zhang
  • Publication number: 20130248923
    Abstract: A bi-directional switch circuit includes a pair of N-type MOS devices connected in series with a common source terminal, and a pair of P-type MOS devices connected in series with a common source terminal. The series connected N-type devices are connected in parallel with the series connected P-type devices in a configuration that includes a first input/output (I/O) point of the switch circuit being connected to a drain of a first one of the N-type devices and a drain of a first one of the P-type devices. The parallel configuration also includes a second I/O point of the switch circuit being connected to a drain of a second one of the N-type devices and a drain of a second one of the P-type devices.
    Type: Application
    Filed: August 23, 2012
    Publication date: September 26, 2013
    Applicant: ANALOG DEVICES, INC.
    Inventors: David Aherne, John O. Dunlea
  • Publication number: 20130161687
    Abstract: Bi-directional back-to-back stacked SCRs for high-voltage pin ESD protection, methods of manufacture and design structures are provided. The device includes a symmetrical bi-directional back-to-back stacked silicon controlled rectifier (SCR). An anode of a first of the back-to-back stacked SCR is connected to an input. An anode of a second of the back-to-back stacked SCR is connected to ground. Cathodes of the first and second of the back-to-back stacked SCR are connected together. Each of the symmetrical bi-directional back-to-back SCRs include a pair of diodes directing current towards the cathodes which, upon application of a voltage, become reverse biased effectively and deactivating elements from one of the symmetrical bi-directional back-to-back SCRs while the diodes of another of the symmetrical bi-directional back-to-back SCRs direct current in the same direction as the reverse biased diodes.
    Type: Application
    Filed: February 8, 2013
    Publication date: June 27, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: INTERNATIONAL BUSINESS MACHINES CORPORATION
  • Patent number: 8357952
    Abstract: A power semiconductor structure with a field effect rectifier having a drain region, a body region, a source region, a gate channel, and a current channel is provided. The body region is substantially located above the drain region. The source region is located in the body region. The gate channel is located in the body region and adjacent to a gate structure. The current channel is located in the body region and is extended from the source region downward to the drain region. The current channel is adjacent to a conductive structure coupled to the source region.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: January 22, 2013
    Assignee: Great Power Semiconductor Corp.
    Inventor: Kao-Way Tu
  • Patent number: 8354690
    Abstract: Provided is a semiconductor bistable switching device that includes a thyristor portion including an anode layer, a drift layer, a gate layer and a cathode layer, the gate layer operable to receive a gate trigger current that, when the anode layer is positively biased relative to the cathode layer, causes the thyristor portion to latch into a conducting mode between the anode and the cathode. The device also includes a transistor portion formed on the thyristor portion, the transistor portion including a source, a drain and a transistor gate, the drain coupled to the cathode of the thyristor portion.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: January 15, 2013
    Assignee: Cree, Inc.
    Inventors: Robert J. Callanan, Sei-Hyung Ryu, Qingchun Zhang
  • Patent number: 8212282
    Abstract: A power supply device is disclosed that is able to satisfy the power requirements of a device in service and has high efficiency. The power supply device includes a first power supply; a voltage step-up unit that steps up an output voltage of the first power supply; a voltage step-down unit that steps down an output voltage of the voltage step-up unit; and a load that is driven to operate by an output voltage of the voltage step-down unit. The voltage step-up unit steps up the output voltage of the first power supply to a lower limit of an operating voltage of the voltage step-down unit.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: July 3, 2012
    Assignee: Ricoh Company, Ltd.
    Inventors: Masaya Ohtsuka, Yoshinori Ueda
  • Publication number: 20120080717
    Abstract: Bi-directional back-to-back stacked SCRs for high-voltage pin ESD protection, methods of manufacture and design structures are provided. The device includes a symmetrical bi-directional back-to-back stacked silicon controlled rectifier (SCR). An anode of a first of the back-to-back stacked SCR is connected to an input. An anode of a second of the back-to-back stacked SCR is connected to ground. Cathodes of the first and second of the back-to-back stacked SCR are connected together. Each of the symmetrical bi-directional back-to-back SCRs include a pair of diodes directing current towards the cathodes which, upon application of a voltage, become reverse biased effectively and deactivating elements from one of the symmetrical bi-directional back-to-back SCRs while the diodes of another of the symmetrical bi-directional back-to-back SCRs direct current in the same direction as the reverse biased diodes.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 5, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michel J. ABOU-KHALIL, Robert J. GAUTHIER, JR., Tom C. LEE, Junjun LI, Souvick MITRA, Christopher S. PUTNAM
  • Publication number: 20110234289
    Abstract: Process variation-tolerant diodes and diode-connected thin film transistors (TFTs), printed or patterned structures (e.g., circuitry) containing such diodes and TFTs, methods of making the same, and applications of the same for identification tags and sensors are disclosed. A patterned structure comprising a complementary pair of diodes or diode-connected TFTs in series can stabilize the threshold voltage (Vt) of a diode manufactured using printing or laser writing techniques. The present invention advantageously utilizes the separation between the Vt of an NMOS TFT (Vtn) and the Vt of a PMOS TFT (Vtp) to establish and/or improve stability of a forward voltage drop across a printed or laser-written diode. Further applications of the present invention relate to reference voltage generators, voltage clamp circuits, methods of controlling voltages on related or differential signal transmission lines, and RFID and EAS tags and sensors.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 29, 2011
    Inventors: Vivek Subramanian, Patrick Smith
  • Publication number: 20110127573
    Abstract: In one embodiment, a transistor is formed to have a first current flow path to selectively conduct current in both directions through the transistor and to have a second current flow path to selectively conduct current in one direction.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 2, 2011
    Inventors: Francine Y. Robb, Stephen P. Robb
  • Patent number: 7932537
    Abstract: Process variation-tolerant diodes and diode-connected thin film transistors (TFTs), printed or patterned structures (e.g., circuitry) containing such diodes and TFTs, methods of making the same, and applications of the same for identification tags and sensors are disclosed. A patterned structure comprising a complementary pair of diodes or diode-connected TFTs in series can stabilize the threshold voltage (Vt) of a diode manufactured using printing or laser writing techniques. The present invention advantageously utilizes the separation between the Vt of an NMOS TFT (Vtn) and the Vt of a PMOS TFT (Vtp) to establish and/or improve stability of a forward voltage drop across a printed or laser-written diode. Further applications of the present invention relate to reference voltage generators, voltage clamp circuits, methods of controlling voltages on related or differential signal transmission lines, and RFID and EAS tags and sensors.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: April 26, 2011
    Assignee: Kovio, Inc.
    Inventors: Vivek Subramanian, Patrick Smith
  • Patent number: 7906812
    Abstract: A tunable voltage isolation ground to ground ESD clamp is provided. The clamp includes a dual-direction silicon controlled rectifier (SCR) and trigger elements. The SCR is coupled between first and second grounds. The trigger elements are also coupled between the first and second grounds. Moreover, the trigger elements are configured to provide a trigger current to the dual-direction silicon controlled rectifier when a desired voltage between the first and second grounds is reached.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: March 15, 2011
    Assignee: Intersil Americas Inc.
    Inventor: James E. Vinson
  • Publication number: 20110012170
    Abstract: A power supply device is disclosed that is able to satisfy the power requirements of a device in service and has high efficiency. The power supply device includes a first power supply; a voltage step-up unit that steps up an output voltage of the first power supply; a voltage step-down unit that steps down an output voltage of the voltage step-up unit; and a load that is driven to operate by an output voltage of the voltage step-down unit. The voltage step-up unit steps up the output voltage of the first power supply to a lower limit of an operating voltage of the voltage step-down unit.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Applicant: RICOH COMPANY, LTD.
    Inventors: Masaya Ohtsuka, Yoshinori Ueda
  • Patent number: 7842967
    Abstract: A power supply device is disclosed that is able to satisfy the power requirements of a device in service and has high efficiency. The power supply device includes a first power supply; a voltage step-up unit that steps up an output voltage of the first power supply; a voltage step-down unit that steps down an output voltage of the voltage step-up unit; and a load that is driven to operate by an output voltage of the voltage step-down unit. The voltage step-up unit steps up the output voltage of the first power supply to a lower limit of an operating voltage of the voltage step-down unit.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: November 30, 2010
    Assignee: Ricoh Company, Ltd.
    Inventors: Masaya Ohtsuka, Yoshinori Ueda
  • Patent number: 7786504
    Abstract: The present invention discloses a bidirectional PNPN silicon-controlled rectifier comprising: a p-type substrate; a N-type epitaxial layer; a P-type well and two N-type wells all formed inside the N-type epitaxial layer with the two N-type wells respectively arranged at two sides of the P-type well; a first semiconductor area, a second semiconductor area and a third semiconductor area all formed inside the P-type well and all coupled to an anode, wherein the second semiconductor area and the third semiconductor area are respectively arranged at two sides of the first semiconductor area, and wherein the first semiconductor area is of first conduction type, and the second semiconductor area and the third semiconductor area are of second conduction type; and two P-type doped areas respectively formed inside the N-type wells, wherein each P-type doped area has a fourth semiconductor area neighboring the P-type well and a fifth semiconductor area, and wherein both the fourth semiconductor area and the fifth semico
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: August 31, 2010
    Assignee: Amazing Microelectronic Corp.
    Inventors: Wen-Yi Chen, Ryan Hsin-Chin Jiang, Ming-Dou Ker
  • Patent number: 7750437
    Abstract: A semiconductor device has a rectifier circuit and integrated circuit on a semiconductor substrate of a first conduction type, and has a first well region in the substrate, a second well region in first well region, and a diode region formed in second well region and constituting a diode with second well region. The rectifier circuit is formed by the diodes. An input power supply terminal, changing between positive and negative potentials, is connected to second and first well regions of a first diode and to diode region of a second diode. A current supply terminal is provided in the vicinity of first well region of first diode, and is connected to the substrate and a prescribed power supply, so as to supply a current to the PN junction between the first well region and the semiconductor substrate when the input power supply terminal is at negative potential.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: July 6, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hideaki Suzuki, Hidetoshi Sugiyama
  • Patent number: 7671379
    Abstract: A semiconductor system for voltage limitation includes a first cover electrode, a highly p-doped semiconductor layer that is connected to the first cover electrode, a slightly n-doped semiconductor layer that is connected to the highly p-doped semiconductor layer and a second cover electrode. At least one p-doped semiconductor layer and two highly n-doped semiconductor layers are provided next to one another in an alternating sequence between the slightly n-doped semiconductor layer and the second cover electrode.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: March 2, 2010
    Assignee: Robert Bosch GmbH
    Inventor: Alfred Goerlach
  • Patent number: 7663190
    Abstract: A tunable voltage isolation ground to ground ESD clamp is provided. The clamp includes a dual-direction silicon controlled rectifier (SCR) and trigger elements. The SCR is coupled between first and second grounds. The trigger elements are also coupled between the first and second grounds. Moreover, the trigger elements are configured to provide a trigger current to the dual-direction silicon controlled rectifier when a desired voltage between the first and second grounds is reached.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: February 16, 2010
    Assignee: Intersil Americas Inc.
    Inventor: James E. Vinson
  • Patent number: 7622753
    Abstract: A component formed in a substrate of a first conductivity type, having two inputs and two outputs and: a first diode having its anode connected to a first input and having its cathode connected to a first output; a second diode having its anode connected to a second output and having its cathode connected to the first input; a one-way switch having its anode connected to the first output, its cathode being connected to the second output; and a third diode having its anode connected to the second output, its cathode being connected to the first output; the first, second, and third diodes being formed in a first portion of the substrate separated by a wall of the second conductivity type from a second substrate portion comprising the switch.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: November 24, 2009
    Assignee: STMicroelectronics S.A.
    Inventors: Samuel Menard, Benjamin Cheron, Arnaud Edet
  • Patent number: 7605435
    Abstract: A bi-directional power switch is formed as a monolithic semiconductor device. The power switch has two MOSFETs formed with separate source contacts to the external package and a common drain. The MOSFETs have first and second channel regions formed over a well region above a substrate. A first source is formed in the first channel. A first metal makes electrical contact to the first source. A first gate region is formed over the first channel. A second source region is formed in the second channel. A second metal makes electrical contact to the second source. A second gate region is formed over the second channel. A common drain region is disposed between the first and second gate regions. A local oxidation on silicon region and field implant are formed over the common drain region. The metal contacts are formed in the same plane as a single metal layer.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: October 20, 2009
    Assignee: Great Wall Semiconductor Corporation
    Inventors: Samuel J. Anderson, David N. Okada
  • Patent number: 7598536
    Abstract: A semiconductor device includes a semiconductor substrate having a resistor region, an isolation layer disposed in the resistor region, the isolation layer defining active regions, first conductive layer patterns disposed on the active regions, a second conductive layer pattern covering the first conductive layer patterns and disposed on the isolation layer, the second conductive layer pattern and the first conductive layer patterns constituting a load resistor pattern, an upper insulating layer disposed over the load resistor pattern, and resistor contact plugs disposed over the active regions, the resistor contact plugs penetrating the upper insulating layer to contact the load resistor pattern.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 6, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Young Choi, Eun-Jin Baek
  • Publication number: 20090195289
    Abstract: Process variation-tolerant diodes and diode-connected thin film transistors (TFTs), printed or patterned structures (e.g., circuitry) containing such diodes and TFTs, methods of making the same, and applications of the same for identification tags and sensors are disclosed. A patterned structure comprising a complementary pair of diodes or diode-connected TFTs in series can stabilize the threshold voltage (Vt) of a diode manufactured using printing or laser writing techniques. The present invention advantageously utilizes the separation between the Vt of an NMOS TFT (Vtn) and the Vt of a PMOS TFT (Vtp) to establish and/or improve stability of a forward voltage drop across a printed or laser-written diode. Further applications of the present invention relate to reference voltage generators, voltage clamp circuits, methods of controlling voltages on related or differential signal transmission lines, and RFID and EAS tags and sensors.
    Type: Application
    Filed: April 15, 2009
    Publication date: August 6, 2009
    Inventors: Vivek SUBRAMANIAN, Patrick Smith
  • Publication number: 20090179223
    Abstract: In one embodiment, a transistor is formed to have a first current flow path to selectively conduct current in both directions through the transistor and to have a second current flow path to selectively conduct current in one direction.
    Type: Application
    Filed: March 20, 2009
    Publication date: July 16, 2009
    Inventors: Francine Y. Robb, Stephen P. Robb
  • Patent number: 7528017
    Abstract: Process variation-tolerant diodes and diode-connected thin film transistors (TFTs), printed or patterned structures (e.g., circuitry) containing such diodes and TFTs, methods of making the same, and applications of the same for identification tags and sensors are disclosed. A patterned structure comprising a complementary pair of diodes or diode-connected TFTs in series can stabilize the threshold voltage (Vt) of a diode manufactured using printing or laser writing techniques. The present invention advantageously utilizes the separation between the Vt of an NMOS TFT (Vtn) and the Vt of a PMOS TFT (Vtp) to establish and/or improve stability of a forward voltage drop across a printed or laser-written diode. Further applications of the present invention relate to reference voltage generators, voltage clamp circuits, methods of controlling voltages on related or differential signal transmission lines, and RFID and EAS tags and sensors.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: May 5, 2009
    Assignee: Kovio, Inc.
    Inventors: Vivek Subramanian, Patrick Smith
  • Patent number: 7439563
    Abstract: A high-breakdown-voltage semiconductor device comprises a high-resistance semiconductor layer, trenches formed on the surface thereof in a longitudinal plane shape and in parallel, first regions formed on the semiconductor layer to be sandwiched between adjacent ones of the trenches and having an impurity concentration higher than that of the semiconductor layer, a second region having opposite conductivity to the first regions and continuously disposed in a trench sidewall and bottom portion, a sidewall insulating film disposed on the second region of the trench sidewall, a third region disposed on the second region of the trench bottom portion and having the same conductivity as and the higher impurity concentration than the second region, a fourth region disposed on the back surface of the semiconductor layer, a first electrode formed on each first region, a second electrode connected to the third region, and a third electrode formed on the fourth region.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: October 21, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuo Hatakeyama, Takashi Shinohe
  • Patent number: 7436004
    Abstract: An aspect of the present invention provides a semiconductor device that includes, a first semiconductor body of a first conductivity type, a first switching mechanism provided on the first semiconductor body, configured and arranged to switch on/off current flowing through the semiconductor device, and a first reverse-blocking heterojunction diode provided on the semiconductor body, configured and arranged to block current reverse to the current switched on/off by the first switching mechanism.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: October 14, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yoshio Shimoida, Masakatsu Hoshi, Hideaki Tanaka, Tetsuya Hayashi, Toshiro Shinohara, Shigeharu Yamagami
  • Patent number: 7427786
    Abstract: A diode device is disclosed, comprising a pair of electrodes separated by bellows. The corrugated walls of the bellows create a tortuous thermal pathway thereby reducing parasitic heat losses and increasing the device's efficiency. The bellows' also allow for a controlled environment to be sustained within the device. In a preferred embodiment the controlled environment is a vacuum. In one embodiment, a modified electrode for use in a diode device of the present invention is disclosed, in which indents are made on the surface of the electrode. In a further embodiment the bellows comprise shape memory alloys: previously deformed bellows are attached to the diode device and then grown to set the gap between the electrodes. In further embodiments the use of corrugation is applied to other parts of the diode device to elongate its thermal pathway and thereby increase its efficiency.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: September 23, 2008
    Assignee: Borealis Technical Limited
    Inventor: Isaiah Watas Cox
  • Patent number: 7402845
    Abstract: A semiconductor package that includes a compound component and a diode arranged in a cascode configuration to function as a rectifier.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: July 22, 2008
    Assignee: International Rectifier Corporation
    Inventors: Chuan Cheah, Kunzhong Hu
  • Patent number: 7385231
    Abstract: A method of producing a porous thin-film-deposition substrate, which has the steps of: placing onto a substrate that has an electrostatic charge on its surface, fine particles with a surface electrostatic charge opposite to the electrostatic charge of the substrate surface, depositing a thin film on the fine-particle-placed substrate, and then removing the fine particles to form fine pores in the thin film; further, a method of producing an electron emitting element, which has the steps of: adding a catalyst metal on a substrate, placing fine particles onto the catalyst-added substrate, depositing a thin film on the fine-particle-placed substrate, then removing the fine particles to form fine pores in the film, and growing needle-shaped conductors on the catalyst metal that is exposed on a bottom face of the fine pore.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: June 10, 2008
    Assignee: FujifilmCorporation
    Inventors: Kiyoshi Fujimoto, Masakazu Nakamura
  • Patent number: 7385232
    Abstract: A dopant gradient region of a first conductivity type and a corresponding channel impurity gradient below a transfer gate and adjacent a charge collection region of a CMOS imager photodiode are disclosed. The channel impurity gradient in the transfer gate provides a complete charge transfer between the charge collection region of the photodiode and a floating diffusion node. The dopant gradient region is formed by doping a region at one end of the channel with a low enhancement dopant and another region at the other end of the channel with a high enhancement dopant.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: June 10, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Inna Patrick