Combined With Field Effect Transistor Patents (Class 257/133)
  • Patent number: 8497526
    Abstract: In a DIAC-like device that includes an n+ and a p+ region connected to the high voltage node, and an n+ and a p+ region connected to the low voltage node, at least two MOS devices are formed between the n+ and p+ region connected to the high voltage node, and the n+ and p+ region connected to the low voltage node.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: July 30, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Antonio Gallerano, Peter J. Hopper
  • Publication number: 20130168728
    Abstract: A lateral insulated-gate bipolar transistor includes a buried insulation layer which opens only part of the collector ion implantation region and isolates the other regions, thereby reducing the loss by the turn-off time. The lateral insulated-gate bipolar transistor further includes a deep ion implantation region formed to face towards the open part of the collector ion implantation region, thereby decreasing the hole current injected into a base region under an emitter ion implantation region, and thereby greatly increasing the latch-up current level by relatively increasing the hole current injected into the deep ion implantation region having no latch-up effect.
    Type: Application
    Filed: May 3, 2012
    Publication date: July 4, 2013
    Applicant: Dongbu HiTek Co., Ltd.
    Inventor: Sang Yong LEE
  • Patent number: 8471291
    Abstract: In a semiconductor device in which a diode and an IGBT are formed in a main region of a same semiconductor substrate, in order to obtain a sufficiently large sense IGBT current in a stable manner, a sense region is provided with a first region in which a distance from an end of a main cathode region on a side of the sense region in a plan view of the semiconductor substrate is equal to or longer than 615 ?m. Alternatively, in order to obtain a sufficiently large sense diode current in a stable manner, the sense region is provided with a second region in which a distance from the main cathode region in a plan view of the semiconductor substrate is equal to or shorter than 298 ?m. The sense region may be provided with both the first region and the second region.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Akitaka Soeno
  • Publication number: 20130140601
    Abstract: The disclosed recessed thyristor-based memory cell comprises in one embodiment a conductive plug recessed into the bulk of the substrate, which is coupled to or comprises the enable gate of the cell. Vertically disposed around this recessed gate is a thyristor, whose anode is connected to the bit line and cathode is connected to the word line. The disclosed cell comprises no other gate, such as an access transistor, and hence is essentially a one-transistor device. As facilitated by the vertical disposition of the thyristor, the disclosed cell takes up a small amount of area on an integrated circuit when compared to a traditional DRAM cell. The disclosed cell is simple to manufacture in its various embodiments, and is easy to configure into an array of cells. Isolation underneath the cell assists in improving the data retention of the cell and extends the time needed between cell refresh.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 6, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Chandra Mouli
  • Patent number: 8441031
    Abstract: Electrostatic discharge (ESD) protection is provided for discharging current between input and output nodes. In accordance with various embodiments, an ESD protection device includes an open-base transistor having an emitter connected to the input node and a collector connected to pass current to the output node via a resistor in response to a voltage at the input node exceeding a threshold that causes the transistor to break down. The resistor is coupled across emitter and collector regions of a second open-base transistor that is configured to turn on for passing current in response to the current across the resistor exceeding a threshold that applies a threshold breakdown voltage across the second transistor. In some implementations, an emitter and/or base of the second transistor are connected to, or are respectively the same region as, a base and a collector of the first transistor.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: May 14, 2013
    Assignee: NXP B.V.
    Inventors: Steffen Holland, Zhihao Pan
  • Publication number: 20130099278
    Abstract: An SCR apparatus includes an SCR structure and a first N injection region. The SCR structure includes a P+ injection region, a P well, an N well and a first N+ injection region, the first N injection region is located under an anode terminal of the P+ injection region of the SCR structure. A method for adjusting a sustaining voltage therefor is provided as well.
    Type: Application
    Filed: December 5, 2011
    Publication date: April 25, 2013
    Inventors: Meng Dai, Zhongyu Lin
  • Publication number: 20130092976
    Abstract: A trench semiconductor power device integrated with four types of ESD clamp diodes for optimization of total perimeter of the ESD clamp diodes, wherein the ESD clamp diodes comprise multiple back to back Zener diodes with alternating doped regions of a first conductivity type next to a second conductivity type, wherein each of the doped regions has a closed ring structure.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 18, 2013
    Applicant: FORCE MOS TECHNOLOGY CO., LTD.
    Inventor: Fu-Yuan HSIEH
  • Patent number: 8421077
    Abstract: A replacement gate field effect transistor includes at least one self-aligned contact that overlies a portion of a dielectric gate cap. A replacement gate stack is formed in a cavity formed by removal of a disposable gate stack. The replacement gate stack is subsequently recessed, and a dielectric gate cap having sidewalls that are vertically coincident with outer sidewalls of the gate spacer is formed by filling the recess over the replacement gate stack. An anisotropic etch removes the dielectric material of the planarization layer selective to the material of the dielectric gate cap, thereby forming at least one via cavity having sidewalls that coincide with a portion of the sidewalls of the gate spacer. A portion of each diffusion contact formed by filling the at least one via cavity overlies a portion of the gate spacer and protrudes into the dielectric gate cap.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Sameer H. Jain, Carl J. Radens, Shahab Siddiqui, Jay W. Strane
  • Patent number: 8421118
    Abstract: A rectifier building block has four electrodes: source, drain, gate and probe. The main current flows between the source and drain electrodes. The gate voltage controls the conductivity of a narrow channel under a MOS gate and can switch the RBB between OFF and ON states. Used in pairs, the RBB can be configured as a three terminal half-bridge rectifier which exhibits better than ideal diode performance, similar to synchronous rectifiers but without the need for control circuits. N-type and P-type pairs can be configured as a full bridge rectifier. Other combinations are possible to create a variety of devices.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: April 16, 2013
    Assignee: STMicroelectronics N.V.
    Inventors: Alexei Ankoudinov, Vladimir Rodov
  • Publication number: 20130069108
    Abstract: Disclosed herein is a power semiconductor module including: a circuit board having gate, emitter, and collector patterns formed thereon; a first semiconductor chip mounted on the circuit board, having gate and emitter terminals each formed on one surface thereof, and having a collector terminal formed on the other surface thereof; a second semiconductor chip mounted on the first semiconductor chip, having a cathode terminal formed on one surface thereof, and having an anode terminal formed on the other surface thereof; a first conductive connection member having one end disposed between the collector terminal of the first semiconductor chip and the cathode terminal of the second semiconductor chip and the other end contacting the collector pattern of the circuit board; and a second conductive connection member having one end contacting the anode terminal of the second semiconductor chip and the other end contacting the emitter pattern of the circuit board.
    Type: Application
    Filed: December 7, 2011
    Publication date: March 21, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Young Ki LEE, Dong Soo SEO, Kwang Soo KIM, Young Hoon KWAK
  • Patent number: 8399907
    Abstract: In one embodiment, a power transistor device comprises a substrate that forms a PN junction with an overlying buffer layer. The power transistor device further includes a first region, a drift region that adjoins a top surface of the buffer layer, and a body region. The body region separates the first region from the drift region. First and second dielectric regions respectively adjoin opposing lateral sidewall portions of the drift region. The dielectric regions extend in a vertical direction from at least just beneath the body region down at least into the buffer layer. First and second field plates are respectively disposed in the first and second dielectric regions. A trench gate that controls forward conduction is disposed above the dielectric region adjacent to and insulated from the body region.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 19, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Vijay Parthasarathy, Sujit Banerjee
  • Publication number: 20130056731
    Abstract: A semiconductor device includes a semiconductor diode. The semiconductor diode includes a drift region and a first semiconductor region of a first conductivity type formed in or on the drift region. The first semiconductor region is electrically coupled to a first terminal via a first surface of a semiconductor body. The semiconductor diode includes a channel region of a second conductivity type electrically coupled to the first terminal, wherein a bottom of the channel region adjoins the first semiconductor region. A first side of the channel region adjoins the first semiconductor region.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Anton Mauder, Franz Hirler, Hans Peter Felsl, Hans-Joachim Schulze
  • Publication number: 20130032854
    Abstract: The rectifier in this invention is connected in series with two field effect transistor, comprises: the source S1 of first N-channel FET F1 and the source S2 of second N-channel FET F2 are directly connected together, the gate G1 of first N-channel FET F1 and the gate G2 of second N-channel FET F2 are connected together form a control terminal GA, the drain D1 of first N-channel FET F1 form a input terminal D1, the drain D2 of second N-channel FET F2 form a output terminal D2, the body diode DA of first N-channel FET F1 and the body diode DB of second N-channel FET F2, are back-to-back series connected together, the right side equivalent circuit F are first N-channel FET F1 and second N-channel FET F2 equivalent circuit, form a rectifier F of the present invention.
    Type: Application
    Filed: August 1, 2011
    Publication date: February 7, 2013
    Inventor: Chao-Cheng LUI
  • Patent number: 8362519
    Abstract: The present teachings provide a semiconductor device comprising: an IGBT element region, a diode element region and a boundary region provided between the IGBT element region and the diode element region are formed in one semiconductor substrate. The boundary region comprises a second conductivity type first diffusion region, a first conductivity type second diffusion region, and a second conductivity type third diffusion region. A first drift region of the IGBT element region contiguously contacts the first diffusion region of the boundary region, and a second drift region of the diode element region contiguously contacts the first diffusion region of the boundary region. A first body region of the IGBT element region contiguously contacts the second diffusion region of the boundary region, and a second body region of the diode element region contiguously contacts the second diffusion region of the boundary region.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 29, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Akitaka Soeno
  • Publication number: 20130015493
    Abstract: A semiconductor apparatus includes a substrate having a device region and a peripheral region located around the device region. A first semiconductor region is formed within the device region, is of a first conductivity type, and is exposed at an upper surface of the substrate. Second-fourth semiconductor regions are formed within the peripheral region. The second semiconductor region is of the first conductivity type, has a lower concentration of the first conductivity type of impurities, is exposed at the upper surface, and is consecutive with the first semiconductor region directly or indirectly. The third semiconductor region is of a second conductivity type, is in contact with the second semiconductor region from an underside, and is an epitaxial layer. The fourth semiconductor region is of the second conductivity type, has a lower concentration of the second conductivity type of impurities, and is in contact with the third semiconductor region from an underside.
    Type: Application
    Filed: May 24, 2012
    Publication date: January 17, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaru SENOO
  • Patent number: 8344416
    Abstract: An integrated circuit includes at least one transistor over a substrate. A first guard ring is disposed around the at least one transistor. The first guard ring has a first type dopant. A second guard ring is disposed around the first guard ring. The second guard ring has a second type dopant. A first doped region is disposed adjacent to the first guard ring. The first doped region has the second type dopant. A second doped region is disposed adjacent to the second guard ring. The second doped region has the first type dopant. The first guard ring, the second guard ring, the first doped region, and the second doped region are capable of being operable as a first silicon controlled rectifier (SCR) to substantially release an electrostatic discharge (ESD).
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: January 1, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Song Sheu, Jian-Hsing Lee, Yu-Chang Jong, Chun-Chien Tsai
  • Patent number: 8330185
    Abstract: A semiconductor device, including a semiconductor substrate in which a diode region and an IGBT region are formed, is provided. A lifetime control region is formed within a diode drift region. The diode drift region and the IGBT drift region are a continuous region across a boundary region between the diode region and the IGBT region. A first separation region and a second separation region are formed within the boundary region. The first separation region is formed of a p-type semiconductor, formed in a range extending from an upper surface of the semiconductor substrate to a position deeper than both of a lower end of an anode region and a lower end of a body region, and bordering with the anode region. The second separation region is formed of a p-type semiconductor, formed in a range extending from the upper surface of the semiconductor substrate to a position deeper than both of the lower end of the anode region and the lower end of the body region, and bordering with the body region.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: December 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Akitaka Soeno
  • Publication number: 20120286322
    Abstract: A semiconductor device includes a first well region of a first conductivity type, a second well region of a second conductive type within the first well region. A first region of the first conductivity type and a second region of the second conductivity type are disposed within the second well region. A third region of the first conductivity type and a fourth region of the second conductivity type are disposed within the first well region, wherein the third region and the fourth region are separated by the second well region. The semiconductor device also includes a switch device coupled to the third region.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 15, 2012
    Applicant: Macronix International Co., Ltd.
    Inventors: SHIH-YU WANG, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Publication number: 20120280270
    Abstract: A semiconductor device includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region, The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region. A source ohmic contact overlaps at least one of the source contact regions and the body contact region. A minimum dimension of a source contact area of the semiconductor device is defined by an area of overlap between the source ohmic contact and the at least one source contact region.
    Type: Application
    Filed: May 16, 2011
    Publication date: November 8, 2012
    Inventors: Sei-Hyung Ryu, Doyle Craig Capell, Lin Cheng, Sarit Dhar, Charlotte Jonas, Anant Agarwal, John Palmour
  • Publication number: 20120280271
    Abstract: A semiconductor device including: an FET; a MOSFET having a drain thereof connected with a source of the FET; a resistor having one end thereof connected with a gate of the FET and having the other end thereof connected with a source of the MOSFET; and a diode having an anode thereof connected with the gate of the FET and having a cathode thereof connected with the source of the MOSFET.
    Type: Application
    Filed: April 30, 2012
    Publication date: November 8, 2012
    Inventor: Yuhji ICHIKAWA
  • Patent number: 8299539
    Abstract: A semiconductor device includes: a semiconductor substrate; an IGBT element including a collector region; a FWD element including a cathode region adjacent to the collector region; a base layer on the substrate; multiple trench gate structures including a gate electrode. The base layer is divided by the trench gate structures into multiple first and second regions. Each first region includes an emitter region contacting the gate electrode. Each first region together with the emitter region is electrically coupled with an emitter electrode. The first regions include collector side and cathode side first regions, and the second regions include collector side and cathode side second regions. At least a part of the cathode side second region is electrically coupled with the emitter electrode, and at least a part of the collector side second region has a floating potential.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: October 30, 2012
    Assignee: Denso Corporation
    Inventor: Kenji Kouno
  • Patent number: 8299496
    Abstract: Provided is a semiconductor device including a semiconductor substrate in which a diode region and an IGBT region are formed. A separation region formed of a p-type semiconductor is formed in a range between the diode region and the IGBT region and extending from an upper surface of the semiconductor substrate to a position deeper than both a lower end of an anode region and a lower end of a body region. A diode lifetime control region is formed within a diode drift region. A carrier lifetime in the diode lifetime control region is shorter than that in the diode drift region outside the diode lifetime control region. An end of the diode lifetime control region on an IGBT region side is located right below the separation region.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 30, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuji Nagaoka, Akitaka Soeno
  • Patent number: 8294218
    Abstract: An integrated circuit with gate self-protection comprises a MOS device and a bipolar device, wherein the integrated circuit further comprises a semiconductor layer with electrically active regions in which and on which the MOS device and the bipolar device are formed and electrically inactive regions for isolating the electrically active regions from each other. The MOS device comprises a gate structure and a body contacting structure, wherein the body contacting structure is formed of a base layer deposited in a selected region over an electrically active region of the semiconductor layer, and the body contacting structure is electrically connected with the gate structure. The base layer forming the body contacting structure also forms the base of the bipolar device. The present invention further relates to a method for fabricating such an integrated circuit.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: October 23, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Badih El-Kareh, Scott Gerard Balster, Hiroshi Yasuda, Manfred Schiekofer
  • Patent number: 8278682
    Abstract: A semiconductor device that has a reduced size and exhibits a superior blocking voltage capability. A semiconductor device includes an edge termination structure between an active region and an isolation region, the edge termination structure being composed of an edge termination structure for a forward bias section and an edge termination structure for a reverse bias section. A plurality of field limiting rings (FLRs) and a plurality of field plates (FPs) are provided in the edge termination structure for the forward bias section and the edge termination structure for the reverse bias section. A first forward FP that is the nearest of the plurality of FPs to the edge termination structure for the reverse bias section is formed to extend towards the isolation region side. A first reverse FP that is the nearest of the plurality of FPs to the edge termination structure for the forward bias section is formed to extend towards the active region side.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: October 2, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Koh Yoshikawa, Kenichi Iguchi
  • Patent number: 8258542
    Abstract: Semiconductor devices and semiconductor apparatuses including the same are provided. The semiconductor devices include a body region disposed on a semiconductor substrate, gate patterns disposed on the semiconductor substrate and on opposing sides of the body region, and first and second impurity doped regions disposed on an upper surface of the body region. The gate patterns may be separated from the first and second impurity doped regions by, or greater than, a desired distance, such that the gate patterns do not to overlap the first and second impurity doped regions in a direction perpendicular to the first and second impurity doped regions.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: September 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, Dae-kil Cha, Tae-hee Lee, Yoon-dong Park
  • Publication number: 20120217539
    Abstract: Disclosed is a semiconductor component that includes a semiconductor body, a first emitter region of a first conductivity type in the semiconductor body, a second emitter region of a second conductivity type spaced apart from the first emitter region in a vertical direction of the semiconductor body, a base region of one conductivity type arranged between the first emitter region and the second emitter region, and at least two higher doped regions of the same conductivity type as the base region and arranged in the base region. The at least two higher doped regions are spaced apart from one another in a lateral direction of the semiconductor body and separated from one another only by sections of the base region.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Hans Peter Felsl, Thomas Raker, Hans-Joachim Schulze, Franz-Josef Niedernostheide
  • Publication number: 20120217540
    Abstract: A semiconductor device having a semiconductor body, a source metallization arranged on a first surface of the semiconductor body and a trench including a first trench portion and a second trench portion and extending from the first surface into the semiconductor body is provided. The semiconductor body further includes a pn-junction formed between a first semiconductor region and a second semiconductor region. The first trench portion includes an insulated gate electrode which is connected to the source metallization, and the second trench portion includes a conductive plug which is connected to the source metallization and to the second semiconductor region.
    Type: Application
    Filed: May 1, 2012
    Publication date: August 30, 2012
    Applicant: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Publication number: 20120211799
    Abstract: A power semiconductor module including a semiconductor device (e.g., an insulated gate bipolar transistor (IGBT), a reverse conductive (RC IGBT), or a bi-mode insulated gate transistor (BIGT)) with an emitter electrode and a collector electrode is provided. An electrically conductive upper layer is sintered to the emitter electrode. The upper layer is capable of forming an eutecticum with the semiconductor of the semiconductor device, and has a coefficient of thermal expansion which differs from the coefficient of thermal expansion of the semiconductor in a range of ?250%, for example ?50%. An electrically conductive base plate is sintered to the collector electrode. The semiconductor module includes an electrically conductive area which is electrically isolated from the base plate and connected to the upper layer via a direct electrical connection. The semiconductor module is easy to prepare, has an improved reliability and exhibits short circuit failure mode capacity.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 23, 2012
    Applicant: ABB RESEARCH LTD
    Inventors: Chunlei LIU, Nicola SCHULZ, Slavo KICIN
  • Publication number: 20120205713
    Abstract: A memory cell includes a thyristor having a plurality of alternately doped, vertically superposed semiconductor regions; a vertically oriented access transistor having an access gate; and a control gate operatively laterally adjacent one of the alternately doped, vertically superposed semiconductor regions. The control gate is spaced laterally of the access gate. Other embodiments are disclosed, including methods of forming memory cells and methods of forming a shared doped semiconductor region of a vertically oriented thyristor and a vertically oriented access transistor.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 16, 2012
    Inventor: Sanh D. Tang
  • Patent number: 8227831
    Abstract: A semiconductor device having a junction FET having improved characteristics is provided. The semiconductor device has a junction FET as a main transistor and has a MISFET as a transistor for control. The junction FET has a first gate electrode, a first source electrode, and a first drain electrode. The MISFET has a second gate electrode, a second source electrode, and a second drain electrode. The MISFET is an n-channel type MISFET and has electric characteristics of an enhancement mode MISFET. The second gate electrode and the second drain electrode of the MISFET are connected to each other by short-circuiting. The first gate electrode of the junction FET and the second source electrode of the MISFET are connected to each other by short-circuiting.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: July 24, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hidekatsu Onose
  • Patent number: 8222671
    Abstract: This invention generally relates to power semiconductor devices, and in particular to improved thyristor devices and circuits. The techniques we describe are particularly useful for so-called MOS-gated thyristors. We describe a thyristor comprising a plurality of power thyristor devices connected in parallel, each said thyristor device being operable at a device current which the device has an on-resistance with a positive temperature coefficient.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: July 17, 2012
    Assignee: Cambridge Enterprises Limited
    Inventors: Patrick Reginald Palmer, Zhihan Wang
  • Publication number: 20120168817
    Abstract: Disclosed are embodiments of a lateral, extended drain, metal oxide semiconductor, field effect transistor (LEDMOSFET) having a high drain-to-body breakdown voltage. Discrete conductive field (CF) plates are adjacent to opposing sides of the drain drift region, each having an angled sidewall such that the area between the drain drift region and the CF plate has a continuously increasing width along the length of the drain drift region from the channel region to the drain region. The CF plates can comprise polysilicon or metal structures or dopant implant regions within the same semiconductor body as the drain drift region. The areas between the CF plates and the drain drift region can comprise tapered dielectric regions or, alternatively, tapered depletion regions within the same semiconductor body as the drain drift region. Also disclosed are embodiments of a method for forming an LEDMOSFET and embodiments of a silicon-controlled rectifier (SCR) incorporating such LEDMOSFETs.
    Type: Application
    Filed: September 21, 2011
    Publication date: July 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Alan B. Botula, Alvin J. Joseph, Theodore J. Letavic, James A. Slinkman
  • Patent number: 8212283
    Abstract: A reverse-conducting semiconductor device is disclosed with an electrically active region, which includes a freewheeling diode and an insulated gate bipolar transistor on a common wafer. Part of the wafer forms a base layer with a base layer thickness. A first layer of a first conductivity type with at least one first region and a second layer of a second conductivity type with at least one second and third region are alternately arranged on the collector side. Each region has a region area with a region width surrounded by a region border. The RC-IGBT can be configured such that the following exemplary geometrical rules are fulfilled: each third region area is an area, in which any two first regions have a distance bigger (i.e.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: July 3, 2012
    Assignee: ABB Technology AG
    Inventors: Liutauras Storasta, Munaf Rahimo, Christoph Von Arx, Arnost Kopta, Raffael Schnell
  • Publication number: 20120139004
    Abstract: One aspect of this disclosure relates to a memory cell. In various embodiments, the memory cell includes an access transistor having a floating node, and a diode connected between the floating node and a diode reference potential line. The diode includes an anode, a cathode, and an intrinsic region between the anode and the cathode. A charge representative of a memory state of the memory cell is held across the intrinsic region of the diode. In various embodiments, the memory cell is implemented in bulk semiconductor technology. In various embodiments, the memory cell is implemented in semiconductor-on-insulator technology. In various embodiments, the diode is gate-controlled. In various embodiments, the diode is charge enhanced by an intentionally generated charge in a floating body of an SOI access transistor. Various embodiments include laterally-oriented diodes (stacked and planar configurations), and various embodiments include vertically-oriented diodes.
    Type: Application
    Filed: February 8, 2012
    Publication date: June 7, 2012
    Inventor: Arup Bhattacharyya
  • Patent number: 8188540
    Abstract: A double-gate semiconductor device includes a MOS gate and a junction gate, in which the bias of the junction gate is a function of the gate voltage of the MOS gate. The breakdown voltage of the double-gate semiconductor device is the sum of the breakdown voltages of the MOS gate and the junction gate. The double-gate semiconductor device provides improved RF capability in addition to operability at higher power levels as compared to conventional transistor devices. The double-gate semiconductor device may also be fabricated in a higher spatial density configuration such that a common implantation between the MOS gate and the junction gate is eliminated.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: May 29, 2012
    Assignee: ACCO Semiconductor, Inc.
    Inventors: Denis A. Masliah, Alexandre G. Bracale, Francis C. Huin, Patrice J. Barroul
  • Patent number: 8178947
    Abstract: There is provided a semiconductor device in which an amount of fluctuations in output capacitance and feedback capacitance is reduced. In a trench-type insulated gate semiconductor device, a width of a portion of an electric charge storage layer in a direction along which a gate electrode and a dummy gate are aligned is set to be at most 1.4 ?m.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: May 15, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuo Takahashi, Yoshifumi Tomomatsu
  • Publication number: 20120112240
    Abstract: An N type layer made of an N type epitaxial layer in which an N+ type drain layer etc are formed is surrounded by a P type drain isolation layer extending from the front surface of the N type epitaxial layer to an N+ type buried layer. A P type collector layer is formed in an N type layer made of the N type epitaxial layer surrounded by the P type drain isolation layer and a P type element isolation layer, extending from the front surface to the inside of the N type layer. A parasitic bipolar transistor that uses the first conductive type drain isolation layer as the emitter, the second conductive type N type layer as the base, and the collector layer as the collector is thus formed so as to flow a surge current into a ground line.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 10, 2012
    Applicant: ON Semiconductor Trading, Ltd.
    Inventors: Yasuhiro TAKEDA, Seiji OTAKE
  • Publication number: 20120104457
    Abstract: A structurally robust power switching assembly, that has a power transistor, comprising a thin and delicate layer of metal oxide, and a major surface of the layer of metal oxide being substantially coincident with a major surface of the power transistor, the major surface of the power transistor defining both an emitter and a gate. Also, dielectric material is placed over a portion of the emitter, so that it abuts the gate and a highly conductive pillar is constructed out of a relatively soft material, supported by the gate and the dielectric material, so that it has a larger area than would be possible if it was supported only by the gate.
    Type: Application
    Filed: January 3, 2012
    Publication date: May 3, 2012
    Inventors: Lawrence E. Rinehart, Guillermo L. Romero
  • Patent number: 8164110
    Abstract: The present invention relates to integration of lateral high-voltage devices, such as a lateral high-voltage diode (LHVD) or a lateral high-voltage thyristor, with other circuitry on a semiconductor wafer, which may be fabricated using low-voltage foundry technology, such as a low-voltage complementary metal oxide semiconductor (LV-CMOS) process. The other circuitry may include low-voltage devices, such as switching transistors used in logic circuits, computer circuitry, or the like, or other high-voltage devices, such as a microelectromechanical system (MEMS) switch. The reverse breakdown voltage capability of the LHVD may be increased by using an intrinsic material between the anode and the cathode. Similarly, in a lateral high-voltage thyristor, such as a lateral high-voltage Silicon-controlled rectifier (LHV-SCR), the withstand voltage capability of the LHV-SCR may be increased by using an intrinsic material between the anode and the cathode.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 24, 2012
    Assignee: RF Micro Devices, Inc.
    Inventors: Daniel Charles Kerr, David C. Dening, Julio Costa
  • Patent number: 8148748
    Abstract: An Adjustable Field Effect Rectifier uses aspects of MOSFET structure together with an adjustment pocket or region to result in a device that functions reliably and efficiently at high voltages without significant negative resistance, while also permitting fast recovery and operation at high frequency without large electromagnetic interference.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: April 3, 2012
    Assignee: STMicroelectronics N.V.
    Inventors: Alexei Ankoudinov, Vladimir Rodov
  • Patent number: 8143644
    Abstract: A bipolar device includes: an emitter of a first polarity type constructed on a semiconductor substrate; a collector of the first polarity type constructed on the semiconductor substrate; a gate pattern in a mesh configuration defining the emitter and the collector; an intrinsic base of a second polarity type underlying the gate pattern; and an extrinsic base constructed atop the gate pattern and coupled with the intrinsic base, for functioning together with the intrinsic base as a base of the bipolar device.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: March 27, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shine Chung, Fu-Lung Hsueh
  • Publication number: 20120068221
    Abstract: A semiconductor device includes a base layer, a second conductivity type semiconductor layer, a first insulating film, and a first electrode. The first insulating film is provided on an inner wall of a plurality of first trenches extending from a surface of the second conductivity type semiconductor layer toward the base layer side, but not reaching the base layer. The first electrode is provided in the first trench via the first insulating film, and provided in contact with a surface of the second conductivity type semiconductor layer. The second conductivity type semiconductor layer includes first and second regions. The first region is provided between the first trenches. The second region is provided between the first second conductivity type region and the base layer, and between a bottom part of the first trench and the base layer. The second region has less second conductivity type impurities than the first region.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 22, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Mitsuhiko KITAGAWA
  • Patent number: 8138521
    Abstract: The objective of this invention is to provide a semiconductor device having a thyristor that can shorten the turn-off time. A first electroconductive type first semiconductor region 20 is formed on a substrate, and a second electroconductive type second semiconductor region 22, a second electroconductive type third semiconductor region 23, designated as an anode, and a first electroconductive type fourth semiconductor region 24, designated as an anode gate, are formed on the surface layer part of the first semiconductor region. Also, a first electroconductive type fifth semiconductor region 26, designated as a cathode, and a second electroconductive type sixth semiconductor region 25, designated as a cathode gate, are formed on the surface layer part of the second semiconductor region.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: March 20, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Hideaki Kawahara
  • Publication number: 20120061721
    Abstract: A power semiconductor device includes a first semiconductor layer of a first conductivity type, a first drift layer, and a second drift layer. The first drift layer includes a first epitaxial layer of the first conductivity type, a plurality of first first-conductivity-type pillar layers, and a plurality of first second-conductivity-type pillar layers. The second drift layer is formed on the first drift layer and includes a second epitaxial layer of the first conductivity type, a plurality of second second-conductivity-type pillar layers, a plurality of second first-conductivity-type pillar layers, a plurality of third second-conductivity-type pillar layers, and a plurality of third first-conductivity-type pillar layers. The plurality of second second-conductivity-type pillar layers are connected to the first second-conductivity-type pillar layers. The plurality of second first-conductivity-type pillar layers are connected to the first first-conductivity-type pillar layers.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kiyoshi KIMURA, Yasuto SUMI, Hiroshi OHTA, Hiroyuki IRIFUNE
  • Publication number: 20120061722
    Abstract: A control device of a semiconductor device is provided. The control device of a semiconductor device is capable of reducing both ON resistance and feedback capacitance in a hollow-gate type planar MOSFET to which a second gate electrode is provided or a trench MOSFET to which a second gate electrode is provided. In the control device controlling driving of a hollow-gate type planar MOSFET to which a second gate electrode is provided or a trench MOSFET to which a second gate electrode is provided, a signal of tuning ON or OFF is outputted to a gate electrode in a state of outputting a signal of turning OFF to the second gate electrode.
    Type: Application
    Filed: September 10, 2011
    Publication date: March 15, 2012
    Inventors: Takayuki HASHIMOTO, Masahiro Masunaga
  • Publication number: 20120061720
    Abstract: In one embodiment, a power transistor device comprises a substrate that forms a PN junction with an overlying buffer layer. The power transistor device further includes a first region, a drift region that adjoins a top surface of the buffer layer, and a body region. The body region separates the first region from the drift region. First and second dielectric regions respectively adjoin opposing lateral sidewall portions of the drift region. The dielectric regions extend in a vertical direction from at least just beneath the body region down at least into the buffer layer. First and second field plates are respectively disposed in the first and second dielectric regions. A trench gate that controls forward conduction is disposed above the dielectric region adjacent to and insulated from the body region.
    Type: Application
    Filed: September 30, 2011
    Publication date: March 15, 2012
    Applicant: Power Integrations, Inc.
    Inventors: Vijay Parthasarathy, Sujit Banerjee
  • Patent number: 8122596
    Abstract: An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: February 28, 2012
    Assignees: Lawrence Livermore National Security, LLC, Doheny Eye Institute
    Inventors: Peter Krulevitch, Dennis L. Polla, Mariam N. Maghribi, Julie Hamilton, Mark S. Humayun, James D. Weiland
  • Publication number: 20120037953
    Abstract: A semiconductor device comprises a vertical MOS transistor including a semiconductor substrate having a silicon pillar, a gate electrode formed along a sidewall of the silicon pillar, a gate insulating film formed between the gate electrode and the silicon pillar, an upper diffusion layer formed on the top of the silicon pillar, and a lower diffusion layer formed lower than the upper diffusion layer in the semiconductor substrate; and a pad electrically connected to the lower diffusion layer. Breakdown occurs between the lower diffusion layer and the semiconductor substrate when a surge voltage is applied.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 16, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Kiminori HAYANO
  • Patent number: 8084783
    Abstract: A power semiconductor device is provided that includes a depletion mode (normally ON) main switching device cascoded with a higher speed switching device, resulting in an enhancement mode (normally OFF) FET device for switching power applications. The main switching device comprises a depletion mode GaN-based HEMT (High Electron Mobility Transistor) FET that does not include an intrinsic body diode. In one or more embodiments, the higher speed switching device comprises a high speed FET semiconductor switch arranged or connected in parallel with a Schottky diode. The high speed FET semiconductor switch may comprise a Si FET, GaN FET or any other type of FET which possesses higher speed switching capabilities and a lower voltage than that of the GaN-based HEMT FET. In some embodiments, the GaN-based HEMT FET and the higher speed switching device (i.e., the FET and Schottky diode) may be monolithically integrated on the same substrate.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 27, 2011
    Assignee: International Rectifier Corporation
    Inventor: Ju Jason Zhang
  • Publication number: 20110284949
    Abstract: A vertical transistor and a method of fabricating the vertical transistor are provided. The vertical transistor has a substrate, a first electrode formed on the substrate, a first insulation layer formed on the first electrode, with a portion of the first electrode exposed from the first insulation layer and having a thickness greater than 50 nm and no more than 300 nm, a grid electrode formed on the first insulation layer, a semiconductor layer formed on the first electrode, and a second electrode formed on the semiconductor layer.
    Type: Application
    Filed: May 24, 2010
    Publication date: November 24, 2011
    Applicant: National Chiao Tung University
    Inventors: Hsin-Fei Meng, Hsiao-Wen Zan, Yu-Chiang Chao