With Means To Prevent Sub-surface Currents, Or With Non-uniform Channel Doping Patents (Class 257/345)
  • Patent number: 8138030
    Abstract: A method for forming a fin field effect transistor (finFET) device includes, forming a fin structure in a substrate, forming a gate stack structure perpendicular to the fin structure, and implanting ions in the substrate at an angle (?) to form a source region and a drain region in the substrate, wherein the angle (?) is oblique relative to the source region.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8125031
    Abstract: A lateral-double diffused MOS device is provided. The device includes: a first well having a first conductive type and a second well having a second conductive type disposed in a substrate and adjacent to each other; a drain and a source regions having the first conductive type disposed in the first and the second wells, respectively; a field oxide layer (FOX) disposed on the first well between the source and the drain regions; a gate conductive layer disposed over the second well between the source and the drain regions extending to the FOX; a gate dielectric layer between the substrate and the gate conductive layer; a doped region having the first conductive type in the first well below a portion of the gate conductive layer and the FOX connecting to the drain region. A channel region is defined in the second well between the doped region and the source region.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: February 28, 2012
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Hsueh-I Huang, Chien-Wen Chu, Cheng-Chi Lin, Shih-Chin Lien, Chin-Pen Yeh, Shyi-Yuan Wu
  • Publication number: 20120018805
    Abstract: According to embodiments, a semiconductor device includes a semiconductor substrate and an element isolation insulating film which isolates a element formation region in a surface portion of the semiconductor substrate. A depletion-type channel region of a first conductivity type is formed in an inner region which is in the element formation region of the semiconductor substrate and is a predetermined distance or more away from the element isolation insulating film. A gate electrode is formed above the element formation region with a gate insulating film located in between in such a manner as to traverse over the channel region and to overlap with portions of the element isolation insulating film which are located on both sides of the element formation region. Source/drain regions of the first conductivity type are formed in the channel region respectively on both sides of the gate electrode.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 26, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Yoshiki KATO
  • Patent number: 8063446
    Abstract: Provided is a LDMOS device and method for manufacturing. The LDMOS device includes a second conductive type buried layer formed in a first conductive type substrate. A first conductive type first well is formed in the buried layer and a field insulator with a gate insulating layer at both sides are formed on the first well. On one side of the field insulator is formed a first conductive type second well and a source region formed therein. On the other side of the field insulator is formed an isolated drain region. A gate electrode is formed on the gate insulating layer on the source region and a first field plate is formed on a portion of the field insulator and connected with the gate electrode. A second field plate is formed on another portion of the field insulator and spaced apart from the first field plate.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: November 22, 2011
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Choul Joo Ko
  • Patent number: 8053836
    Abstract: An oxide semiconductor thin-film transistor, comprising: a source electrode and a drain electrode formed on a substrate; a composite semiconductor active layer formed between the source electrode and the drain electrode; a gate dielectric layer formed on the source electrode, the composite semiconductor active layer and the drain electrode; and a gate electrode formed on the gate dielectric layer and corresponding to the composite semiconductor active layer; wherein the composite semiconductor active layer comprises a low carrier-concentration first oxide semiconductor layer and a high carrier-concentration second oxide semiconductor layer.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: November 8, 2011
    Assignees: Industrial Technology Research Institute, National Taiwan University
    Inventors: Yung-Hui Yeh, Chun-Cheng Cheng, Jian-Jang Huang, Shih-Hua Hsiao, Kuang-Chung Liu
  • Patent number: 8053839
    Abstract: A semiconductor structure includes of a plurality of semiconductor fins overlying an insulator layer, a gate dielectric overlying a portion of said semiconductor fin, and a gate electrode overlying the gate dielectric. Each of the semiconductor fins has a top surface, a first sidewall surface, and a second sidewall surface. Dopant ions are implanted at a first angle (e.g., greater than about 7°) with respect to the normal of the top surface of the semiconductor fin to dope the first sidewall surface and the top surface. Further dopant ions are implanted with respect to the normal of the top surface of the semiconductor fin to dope the second sidewall surface and the top surface.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: November 8, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yee-Chia Yeo, Ping-Wei Wang, Hao-Yu Chen, Fu-Liang Yang, Chenming Hu
  • Patent number: 8017486
    Abstract: A lateral-double diffused MOS device is provided. The device includes: a first well having a first conductive type and a second well having a second conductive type disposed in a substrate and adjacent to each other; a drain and a source regions having the first conductive type disposed in the first and the second wells, respectively; a field oxide layer (FOX) disposed on the first well between the source and the drain regions; a gate conductive layer disposed over the second well between the source and the drain regions extending to the FOX; a gate dielectric layer between the substrate and the gate conductive layer; a doped region having the first conductive type in the first well below a portion of the gate conductive layer and the FOX connecting to the drain region. A channel region is defined in the second well between the doped region and the source region.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: September 13, 2011
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Hsueh-I Huang, Chien-Wen Chu, Cheng-Chi Lin, Shih-Chin Lien, Chin-Pen Yeh, Shyi-Yuan Wu
  • Patent number: 7973361
    Abstract: A high breakdown voltage semiconductor device is formed using an SOI substrate comprising a support substrate, an insulating film, and an active layer. The high breakdown voltage semiconductor device comprises an N-type well region and a P-type drain offset region formed on the active layer, a P-type source region formed on the well region, a P-type drain region formed on the drain offset region, a gate insulating film formed in at least a region interposed between the source region and the drain offset region of the active layer, and a gate electrode formed on the gate insulating film. The device further comprises an N-type deep well region formed under the drain offset region. A concentration peak of N-type impurity for formation of the deep well region is located deeper than a concentration peak of P-type impurity for formation of the drain offset region.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: July 5, 2011
    Assignee: Panasonic Corporation
    Inventors: Yoshinobu Sato, Hiroyoshi Ogura, Hisao Ichijo, Teruhisa Ikuta, Toru Terashita
  • Patent number: 7968921
    Abstract: An asymmetric insulated-gate field-effect transistor (100) has a source (240) and a drain (242) laterally separated by a channel zone (244) of body material (180) of a semiconductor body. A gate electrode (262) overlies a gate dielectric layer (260) above the channel zone. A more heavily doped pocket portion (250) of the body material extends largely along only the source. Each of the source and drain has a main portion (240M or 242M) and a more lightly doped lateral extension (240E or 242E). The drain extension is more lightly doped than the source extension. The maximum concentration of the semiconductor dopant defining the two extensions occurs deeper in the drain extension than in the source extension. Additionally or alternatively, the drain extension extends further laterally below the gate electrode than the source extension. These features enable the threshold voltage to be highly stable with operational time.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: June 28, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, William D. French, Sandeep R. Bahl, Jeng-Jiun Yang, D. Courtney Parker, Peter B. Johnson, Donald M. Archer
  • Publication number: 20110147838
    Abstract: Tunnel field effect devices and methods of fabricating tunnel field effect devices are described. In one embodiment, the semiconductor device includes a first drain region of a first conductivity type disposed in a first region of a substrate, a first source region of a second conductivity type disposed in the substrate, the second conductivity type being opposite the first conductivity type, a first channel region electrically coupled between the first source region and the first drain region, the first source region underlying a least a portion of the first channel region, and a first gate stack overlying the first channel region.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: Infineon Technologies AG
    Inventors: Harald Gossner, Ramgopal Rao, Ram Asra
  • Publication number: 20110140183
    Abstract: A semiconductor device includes a gate electrode on a gate insulating film over a semiconductor substrate, a first sidewall insulating film on a side surface of the gate electrode, and source and drain regions, each including a pocket diffusion layer of a first conductivity type, and first and second diffusion layers of a second conductivity type. The pocket diffusion layer is disposed in the semiconductor substrate. The first diffusion layer of a second conductivity type extends over the pocket diffusion layer. The first diffusion layer faces toward the gate electrode through the first sidewall insulating film. The second diffusion layer over the first diffusion layer is higher in impurity concentration than the first diffusion layer. The second diffusion layer is separated by the first diffusion layer from the pocket diffusion layer, and has a side surface which faces toward the first sidewall insulating film through the first diffusion layer.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 16, 2011
    Inventor: Takeshi NAGAI
  • Patent number: 7960786
    Abstract: A semiconductor structure includes a semiconductor substrate of a first conductivity type; a pre-high-voltage well (pre-HVW) in the semiconductor substrate, wherein the pre-HVW is of a second conductivity type opposite the first conductivity type; a high-voltage well (HVW) over the pre-HVW, wherein the HVW is of the second conductivity type; a field ring of the first conductivity type occupying a top portion of the HVW, wherein at least one of the pre-HVW, the HVW, and the field ring comprises at least two tunnels; an insulation region over the field ring and a portion of the HVW; a drain region in the HVW and adjacent the insulation region; a gate electrode over a portion the insulation region; and a source region on an opposite side of the gate electrode than the drain region.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: June 14, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Eric Huang, Tsung-Yi Huang, Fu-Hsin Chen, Chyi-Chyuan Huang, Chung-Yeh Wu
  • Patent number: 7960229
    Abstract: A metal oxide semiconductor transistor device having a reduced gate height is provided. One embodiment of the device includes a substrate having a layer of semiconductor material, a gate structure overlying the layer of semiconductor material, and source/drain recesses formed in the semiconductor material adjacent to the gate structure, such that remaining semiconductor material is located below the source/drain recesses. The device also includes shallow source/drain implant regions formed in the remaining semiconductor material, and epitaxially grown, in situ doped, semiconductor material in the source/drain recesses.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: June 14, 2011
    Assignee: GlobalFoundries Inc.
    Inventors: Frank Bin Yang, Rohit Pal, Scott Luning
  • Patent number: 7944003
    Abstract: An improved dynamic memory cell using a semiconductor fin or body is described. Asymmetrical doping is used in the channel region, with more dopant under the back gate to improve retention without significantly increasing read voltage.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: May 17, 2011
    Assignee: Intel Corporation
    Inventors: Ibrahim Ban, Avci E. Uygar, David L. Kencke
  • Patent number: 7944035
    Abstract: A semiconductor die has devices such as MOSgated devices, diodes and the like formed into the top and bottom surfaces of the die. One terminal of each of the devices terminal in the interior center of the die and a common contact is made to the interior center of the die at one edge of the die. Various packages for the die having a reduced foot print on a support substrate are disclosed.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: May 17, 2011
    Assignee: International Rectifier Corporation
    Inventor: Igor Bol
  • Patent number: 7928486
    Abstract: A photoelectric conversion device comprising a semiconductor substrate of a first conduction type, and a photoelectric conversion element having an impurity region of the first conduction type and a plurality of impurity regions of a second conduction type opposite to the first conduction type. The plurality of second-conduction-type impurity regions include at least a first impurity region, a second impurity region provided between the first impurity region and a surface of the substrate, and a third impurity region provided between the second impurity region and the surface of the substrate. A concentration C1 corresponding to a peak of the impurity concentration in the first impurity region, a concentration C2 corresponding to a peak of the impurity concentration in the second impurity region and a concentration C3 corresponding to a peak of the impurity concentration in the third impurity region satisfy the following relationship: C2<C3<C1.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 19, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Yuzurihara, Ryuichi Mishima, Takanori Watanabe, Takeshi Ichikawa, Seiichi Tamura
  • Patent number: 7915679
    Abstract: Light-emitting devices, and related components, systems and methods are disclosed. In some embodiments, the light-emitting devices include a multi-layer stack of materials. The stack of materials includes a light-generating region and a first layer supported by the light-generating region. The surface of the first layer is configured so that light generated by the light-generating region can emerge from the light-emitting device via the surface of the first layer. The surface has a dielectric function that varies spatially according to a nonperiodic pattern.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: March 29, 2011
    Assignee: Luminus Devices, Inc.
    Inventors: Alexei A. Erchak, Elefterios Lidorikis, Chiyan Luo
  • Patent number: 7910991
    Abstract: A disclosed power transistor, suitable for use in a switch mode converter that is operable with a switching frequency exceeding, for example, 5 MHz or more, includes a gate dielectric layer overlying an upper surface of a semiconductor substrate and first and second gate electrodes overlying the gate dielectric layer. The first gate electrode is laterally positioned overlying a first region of the substrate. The first substrate region has a first type of doping, which may be either n-type or p-type. A second gate electrode of the power transistor overlies the gate dielectric and is laterally positioned over a second region of the substrate. The second substrate region has a second doping type that is different than the first type. The transistor further includes a drift region located within the substrate in close proximity to an upper surface of the substrate and laterally positioned between the first and second substrate regions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Jiang-Kai Zuo
  • Patent number: 7906819
    Abstract: The semiconductor device includes the concentration of the impurity of the first conductivity type in a doped channel layer of a first conductivity type in the pass transistor is set at a relatively low value, and pocket regions of the first conductivity type in a pass transistor are formed so as to be relatively shallow with a relatively high impurity concentration.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: March 15, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Akihiro Usujima, Hideyuki Kojima
  • Patent number: 7868396
    Abstract: A power semiconductor component includes a drift zone in a semiconductor body, a component junction and a compensation zone. The component junction is disposed between the drift zone and a further component zone, which is configured such that when a blocking voltage is applied to the component junction, a space charge zone forms extending generally in a first direction in the drift zone. The compensation zone is disposed adjacent to the drift zone in a second direction and includes at least one high-dielectric material having a temperature-dependent dielectric constant. The temperature dependence of the compensation zone varies in the second direction.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: January 11, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Rueb, Franz Hirler
  • Patent number: 7851867
    Abstract: An integrated circuit includes: a semiconductor substrate that has a well region containing a first conductivity type impurity; and an enhancement type MOS transistor and a plurality of depletion type MOS transistors, each of which is formed in the well region and has a channel region under a gate electrode. At least one of the depletion type MOS transistors has, in the channel region, an implantation region into which a second conductivity type impurity is implanted so that a threshold voltage is adjusted. The implantation region has the first conductivity type impurity and the second conductivity type impurity. Further, the second conductivity type impurity has a concentration that is higher than a concentration of the first conductivity type impurity.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Chinatsu Seto, Mikiya Uchida, Kenichi Mimuro, Emi Kanazaki
  • Patent number: 7838930
    Abstract: An insulated-gate field-effect transistor (500, 510, 530, or 540) has a hypoabrupt step-change vertical dopant profile below one (104 or 564) of its source/drain zones for reducing the parasitic capacitance along the pn junction between that source/drain zone and adjoining body material (108 or 568). In particular, the concentration of semiconductor dopant which defines the conductivity type of the body material largely undergoes a step increase by at least a factor of 10 in moving from that source/drain zone down to an underlying body-material location no more than 10 times deeper below the upper semiconductor surface than that source/drain zone.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: November 23, 2010
    Assignee: National Semiconductor Corporation
    Inventor: Constantin Bulucea
  • Patent number: 7816734
    Abstract: A field-effect transistor including localized halo ion regions that can optimize HEIP characteristics and GIDL characteristics. The field-effect transistor includes a substrate, an active region, a gate structure, and halo ion regions. The active region includes source/drain regions and a channel region formed at a partial region in the substrate. The gate structure electrically contacts the active region. The halo ion regions are locally formed adjacent to both end portions of the source/drain regions in the substrate.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: October 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyuck-Chai Jung, June-Hee Lim
  • Patent number: 7812394
    Abstract: This invention adds to the art of replacement source-drain cMOS transistors. Processes may involve etching a recess in the substrate material using one equipment set, then performing deposition in another. Disclosed is a method to perform the etch and subsequent deposition in the same reactor without atmospheric exposure. In-situ etching of the source-drain recess for replacement source-drain applications provides several advantages over state of the art ex-situ etching. Transistor drive current is improved by: (1) Eliminating contamination of the silicon-epilayer interface when the as-etched surface is exposed to atmosphere and (2) Precise control over the shape of the etch recess. Deposition may be done by a variety of techniques including selective and non-selective methods. In the case of blanket deposition, a measure to avoid amorphous deposition in performance critical regions is also presented.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: October 12, 2010
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Glenn A. Glass, Andrew N. Westmeyer, Michael L. Hattendorf, Jeffrey R. Wank
  • Patent number: 7795675
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: September 14, 2010
    Assignee: Siliconix Incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi, Qufei Chen
  • Patent number: 7777935
    Abstract: An actuator is disclosed that has a contacting part smaller than a processing limit of a lithography technique, and is able to reduce a contacting area or a contacting length of the contacting part during operation, reduce a sticking force induced by contact, and decrease a driving voltage of the actuator. The actuator includes an operating part and a contacting part in contact with the operating part. The contacting part is formed by overlapping a first pattern on an end of a second pattern. The first pattern has a solid structure and the size of an upper portion of the solid structure of the first pattern on the second pattern is less than a processing resolving power or resolution.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: August 17, 2010
    Assignee: Ricoh Company, Ltd.
    Inventors: Takeshi Nanjyo, Seiichi Katoh, Koichi Ohtaka
  • Patent number: 7750396
    Abstract: A semiconductor device includes: a semiconductor substrate; a source region and a drain region formed in the upper part of the semiconductor substrate so as to be spaced; a channel region formed in a part of the semiconductor substrate between the source region and the drain region; a first dielectric film formed on the channel region of the semiconductor substrate; a second dielectric film formed on the first dielectric film and having a higher permittivity than the first dielectric film; a third dielectric film formed on at least an end surface of the second dielectric film near the drain region out of end surfaces of the second dielectric film near the source and drain regions; and a gate electrode formed on the second dielectric film and the third dielectric film.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: July 6, 2010
    Assignee: Panasonic Corporation
    Inventor: Yoshinori Takami
  • Patent number: 7723750
    Abstract: The present invention comprises a method for forming a semiconducting device including the steps of providing a layered structure including a substrate, a low diffusivity layer of a first-conductivity dopant; and a channel layer; forming a gate stack atop a protected surface of the channel layer; etching the layered structure selective to the gate stack to expose a surface of the substrate, where a remaining portion of the low diffusivity layer provides a retrograded island substantially aligned to the gate stack having a first dopant concentration to reduce short-channel effects without increasing leakage; growing a Si-containing material atop the recessed surface of the substrate; and doping the Si-containing material with a second-conductivity dopant at a second dopant concentration. The low diffusivity layer may be Si1-x-yGexZy, where Z can be carbon (C), xenon (Xe), germanium (Ge), krypton (Kr), argon (Ar), nitrogen (N), or combinations thereof.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: May 25, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Effendi Leobandung, Anda C. Mocuta, Dan M. Mocuta
  • Patent number: 7718498
    Abstract: A semiconductor device suitable for a source-follower circuit, provided with a gate electrode formed on a semiconductor substrate via a gate insulation film, a first conductivity type layer formed in the semiconductor substrate under a conductive portion of the gate electrode and containing a first conductivity type impurity, first source/drain regions of the first conductivity type impurity formed in the semiconductor substrate and extended from edge portions of the gate electrode, and second source/drain regions having a first conductivity type impurity concentration lower than that in the first source/drain regions and formed adjoining the gate insulation film and the first source/drain regions in the semiconductor substrate so as to overlap portions of the conductive portion of the gate electrode.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: May 18, 2010
    Assignee: Sony Corporation
    Inventor: Kazuichiro Itonaga
  • Patent number: 7701008
    Abstract: A semiconductor structure includes of a plurality of semiconductor fins overlying an insulator layer, a gate dielectric overlying a portion of said semiconductor fin, and a gate electrode overlying the gate dielectric. Each of the semiconductor fins has a top surface, a first sidewall surface, and a second sidewall surface. Dopant ions are implanted at a first angle (e.g., greater than about 7°) with respect to the normal of the top surface of the semiconductor fin to dope the first sidewall surface and the top surface. Further dopant ions are implanted with respect to the normal of the top surface of the semiconductor fin to dope the second sidewall surface and the top surface.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: April 20, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yee-Chia Yeo, Ping-Wei Wang, Hao-Yu Chen, Fu-Liang Yang, Chenming Hu
  • Patent number: 7692242
    Abstract: A low resistance layer is formed on a semiconductor substrate, and a high resistance layer formed on the low resistance layer. A source region of a first conductivity type is formed on a surface region of the high resistance layer. A drain region of the first conductivity type is formed at a distance from the source region. A first resurf region of the first conductivity type is formed in a surface region of the high resistance layer between the source region and the drain region. A channel region of a second conductivity type is formed between the source region and the first resurf region. A gate insulating film is formed on the channel region, and a gate electrode formed on the gate insulating film. An impurity concentration in the channel region under the gate electrode gradually lowers from the source region toward the first resurf region.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: April 6, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoko Matsudai, Norio Yasuhara, Yusuke Kawaguchi, Kenichi Matsushita
  • Patent number: 7687856
    Abstract: One embodiment of the present invention relates to a method for transistor matching. In this method, a channel is formed within a first transistor by applying a gate-source bias having a first polarity to the first transistor. The magnitude of a potential barrier in a pocket implant region of the first transistor is reduced by applying a body-source bias having the first polarity to the first transistor. Current flow is facilitated across the channel by applying a drain-source bias having the first polarity to the first transistor. Other methods and circuits are also disclosed.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: March 30, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Henry Litzmann Edwards, Tathagata Chatterjee, Mohamed Kamel Mahmoud, Xiaoju Wu
  • Patent number: 7675126
    Abstract: There are provided a MOSFET and a method for fabricating the same. The MOSFET includes a semiconductor substrate, a first epitaxial layer in a predetermined location of the semiconductor substrate, a second epitaxial layer doped with high concentration impurity ions on the first epitaxial layer, a gate structure on the second epitaxial layer, and source/drain regions with lightly doped drain (LDD) regions. The first epitaxial layer supplies carriers to the second epitaxial layer so that short channel effects are reduced.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: March 9, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Yong Soo Cho
  • Patent number: 7671358
    Abstract: A transistor device having a conformal depth of impurities implanted by isotropic ion implantation into etched junction recesses. For example, a conformal depth of arsenic impurities and/or carbon impurities may be implanted by plasma immersion ion implantation in junction recesses to reduce boron diffusion and current leakage from boron doped junction region material deposited in the junction recesses. This may be accomplished by removing, such as by etching, portions of a substrate adjacent to a gate electrode to form junction recesses. The junction recesses may then be conformally implanted with a depth of arsenic and carbon impurities using plasma immersion ion implantation. After impurity implantation, boron doped silicon germanium can be formed in the junction recesses.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: March 2, 2010
    Assignee: Intel Corporation
    Inventors: Nick Lindert, Mitchell C. Taylor
  • Patent number: 7646071
    Abstract: An improved dynamic memory cell using a semiconductor fin or body is described. Asymmetrical doping is used in the channel region, with more dopant under the back gate to improve retention without significantly increasing read voltage.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: January 12, 2010
    Assignee: Intel Corporation
    Inventors: Ibrahim Ban, Avci E. Uygar, David L. Kencke
  • Publication number: 20090256200
    Abstract: A semiconductor structure includes a semiconductor substrate; a first high-voltage well (HVW) region of a first conductivity type overlying the semiconductor substrate; a second HVW region of a second conductivity type opposite the first conductivity type overlying the substrate and laterally adjoining the first HVW region; a gate dielectric extending from over the first HVW region to over the second HVW region; a gate electrode on the gate dielectric; a drain region in the second HVW region; a source region at an opposite side of the gate dielectric than the drain region; and a deep well region of the first conductivity type underlying the second HVW region. Substantially no deep well region is formed directly underlying the drain region.
    Type: Application
    Filed: April 15, 2008
    Publication date: October 15, 2009
    Inventors: Chih-Wen (Albert) Yao, Puo-Yu Chiang, Tsai Chun Lin, Tsung-Yi Huang
  • Patent number: 7566934
    Abstract: A semiconductor device is formed on an SOI substrate having a silicon layer formed on an insulating layer. A transistor element is formed in the silicon layer of the SOI substrate. An isolation film for electrically isolating the transistor element is formed in the silicon layer of the SOI substrate by LOCOS so that a parasitic transistor is formed. Impurity diffusion regions are disposed at an end of the isolation film and at a boundary of a source region of the transistor element with a channel forming region. The impurity diffusion regions have a polarity opposite to that of the source region. A current path due to a parasitic channel in the parasitic transistor is suppressed.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: July 28, 2009
    Assignee: Seiko Instruments Inc.
    Inventor: Hisashi Hasegawa
  • Patent number: 7560775
    Abstract: In a transistor of the invention, at a boundary between gate oxide 112 formed on a silicon substrate 101 of a device formation region 10 and a device isolation film 110 adjoining the gate oxide 112, a thickness D? of the gate electrode 114 is set larger than a uniform thickness D of the gate electrode 114 on the gate oxide 112. A height difference A between a surface of the gate oxide 112 and a surface of the device isolation film 110, a width B of a step portion 110b of the device isolation film, and the thickness D of the gate electrode 114 in its uniform-thickness portion satisfy relationships that D>B and A/D+(1?(B/D)2)0.5>1. By ion implantation via the gate electrode 114 and the gate oxide 112, an impurity is added into a surface portion of the silicon substrate 101 at an end portion 11 of the device formation region, the impurity having concentrations higher than in the surface portion of the silicon substrate 101 in the electrode uniform portion 12 of the device formation region.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: July 14, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshiji Takamura, Noboru Takeuchi, Satoru Yamagata
  • Patent number: 7560773
    Abstract: A vertical-type semiconductor device for controlling a current flowing between electrodes opposed against each other across a semiconductor substrate, including: a semiconductor substrate having first and second surfaces opposed against each other; a first electrode formed in the first surface; a second electrode formed in the second surface through a high-resistance electrode whose resistance is Rs; and a third electrode formed along at least a part of the outer periphery of the second surface, wherein a potential difference Vs between the second and third electrodes is measured with a current I flowing between the first and second electrodes, and the current I is detected from the resistance Rs and the potential difference Vs.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: July 14, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventor: Masahiro Tanaka
  • Patent number: 7547951
    Abstract: A semiconductor device may include a semiconductor substrate having a first region and a second region. The nitrogen-incorporated active region may be formed within the first region. A first gate electrode may be formed on the nitrogen-incorporated active region. A first gate dielectric layer may be interposed between the nitrogen-incorporated active region and the first gate electrode. The first gate dielectric layer may include a first dielectric layer and a second dielectric layer. The second dielectric layer may be a nitrogen contained dielectric layer. A second gate electrode may be formed on the second region. A second gate dielectric layer may be interposed between the second region and the second gate electrode. The first gate dielectric layer may have the same or substantially the same thickness as the second gate dielectric layer, and the nitrogen contained dielectric layer may contact with the nitrogen-incorporated active region.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: June 16, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ha-Jin Lim, Jong-Ho Lee, Hyung-Suk Jung, Yun Seok Kim, Min Joo Kim
  • Patent number: 7535053
    Abstract: An active region, a source region, and a drain region are formed on a single crystal semiconductor substrate or a single crystal semiconductor thin film. Impurity regions called pinning regions are formed in striped form in the active region so as to reach both of the source region and the drain region. Regions interposed between the pinning regions serve as channel forming regions. A tunnel oxide film, a floating gate, a control gate, etc. are formed on the above structure. The impurity regions prevent a depletion layer from expanding from the source region toward the drain region.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: May 19, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 7531875
    Abstract: This invention is generally concerned with semiconductor-on-insulator devices, particularly for high voltage applications. A lateral semiconductor-on-insulator device is described, comprising: a semiconductor substrate; an insulating layer on said semiconductor substrate; and a lateral semiconductor device on said insulator; said lateral semiconductor device having: a first region of a first conductivity type; a second region of a second conductivity type laterally spaced apart from said first region; and a drift region extending in a lateral direction between said first region and said second region; and wherein said drift region comprises at least one first zone and at least one second zone adjacent a said first zone, a said first zone having said second conductivity type, a said second zone being an insulating zone, a said first zone being tapered to narrow towards said first region.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: May 12, 2009
    Assignee: Cambridge Semiconductor Limited
    Inventors: Florin Udrea, David Garner
  • Publication number: 20090108348
    Abstract: A semiconductor device is provided. An isolation structure is formed in a substrate to define a first and a second active region, and a channel active region therebetween. A field implant region is formed below a portion of the isolation structure around the first, second, and channel active regions. A channel active region includes two first sides defining a channel width. The distance from each first side to a second side of a neighboring field implant region is d1. The shortest distance from a third side of each first or second active region to an extension line of each second side of the field implant region is d2. R=d1/d2, where 0.15?R?0.85. A gate structure covers the channel active region and extends over a portion of the isolation structure. Source/drain doped regions are formed in the first and the second active regions.
    Type: Application
    Filed: October 25, 2007
    Publication date: April 30, 2009
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Ho Yang, Jung-Ching Chen, Shyan-Yhu Wang, Shang-Chi Wu
  • Patent number: 7514763
    Abstract: A semiconductor device includes a first diffusion region including germanium atoms and first impurity atoms, provided on a surface layer of a semiconductor substrate, the first impurity atoms contributing to electric conductivity, and a second diffusion region including second impurity atoms, provided shallower than the first diffusion region from a surface of the first diffusion region, the second impurity atoms not contributing to the electric conductivity.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: April 7, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masafumi Hamaguchi
  • Patent number: 7514758
    Abstract: The invention provides a transistor having low leakage currents and methods of fabricating the transistor on a semiconductor substrate. The transistor has a gate and a nonuniform gate oxide under the gate.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: April 7, 2009
    Assignee: Altera Corporation
    Inventors: Peter John McElheny, Yowjuang (Bill) Liu
  • Patent number: 7511340
    Abstract: Semiconductor devices have gate structures on a semiconductor substrate with first spacers on sidewalls of the respective gate structures. First contact pads are positioned between the gate structures and have heights lower than the heights of the gate structures. Second spacers are disposed on sidewalls of the first spacers and on exposed sidewalls of the first contact pads. Second contact pads are disposed on the first contact pads.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: March 31, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Chul-Sung Kim, In-Soo Jung, Jong-Ryeol Yoo
  • Patent number: 7508032
    Abstract: A high-voltage transistor device has a first well region with a first conductivity type in a semiconductor substrate, and a second well region with a second conductivity type in the semiconductor substrate substantially adjacent to the first well region. A field ring with the second conductivity type is formed on a portion of the first well region, and the top surface of the field ring has at least one curved recess. A field dielectric region is formed on the field ring and extends to a portion of the first well region. A gate structure is formed over a portion of the field dielectric region and extends to a portion of the second well region.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: March 24, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Puo-Yu Chiang, Tsung-Yi Huang, Fu-Hsin Chen, Ting-Pang Li, Chung-Yeh Wu
  • Patent number: 7498642
    Abstract: A semiconductor device having well-defined profiles is disclosed. A p-type pocket/halo region is preferably formed along a channel-side border of the heavily doped source/drain region to neutralize diffused n-type elements. A diffusion-retarding region is formed to retard diffusion for both p-type and n-type impurities by substantially overlapping or extending beyond the p-type pocket/halo region and the N+ S/D region at least on the channel side.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: March 3, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hao Chen, Chun-Feng Nieh, Karen Mai, Tze-Liang Lee
  • Patent number: 7485922
    Abstract: In a semiconductor device of the present invention, an N type epitaxial layer is formed on a P type single crystal silicon substrate. The substrate and the epitaxial layer are partitioned into a plurality of element formation regions by isolation regions. Each of the isolation regions is formed of a P type buried diffusion layer and a P type diffusion layer coupled thereto. The P type buried diffusion layer is joined to N type buried diffusion layers on both sides thereof to form PN junction regions. On the other hand, the P type diffusion layer is joined to N type diffusion layers on both sides thereof to form PN junction regions. This structure suppresses extension of widthwise diffusion of the P type buried diffusion layer and the P type diffusion layer, thus making it possible to reduce the device size.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: February 3, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Seiji Otake, Ryo Kanda, Shuichi Kikuchi
  • Patent number: 7482210
    Abstract: A semiconductor device and a method for fabricating the same are provided. The provided semiconductor device includes a field oxide layer formed in a semiconductor substrate to define an active region; gate structures formed on the active region; source/drain junctions formed on either side of the gate structures on the semiconductor substrate; a channel silicon layer arranged under the gate insulating layer to operate as a channel for connecting sources and drains; and buried junction isolation insulating layers under the channel silicon layer. The buried junction isolation insulating layers isolate source/drain junction regions of a MOS transistor, so that a short circuit in a bulk region under the channel of a transistor due to the high-integration of the device can be prevented.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: January 27, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-young Kim, Ki-nam Kim