With Irregularities On Electrode To Facilitate Charging Or Discharging Of Floating Electrode Patents (Class 257/317)
  • Patent number: 8212306
    Abstract: A semiconductor storage device has a semiconductor substrate, a plurality of first insulating films formed on the semiconductor substrate with predetermined spacing therebetween, an element isolation region formed between the first insulating films in a first direction, a floating gate electrode comprising a first charge accumulation film formed on the first insulating film, a second charge accumulation film formed on the first charge accumulation film and having a width in a second direction orthogonal to the first direction smaller than the width of the first charge accumulation film, and a third charge accumulation film formed on the second charge accumulation film and having the width in the second direction larger than the width of the second charge accumulation film, a second insulating film formed on the second charge accumulation film and between the second charge accumulation film and the element isolation region, a third insulating film formed on the charge accumulation film and the element isolatio
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: July 3, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Izumida, Nobutoshi Aoki, Masaki Kondo, Takahisa Kanemura
  • Patent number: 8207036
    Abstract: A method for fabricating a non-volatile storage element. The method comprises forming a layer of polysilicon floating gate material over a substrate and forming a layer of nitride at the surface of the polysilicon floating gate material. Floating gates are formed from the polysilicon floating gate material. Individual dielectric caps are formed from the nitride such that each individual nitride dielectric cap is self-aligned with one of the plurality of floating gates. An inter-gate dielectric layer is formed over the surface of the dielectric caps and the sides of the floating gates. Control gates are then formed with the inter-gate dielectric layer separating the control gates from the floating gates. The layer of nitride may be formed using SPA (slot plane antenna) nitridation. The layer of nitride may be formed prior to or after etching of the polysilicon floating gate material to form floating gates.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: June 26, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, George Matamis, Takashi Orimoto, Henry Chien, James K. Kai
  • Patent number: 8193575
    Abstract: A flash memory structure having an enhanced capacitive coupling coefficient ratio (CCCR) may be fabricated in a self-aligned manner while using a semiconductor substrate that has an active region that is recessed within an aperture with respect to an isolation region that surrounds the active region. The flash memory structure includes a floating gate that does not rise above the isolation region, and that preferably consists of a single layer that has a U shape. The U shape facilitates the enhanced capacitive coupling coefficient ratio.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: June 5, 2012
    Assignee: International Business Machines Corporation
    Inventors: Louis C. Hsu, Xu Ouyang, Ping-Chuan Wang, Zhijian J. Yang
  • Patent number: 8193068
    Abstract: To provide an SOI substrate with an SOI layer that can be put into practical use, even when a substrate with a low allowable temperature limit such as a glass substrate is used, and to provide a semiconductor substrate formed using such an SOI substrate. In order to bond a single-crystalline semiconductor substrate to a base substrate such as a glass substrate, a silicon oxide film formed by CVD with organic silane as a source material is used as a bonding layer, for example. Accordingly, an SOL substrate with a strong bond portion can be formed even when a substrate with an allowable temperature limit of less than or equal to 700° C. such as a glass substrate is used. A semiconductor layer separated from the single-crystalline semiconductor substrate is irradiated with a laser beam so that the surface of the semiconductor layer is planarized and the crystallinity thereof is recovered.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: June 5, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Eiji Higa, Yoji Nagano, Tatsuya Mizoi, Akihisa Shimomura
  • Patent number: 8183620
    Abstract: A semiconductor memory includes memory cell transistors including a tunnel insulating film, a floating gate electrode, a first insulating film, a control gate electrode, and a first metal salicide film; low-voltage transistors having a first p-type source region and a first p-type drain region, a first gate insulating film, and a first gate electrode of an n conductivity type having the same dose of a first p-type impurity as with the first p-type source region; and high-voltage transistors having a second p-type source region and a second p-type drain region, a second gate insulating film thicker than the first gate insulating film, and a second gate electrode of an n conductivity type having the same dose of a second p-type impurity as with the second p-type source region.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: May 22, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masato Endo
  • Patent number: 8174061
    Abstract: Floating-gate memory cells having a floating gate with a conductive portion and a dielectric portion facilitate increased levels of charge trapping sites within the floating gate. The conductive portion includes a continuous component providing bulk conductivity to the floating gate. The dielectric portion is discontinuous within the conductive portion and may include islands of dielectric material and/or one or more contiguous layers of dielectric material having discontinuities.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: May 8, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Chandra Mouli, Gurtej S. Sandhu
  • Patent number: 8164131
    Abstract: A nonvolatile semiconductor memory device includes: a first semiconductor region having first conductivity; a channel formation region in which a channel inversion layer having second conductivity is formed; a second semiconductor region having the second conductivity; a third semiconductor region having the second conductivity; a laminated insulating film formed on the channel formation region; and a control electrode formed on the laminated insulating film. The laminated insulating film includes a first insulating film, a charge storage film, and a second insulating film in order from the channel formation region side. The control electrode extends to above one of the second semiconductor region and the third semiconductor region. The charge storage film present between an extended portion of the control electrode and the second semiconductor region or the third semiconductor region is removed and a portion where the charge storage film is removed is filled with a third insulating film.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: April 24, 2012
    Assignee: Sony Corporation
    Inventors: Toshio Kobayashi, Saori Hara
  • Patent number: 8154071
    Abstract: According to an aspect of the present invention, there is provided a method for fabricating a nonvolatile semiconductor memory device including a memory cell being formed in a first region of a semiconductor substrate and a periphery circuit being formed in a second region of the semiconductor substrate, including forming a first gate electrode material film over the semiconductor substrate via a first gate insulator in the first region, etching the first gate electrode material film and the first gate insulator using a mask having a first opening in a first element isolation of the first region, etching the semiconductor substrate to a first depth to form a first isolation groove, forming a first insulation isolation layer in the first isolation groove, forming a second insulator on the first insulation isolation layer and on the first gate electrode, removing the second insulator by anisotropic etching, etching an upper portion of the first gate electrode to a second depth to form a first concave portion on
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: April 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Ishii, Takafumi Ikeda
  • Patent number: 8120090
    Abstract: An aging device includes a semiconductor substrate, an element isolation insulating layer which is formed in a recessed portion of the semiconductor substrate and which has an upper surface higher than an upper surface of the semiconductor substrate, first and second element regions isolated by the element isolation insulating layer, first and second diffusion layers formed in the semiconductor substrate in the first element region, a first gate insulating film formed on the semiconductor substrate between the first and second diffusion layers, a second gate insulating film formed on the semiconductor substrate in the second element region, and a floating gate electrode formed on the first and second gate insulating films and formed to extend from the first element region to the second element region. The deepest portions of the first and second diffusion layers are isolated from the element isolation insulating layer.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: February 21, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daisuke Hagishima, Hiroshi Watanabe
  • Patent number: 8115246
    Abstract: A semiconductor device may include a semiconductor layer having a convex portion and a concave portion surrounding the convex portion. The semiconductor device may further include a protrusion type isolation layer filling the concave portion and extending upward so that an uppermost surface of the isolation layer is a at level higher that an uppermost surface of the convex portion.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: February 14, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-hyun Kim, Jai-kyun Park
  • Patent number: 8115247
    Abstract: A non-volatile semiconductor memory device includes a floating gate formed above a semiconductor substrate; an erasing gate formed above the floating gate; a control gate formed above a channel region of a surface layer of the semiconductor substrate at a position corresponding to one lateral side of the floating gate and the erasing gate; a first diffusion layer formed on the semiconductor substrate at a position corresponding to another lateral side of the floating gate and the erasing gate; a plug formed above the first diffusion layer, the plug coupled to the first diffusion layer; and a second diffusion layer formed on the semiconductor substrate at a position adjacent to the control gate.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: February 14, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Takaaki Nagai
  • Patent number: 8110863
    Abstract: A rewriteable nonvolatile memory cell having two bits per cell is described. The memory cell preferably operates by storing charge in a dielectric charge storage layer or in electrically isolated conductive nanocrystals by a channel hot electron injection method. In preferred embodiments the channel region has a corrugated shape, providing additional isolation between the two storage regions. The channel region is deposited and is preferably formed of polycrystalline germanium or silicon-germanium. The memory cell of the present invention can be formed in memory arrays; in preferred embodiments, multiple memory levels are formed stacked above a single substrate.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: February 7, 2012
    Assignee: SanDisk 3D LLC
    Inventor: Roy E Scheuerlein
  • Patent number: 8093648
    Abstract: A method for manufacturing a non-volatile memory and a structure thereof are provided. The manufacturing method comprises the following steps. Firstly, a substrate is provided. Next, a semiconductor layer is formed on the substrate. Then, a Si-rich dielectric layer is formed on the semiconductor layer. After that, a plurality of silicon nanocrystals is formed in the Si-rich dielectric layer by a laser annealing process to form a charge-storing dielectric layer. Last, a gate electrode is formed on the charge-storing dielectric layer.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: January 10, 2012
    Assignee: Au Optronics Corp.
    Inventors: An-Thung Cho, Chia-Tien Peng, Chih-Wei Chao, Wan-Yi Liu, Chia-Kai Chen, Chun-Hsiun Chen, Wei-Ming Huang
  • Patent number: 8093631
    Abstract: A non-volatile memory device and a method for fabricating the same are provided. The method includes: forming a gate structure on a substrate, the gate structure including a first insulation layer, a first electrode layer for a floating gate and a second insulation layer; forming a third insulation layer on the gate structure covering predetermined regions of the substrate adjacent to the gate structure; and forming a second electrode layer for a control gate on the third insulation layer disposed on sidewalls of the gate structure and the predetermined regions of the substrate.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: January 10, 2012
    Assignee: Magnachip Semiconductor, Ltd.
    Inventor: Yong-Sik Jeong
  • Publication number: 20110303964
    Abstract: Provided is a nonvolatile memory 10 having a selective gate SG formed below a silicon layer 14, which is to be a channel region formed between a source region S and a drain region D of a transistor, through a gate insulating film 15 between the silicon layer and the selective gate, a floating gate FG formed on a part over the silicon layer 14 through a gate insulating film 16, and a control gate CG connected to the floating gate FG. The selective gate SG has one end overlapping the source region S through the gate insulating film 15, and the floating gate FG has one end overlapping the drain region D through the gate insulating film 16, and the other end separated from the source region S and overlapping the silicon layer 14 through the gate insulating film 16. Thus, a nonvolatile memory whose performance is not deteriorated even when it is formed on an insulating substrate having a low heat dissipating characteristic can be achieved.
    Type: Application
    Filed: December 14, 2009
    Publication date: December 15, 2011
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Naoki Ueda, Yoshimitsu Yamauchi
  • Patent number: 8076712
    Abstract: A dual charge storage node memory device and methods for its fabrication are provided. In one embodiment a dielectric plug is formed comprising a first portion recessed into a semiconductor substrate and a second portion extending above the substrate. A layer of semiconductor material is formed overlying the second portion. A first layered structure is formed overlying a first side of the second portion of the dielectric plug, and a second layered structure is formed overlying a second side, each of the layered structures overlying the layer of semiconductor material and comprising a charge storage layer between first and second dielectric layers. Ions are implanted into the substrate to form a first bit line and second bit line, and a layer of conductive material is deposited and patterned to form a control gate overlying the dielectric plug and the first and second layered structures.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: December 13, 2011
    Assignee: Spansion LLC
    Inventors: Chungho Lee, Ashot Melik-Martirosian, Wei Zheng, Timothy Thurgate, Chi Chang, Hiroyuki Kinoshita, Kuo-Tung Chang, Unsoon Kim
  • Patent number: 8067795
    Abstract: A single-poly EEPROM memory device comprises source and drain regions in a semiconductor body, a floating gate overlying a portion of the source and drain regions, which defines a source-to-floating gate capacitance and a drain-to-floating gate capacitance, wherein the source-to-floating gate capacitance is substantially greater than the drain-to-floating gate capacitance. The source-to-floating gate capacitance is, for example, at least about three times greater than the drain-to-floating gate capacitance to enable the memory device to be electrically programmed or erased by applying a potential between a source electrode and a drain electrode without using a control gate.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 29, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Jozef Czeslaw Mitros, Xiaoju Wu
  • Patent number: 8063435
    Abstract: A semiconductor memory in which a gate insulating film (tunnel insulating film) in a memory cell provides higher operational reliability. The semiconductor memory includes an insulating film 3 between a silicon substrate 1 and a gate electrode 4. The insulating film 3 is composed of a silicon oxide film 3f, a silicon nitride film 3d and a silicon oxide film 3b, stacked in this order between the silicon substrate and the gate electrode from the side of the silicon substrate 1. There are provided hydrogen occluding films 3a, 3c and 3e on an interface between the silicon oxide film 3f and the silicon nitride film 3d, on an interface between the silicon nitride film 3d and the silicon oxide film 3b and on an interface between the silicon oxide film 3b and the gate electrode 4 (FIGS. 1A and 1B).
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: November 22, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Shien Cho
  • Patent number: 8062945
    Abstract: Embodiments of methods of forming non-volatile memory structures are provided. In one such embodiment, first and second source/drain regions are formed on a substrate so that the first and second source/drain regions define an intervening channel region. A charge blocking layer is formed over the channel region. A trapping layer is formed over the charge blocking layer. A tunnel layer of two or more sub-layers is formed over the trapping layer, where the two or more sub-layers form a crested barrier tunnel layer. A control gate is formed over the tunnel layer.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 22, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 8049298
    Abstract: A first dielectric plug is formed in a portion of a trench that extends into a substrate of a memory device so that an upper surface of the first dielectric plug is recessed below an upper surface of the substrate. The first dielectric plug has a layer of a first dielectric material and a layer of a second dielectric material formed on the layer of the first dielectric material. A second dielectric plug of a third dielectric material is formed on the upper surface of the first dielectric plug.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: November 1, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Michael Violette
  • Patent number: 8044485
    Abstract: A semiconductor device made of a group-III nitride semiconductor having excellent properties is provided. The semiconductor device has a horizontal diode structure of Schottky type or P-N junction type, or combined type thereof having a main conduction pathway in the horizontal direction in a conductive layer with unit anode portions and unit cathode electrodes being integrated adjacently to each other in the horizontal direction. The conductive layer is preferably formed by depositing a group-III nitride layer and generating a two-dimensional electron gas layer on the interface. Forming the conductive layer of the group-III nitride having high breakdown field allows the breakdown voltage to be kept high while the gap between electrodes is narrow, which achieves a semiconductor device having high output current per chip area.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: October 25, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka
  • Patent number: 8039889
    Abstract: A non-volatile memory device includes a semiconductor substrate having a first section including a substantially planar first top surface, a second section including a substantially planar second top surface, and a sidewall extending between the first and second top surfaces. The second top surface of the substrate is closer to a bottom surface of the substrate than is the first top surface. A charge storage pattern extends on the first and second top surfaces of the substrate and along the sidewall therebetween. A source region in the first section of the substrate extends from the first top surface into the second section of the substrate and has a stepped portion defined by the sidewall and the second top surface. Related fabrication methods and methods of operation are also discussed.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: October 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Weon-Ho Park
  • Patent number: 8030161
    Abstract: A nonvolatile memory cell includes a substrate comprising a source, drain, and channel between the source and the drain. A tunnel dielectric layer overlies the channel, and a localized charge storage layer is disposed between the tunnel dielectric layer and a control dielectric layer. A gate electrode has a first surface adjacent to the control dielectric layer, and the first surface includes a midsection and two edge portions. According to one embodiment, the midsection defines a plane, and at least one edge portion extends away from the plane. Preferably, the edge portion extending away from the plane converges toward an opposing second surface of the gate electrode. According to another embodiment, the gate electrode of the nonvolatile memory cell includes a first sublayer and a second sublayer of a different width on the first sublayer.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: October 4, 2011
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Jian Chen, J. Wallace Parce, Francisco A. Leon
  • Patent number: 8026545
    Abstract: An EEPROM according to the present invention includes: a semiconductor layer of a first conductive type; and a first insulating film formed on the semiconductor layer. A first impurity region, a second impurity region, a third impurity region, a fourth impurity region, and a fifth impurity region of a second conductive type are formed in top layer portions of the semiconductor layer. On the first insulating film, a select gate, a first floating gate, and a second floating gate are respectively disposed opposite a region between the first impurity region and the second impurity region, a region between the second impurity region and the third impurity region, and a region between the third impurity region and the fourth impurity region. In the first insulating film, a first tunnel window and a second tunnel window are respectively formed at portions in contact with the first floating gate and the second floating gate.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: September 27, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Yushi Sekiguchi
  • Patent number: 8017991
    Abstract: Example embodiments provide a non-volatile memory device with increased integration and methods of operating and fabricating the same. A non-volatile memory device may include a plurality of first storage node films and a plurality of first control gate electrodes on a semiconductor substrate. A plurality of second storage node films and a plurality of second control gate electrodes may be recessed into the semiconductor substrate between two adjacent first control gate electrodes and below the bottom of the plurality of first control gate electrodes. A plurality of bit line regions may be on the semiconductor substrate and each may extend across the plurality of first control gate electrodes and the plurality of second control gate electrodes.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, Suk-pil Kim, Yoon-dong Park, June-mo Koo
  • Patent number: 8008701
    Abstract: A method of making a non-volatile MOS semiconductor memory device includes a formation phase, in a semiconductor material substrate, of isolation regions filled by field oxide and of memory cells separated each other by said isolation regions The memory cells include an electrically active region surmounted by a gate electrode electrically isolated from the semiconductor material substrate by a first dielectric layer; the gate electrode includes a floating gate defined simultaneously to the active electrically region. A formation phase of said floating gate exhibiting a substantially saddle shape including a concavity is proposed.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: August 30, 2011
    Inventors: Giorgio Servalli, Daniela Brazzelli
  • Patent number: 8004033
    Abstract: Nonvolatile memory cells and methods of forming the same are provided, the methods including forming a first conductor at a first height above a substrate; forming a first pillar-shaped semiconductor element above the first conductor, wherein the first pillar-shaped semiconductor element comprises a first heavily doped layer of a first conductivity type, a second lightly doped layer above and in contact with the first heavily doped layer, and a third heavily doped layer of a second conductivity type above and in contact with the second lightly doped layer, the second conductivity type opposite the first conductivity type; forming a first dielectric antifuse above the third heavily doped layer of the first pillar-shaped semiconductor element; and forming a second conductor above the first dielectric antifuse.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: August 23, 2011
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Maitreyee Mahajani
  • Patent number: 8004032
    Abstract: A system and method is disclosed for providing a low voltage high density multi-bit storage flash memory. A dual bit memory cell of the invention comprises a substrate having a common source, a first drain and first channel, and a second drain and a second channel. A common control gate is located above the source. A first floating gate and a second floating gate are located on opposite sides of the control gate. Each floating gate is formed with a sharp tip adjacent to the control gate and an upper curved surface that follows a contour of the surface of the control gate. The sharp tips of the floating gates efficiently discharge electrons into the control gate when the memory cell is erased. The curved surfaces increase capacitor coupling between the control gate and the floating gates.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 23, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Jiankang Bu, Lee James Jacobson, Andre Paul Labonte
  • Patent number: 7998814
    Abstract: A semiconductor memory devices and a method of fabricating the same includes sequentially stacking a tunnel insulating layer, a first nano-grain film, a conductive layer for a floating gate, and a second nano-grain film over a semiconductor substrate, forming a trench by etching the second nano-grain film, the conductive layer for the floating gate, the first nano-grain film, the tunnel insulating layer, and the semiconductor substrate, gap-filling the trench with an insulating layer, thus forming an isolation layer, and forming a third nano-grain film on sidewalls of the conductive layer for the floating gate.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: August 16, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang Hyun Oh
  • Patent number: 7999304
    Abstract: A semiconductor device includes a semiconductor substrate, and nonvolatile memory cells, each of the cells including a channel region having a channel length and a channel width, a tunnel insulating film, a floating gate electrode, a control gate electrode, an inter-electrode insulating film between the floating and control gate electrodes, and an electrode side-wall insulating film on side-wall surfaces of the floating and control gate electrodes, the electrode side-wall insulating film including first and second insulating films having first and second dielectric constants, the first dielectric constant being higher than the second dielectric constant, the second dielectric constant being higher than a dielectric constant of a silicon nitride film, the first insulating film being in a central region of a facing region between the floating and control gate electrodes, the second insulating region being in the both end regions of the facing region and protruding from the both end portions.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Akihito Yamamoto, Katsuaki Natori, Masayuki Tanaka, Katsuyuki Sekine, Daisuke Nishida, Ryota Fujitsuka
  • Patent number: 7989874
    Abstract: The present invention discloses a nonvolatile memory device which can improve the data storage capacity without increasing the surface area of the device, and a method for manufacturing the same. The nonvolatile memory device comprises: a gate of a stack type structure formed on an active region of a semiconductor substrate; a source/drain formed in the substrate at both sides of the gate of the stack type structure; an interlayer insulating film formed on the substrate where the source/drain is formed and covering the gate of the stack type structure; a contact connected to the source/drain through the interlayer insulating film; a plurality of conductive patterns formed in the interlayer insulating film of the region not adjacent to the contact; and an electrode pad formed on the conductive patterns.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: August 2, 2011
    Assignee: Magnachip Semiconductor, Ltd.
    Inventor: Da-Soon Lee
  • Patent number: 7989289
    Abstract: Floating gate structures are generally described. In one example, an electronic device includes a semiconductor substrate, a tunnel dielectric coupled with the semiconductor substrate, and a floating gate structure comprising at least a first region having a first electron energy level or electron workfunction or carrier capture efficiency coupled with the tunnel dielectric and a second region having a second electron energy level or electron workfunction or carrier capture efficiency coupled with the first region wherein the first electron energy level or electron workfunction or carrier capture efficiency is less than the second electron energy level or electron workfunction or carrier capture efficiency. Such electronic device may reduce the thickness of the floating gate structure or reduce leakage current through an inter-gate dielectric, or combinations thereof, compared with a floating gate structure that comprises only polysilicon.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: August 2, 2011
    Assignee: Intel Corporation
    Inventors: Tejas Krishnamohan, Krishna Parat, Kyu Min, Srivardhan Gowda, Thomas M. Graettinger, Nirmal Ramaswamy
  • Patent number: 7989871
    Abstract: A nonvolatile semiconductor memory device includes a first insulating film on a channel, a floating gate electrode on the first insulating film, a second insulating film on the floating gate electrode, and a control gate electrode on the second insulating film. Each of the first and second insulating films comprises at least two layers, one layer directly in contact with the floating gate electrode is formed by an insulating material (A) including a metal element having a d orbital, and the other at least one layer is formed by an insulating material (B) chiefly including one of a metal element without the d orbital, and a semiconductor element.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: August 2, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Naoki Yasuda
  • Patent number: 7985670
    Abstract: A method of realizing a flash floating poly gate using an MPS process can include forming a tunnel oxide layer on an active region of a semiconductor substrate; and then forming a first floating gate on and contacting the tunnel oxide layer; and then forming second and third floating gates on and contacting the first floating gate, wherein the second and third floating gates extend perpendicular to the first floating gate; and then forming a poly meta-stable polysilicon layer on the first, second and third floating gates; and then forming a control gate on the semiconductor substrate including the poly meta-stable polysilicon layer. Therefore, it is possible to increase the surface area of the capacitor by a limited area in comparison with a flat floating gate. As a result, it is possible to improve the coupling ratio essential to the flash memory device and to improve the yield and reliability of the semiconductor device.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: July 26, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Tae-Woong Jeong
  • Patent number: 7982255
    Abstract: A flash memory device wherein the floating gate of the flash memory is defined by a recessed access device. The use of a recessed access device results in a longer channel length with less loss of device density. The floating gate can also be elevated above the substrate a selected amount so as to achieve a desirable coupling between the substrate, the floating gate and the control gate comprising the flash cell.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: July 19, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Todd Abbott
  • Patent number: 7977729
    Abstract: An aging device according to an embodiment of the present invention includes a semiconductor substrate, first and second diffusion layers provided in a first element region, a floating gate provided above a channel region between the first and second diffusion layers, and a control gate electrode provided beside the floating gate with an interval in the lateral direction. A coupling capacitance between the floating gate and the control gate electrode is larger than a coupling capacitance between the floating gate and the semiconductor substrate.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: July 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Watanabe, Atsuhiro Kinoshita, Shigeki Kobayashi, Daisuke Hagishima
  • Patent number: 7977226
    Abstract: A flash memory device and a method for fabricating the same are disclosed. The flash memory device includes an ONO layer on a substrate, polysilicon gates on the ONO layer, a gate oxide layer on the substrate, the ONO layer and the polysilicon gates, and a low temperature oxide layer and polysilicon sidewall spacers on outer side surfaces of the polysilicon gates, except in a region between nearest adjacent polysilicon gates.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Ki Jun Yun
  • Patent number: 7968398
    Abstract: A diblock copolymer layer comprising at least two polymers and having a lamellar structure perpendicularly to a substrate is deposited on a first gate insulator formed on the substrate. One of the polymers of the diblock copolymer layer is then eliminated to form parallel grooves in the copolymer layer. The grooves are filled by a first metallic or semi-conductor material and the rest of the copolymer layer is eliminated. A second dielectric material is deposited to form a second gate insulator. The second gate insulator of the floating gate then comprises an alternation of parallel first and second lines respectively of the first and second materials, the second material encapsulating the lines of the first material.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: June 28, 2011
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique, Universite Joseph Fourier
    Inventors: Gabriel Molas, Karim Aissou, Thierry Baron
  • Patent number: 7968932
    Abstract: A semiconductor device which is formed in a self-aligned manner without causing a problem of misalignment in forming a control gate electrode and in which a leak between the control gate electrode and a floating gate electrode is not generated, and a manufacturing method of the semiconductor device are provided. A semiconductor device includes a semiconductor film, a first gate insulating film over the semiconductor film, a floating gate electrode over the first gate insulating-film, a second gate insulating film which covers the floating gate electrode, and a control gate electrode over the second gate insulating film. The control gate electrode is formed so as to cover the floating gate electrode with the second gate insulating film interposed therebetween, the control gate electrode is provided with a sidewall, and the sidewall is formed on a stepped portion of the control gate-electrode, generated due to the floating gate electrode.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 28, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshinobu Asami
  • Patent number: 7956404
    Abstract: A two-transistor non-volatile memory cell is formed in a semiconductor body. A memory-transistor well is disposed within the semiconductor body. A switch-transistor well is disposed within the semiconductor body and is electrically isolated from the memory transistor well. A memory transistor including spaced-apart source and drain regions is formed within the memory-transistor well. A switch transistor including spaced-apart source and drain regions is formed within the switch-transistor well region. A floating gate is insulated from and self aligned with the source and drain regions of the memory transistor and switch transistor. A control gate is disposed above and aligned to the floating gate and with the source and drain regions of the memory transistor and the switch transistor.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: June 7, 2011
    Assignee: Actel Corporation
    Inventors: Fethi Dhaoui, John McCollum, Vidyadhara Bellippady, William C. Plants, Zhigang Wang
  • Patent number: 7951670
    Abstract: A split gate memory cell. A floating gate is disposed on and insulated from a substrate comprising an active area separated by a pair of isolation structures formed therein. The floating gate is disposed between the pair of isolation structures and does not overlap the upper surface thereof. A cap layer is disposed on the floating gate. A control gate is disposed over the sidewall of the floating gate and insulated therefrom, partially extending to the upper surface of the cap layer. A source region is formed in the substrate near one side of the floating gate.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: May 31, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Ming Huang, Hung-Cheng Sung, Wen-Ting Chu, Chang-Jen Hsieh, Ya-Chen Kao
  • Patent number: 7947590
    Abstract: The non-volatile memory device may include a semiconductor substrate having a body and a pair of fins. A bridge insulating layer may non-electrically connect upper portions of the pair of fins to define a void between the pair of fins. Outer surfaces of the pair of fins are the surfaces of the pair of fins that do not face the void and inner surfaces of the pair of fins are the surfaces of the pair of fins that do face the void. The non-volatile memory device may further include at least one control gate electrode that may cover at least a portion of outer surfaces of the pair of fins, may extend over the bridge insulating layer, and may be isolated from the semiconductor substrate. At least one pair of gate insulating layers may be between the at least one control gate electrode and the pair of fins, and at least one pair of storage nodes may be between the at least one pair of gate insulating layers and the at least one control gate electrode.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: May 24, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-Dong Park, Won-Joo Kim, June-Mo Koo, Suk-Pil Kim, Jae-Woong Hyun, Jung-Hoon Lee
  • Patent number: 7939879
    Abstract: For providing a cheap semiconductor memory device with improving reliability by level of a cell, in the place of escaping from defects on memory cells electrically, through such as ECC, and further for providing a cell structure enabling scaling-down in the vertical direction with maintaining the reliability, in a semiconductor memory device, upon which high-speeded read-out operation is required, a charge storage region is constructed with particles made from a large number of semiconductor charge storage small regions, each being independent, thereby increasing the reliability by the cell level.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: May 10, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Taro Osabe, Tomoyuki Ishii, Kazuo Yano, Takashi Kobayashi
  • Patent number: 7935634
    Abstract: A method of making an integrated circuit comprises providing a substrate and forming a structure on the substrate comprising a first enclosed portion of a carbon material and a second portion of the carbon material, wherein an intersection of the first and second portion of the carbon material has a defined dimension. The method further comprises processing the substrate with a plasma comprising hydrogen in order to etch the second portion of the carbon material, wherein the defined dimension of the intersection of the first and second portion of the carbon material substantially suppresses etching of the first enclosed portion of the carbon material in a self-limiting way.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: May 3, 2011
    Assignee: Qimonda AG
    Inventors: Maik Liebau, Thomas Betzl, Olaf Storbeck, Georg Duesberg, Guenther Aichmayr
  • Patent number: 7923327
    Abstract: Provided are a non-volatile memory device and a method of fabricating the same. The non-volatile memory device comprises: a control gate region formed by doping a semiconductor substrate with second impurities; an electron injection region formed by doping the semiconductor substrate with first impurities, where a top surface of the electron injection region includes a tip portion at an edge; a floating gate electrode covering at least a portion of the control gate region and the tip portion of the electron injection region; a first tunnel oxide layer interposed between the floating gate electrode and the control gate region; a second tunnel oxide layer interposed between the floating gate electrode and the electron injection region; a trench surrounding the electron injection region in the semiconductor substrate; and a device isolation layer pattern filled in the trench.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung Kun Park
  • Patent number: 7919809
    Abstract: A memory system is disclosed that includes a set of non-volatile storage elements. A given memory cell has a dielectric cap above the floating gate. In one embodiment, the dielectric cap resides between the floating gate and a conformal IPD layer. The dielectric cap reduces the leakage current between the floating gate and a control gate. The dielectric cap achieves this reduction by reducing the strength of the electric field at the top of the floating gate, which is where the electric field would be strongest without the dielectric cap for a floating gate having a narrow stem.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: April 5, 2011
    Assignee: SanDisk Corporation
    Inventors: Dana Lee, Henry Chin, James K. Kai, Takashi Whitney Orimoto, Vinod R. Purayath, George Matamis
  • Patent number: 7915665
    Abstract: A two-transistor non-volatile memory cell is formed in a semiconductor body. A memory-transistor well is disposed within the semiconductor body. A switch-transistor well is disposed within the semiconductor body and is electrically isolated from the memory transistor well. A memory transistor including spaced-apart source and drain regions is formed within the memory-transistor well. A switch transistor including spaced-apart source and drain regions is formed within the switch-transistor well region. A floating gate is insulated from and self aligned with the source and drain regions of the memory transistor and switch transistor. A control gate is disposed above and aligned to the floating gate and with the source and drain regions of the memory transistor and the switch transistor.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: March 29, 2011
    Assignee: Actel Corporation
    Inventors: Fethi Dhaoui, John McCollum, Vidyadhara Bellippady, William C. Plants, Zhigang Wang
  • Patent number: 7915655
    Abstract: A semiconductor device includes a semiconductor substrate and a metal-oxide semiconductor transistor. A first dielectric layer of the metal oxide semiconductor transistor overlaps source and drain electrodes and a channel region of the transistor. A first drain region is away from the channel region and the first dielectric layer. A second drain region is between the first drain region and the channel region. A gate electrode is on the first dielectric layer and connected to a gate wire, and includes first and second gate layers and a dielectric layer therebetween. The first gate layer has one edge laterally spaced from the first drain region and resting over the second drain region, and is isolated from the gate wire. The second gate layer is over the first gate layer and is connected to the gate wire.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: March 29, 2011
    Assignee: Ricoh Company, Ltd.
    Inventor: Naohiro Ueda
  • Patent number: 7915666
    Abstract: An erase method where a corner portion on which an electric field concentrates locally is provided on the memory gate electrode, and charges in the memory gate electrode are injected into a charge trap film in a gate dielectric with Fowler-Nordheim tunneling operation is used. Since current consumption at the time of erase can be reduced by the Fowler-Nordheim tunneling, a power supply circuit area of a memory module can be reduced. Since write disturb resistance can be improved, a memory array area can be reduced by adopting a simpler memory array configuration. Owing to both the effects, an area of the memory module can be largely reduced, so that manufacturing cost can be reduced. Further, since charge injection centers of write and erase coincide with each other, so that (program and erase) endurance is improved.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: March 29, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Kan Yasui, Tetsuya Ishimaru, Digh Hisamoto, Yasuhiro Shimamoto
  • Patent number: 7910974
    Abstract: A silicon nitride film, which is a second hard mask, is dry etched to be removed completely. The silicon nitride film, which is formed on a sidewall of a silicon nitride film used as a first hard mask, has a relatively low etching rate. Therefore, if the silicon nitride film is continued etching until the corresponding portion thereof is removed, polysilicon is etched in a direction of depth in trench shape. Then, floating gates in adjacent cells are separated and a step portion of the polysilicon is formed. Consequently, a remaining portion of the silicon nitride film used as the first hard mask is removed, an ONO film is laminated on a whole surface of the poly silicon having the step portion on an edge that has been etched, and then, a polysilicon for a control gate is laminated on the ONO film.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: March 22, 2011
    Assignee: Spansion LLC
    Inventor: Yukihiro Utsuno